Сечения ленточных фундаментов в зависимости от климатических и геологических условий

Обновлено: 15.05.2024

ЛЕКЦИЯ 3. ОСНОВАНИЯ и фундаменты

Определение и виды оснований. — Требования, предъявляемые к фундаментам. — Классификация фундаментов. — Виды фундаментов: ленточные, бутовые, бутобетонные, столбчатые, свайные, сплошные. — Гидроизоляция.

Определение и виды оснований

Массив грунта, залегающий под фундаментом, способный надежно воспринимать давление от здания, называют естественным основанием . Грунты, образующие основание, подразделяют на глинистые, песчаные, крупнообломочные и скальные.

Если грунты основания не способны надежно воспринимать давление от здания, их искусственно укрепляют.

Основание, грунты которого искусственно укреплены, называют ис-

Поддействиемнагрузкиотзданияглинистые,песчаныеикрупнообломочные грунты способны сжиматься, что может повлечь за собой осадку здания. Величина и равномерность осадки зависят от величины нагрузки, сжимаемости грунта, формы и размеров опорной площади фундамента.

Сжимаемость и несущая способность различных видов грунтов неодинаковы, так как различны их физико-механические свойства. Грунтовые воды снижают несущую способность основания.

Требования, предъявляемые к фундаментам:

2) устойчивость на опрокидывание и скольжение в плоскости подошвы фундамента;

3) устойчивость к агрессивным грунтовым водам;

4) стойкость к атмосферным факторам (морозостойкость; пучение грунтов при замерзании);

5) соответствие по долговечности сроку службы здания;

Классификация фундаментов

По работе материала фундамента под нагрузкой различают жест-

кие фундаменты, работающие преимущественно на сжатие, и гибкие , работающие на растяжение и скалывание.

К жестким фундаментам относят бутовые, бутобетонные и бетонные фундаменты.

Гибкие фундаменты выполняют из железобетона.

По конструктивной схеме (рис. 3) фундаменты делят:

1) на ленточные (в виде непрерывной ленты под всеми несущими стенами);

2) столбчатые (в виде отдельных столбов);

3) сплошные (в виде сплошной плиты под всем зданием);

Рис. 3. Конструктивные схемы фундаментов: а — ленточный; б — столбчатый; в —

сплошной; г — свайный: 1 — монолитная железобетонная плита: 2 — сваи: 3 — ростверк; 4 — стена; 5 — фундаментные балки

По способу возведения фундаменты могут быть монолитными и сборными.

В зависимости от глубины заложения подошвы фундаментов разли-

чают фундаменты глубокого (более 5 м) и мелкого заложений.

Глубиной заложения фундамента называется расстояние от отметки планировки грунта до подошвы фундамента. Глубина заложения фундаментов зависит от конструктивных особенностей здания (наличие или отсутствие подвалов и др.), величины и характера нагрузок на основание, глубины заложения фундаментов смежных зданий, геологических и гидрологических условий участка (виды грунтов, их физическое состояние, наличие грунтовых вод, их отметки и колебания уровня), климатических особенностей района (глубина промерзания грунтов), а также от принятой конструкции фундамента.

где ГЗ — глубина заложения фундамента; ГП— глубина промерзания грунта; Ц — высота цоколя; 0,2 м — конструктивный запас.

Виды фундаментов

Ленточные фундаменты устраивают под несущие стены здания. Они подразделяются на сборные и монолитные.

Рис. 4. Конструкции ленточных фундаментов: а — сборный; б — то же, прерывистый;

в — монолитный фундамент (бутобетонный); г — бутовый фундамент: 1 — фундаментные подушки; 2 —

бетонные блоки; 3 — отмостка; 4 — гидроизоляция; 5 — кирпичная облицовка (в полкирпича)

Сборныеленточныефундаментысобираютизжелезобетонныхблоковподушек прямоугольного или трапецеидального сечений высотой 300 и 500 мм, длиной от 800 и до 2800 мм. уложенные на выровненное основание вплотную одна к другой в направлении несущих стен, они образуют сплошную ленту, по которой в перевязку швов на растворе укладывают бетонные блоки стенки фундамента. Блоки стенки шириной 300, 400, 500, 600 мм, высотой 580 мм, длиной 780, 1180 и 2380 мм могут быть сплошными и пустотелыми.

Рис. 5. Конструкции ленточных фундаментов: а — ленточный сборный фундамент; б —

ленточный монолитный фундамент

Пустотелыеблокинеприменимывгрунтах,насыщенныхводой,таккак в пустоты блоков проникает вода и при замерзании разрушает их стенки.

Фундаменты, в которых блоки-подушки уложены с расстоянием одна отдругой,называютсяпрерывистыми(рис.4,б).Расстояниемеждублоками засыпают песком. Прерывистые фундаменты экономичнее сплошных.

Рис. 6. Ленточные монолитные фундаменты. План

Рис. 7. Ленточные сборные фундаменты. План

Бутовые фундаменты. В современном строительстве бутовые фундаменты применяют только в тех районах, где бут является местным строительным материалом, потому что бутовые фундаменты трудоемки в изготовлении и неэкономичны.

Рис. 8. Ленточный бутовый фундамент: 1 — отмостка, 2 — обратная засыпка грунтом

Наиболее экономичными из монолитных ленточных фундаментов яв-

ляются бутобетонные фундаменты .

Рис. 9. Бутобетонный фундамент

Их выполняют из бетона М75 (и выше) и бутового камня (40. 50%), вводимого в бетон по мере возведения фундаментов.

При устройстве монолитных фундаментов применяют инвентарную щитовую опалубку.

Рис. 10. Бутобетонный фундамент. План

Столбчатые фундаменты устраивают в тех случаях, когда нагрузки от здания вызывают давление на грунт меньше нормативного (например, малоэтажные здания, некоторые типы панельных зданий) или когда слой грунта,служащийоснованием,залегаетназначительнойглубине(3. 5 м), что экономически не оправдывает применение ленточных фундаментов.

Рис. 11. Столбчатый фундамент

Рис. 12. Столбчатый фундамент. План

Столбчатые фундаменты могут быть монолитными и сборными. Под зданиями с несущими стенами столбчатые фундаменты распола-

гают под углами стен, в местах пересечения наружных и внутренних стен, под простенками и через 3. 5 м на глухих участках стен.

По столбчатым фундаментам под несущие стены устраивают фундаментные балки из сборного или монолитного железобетона. При расстояниимеждустолбчатымифундаментамидо4миногдаустраиваюткирпичные армированныеперемычки.Воизбежаниедеформаций фундаментных балок от сил пучения грунтов при промерзании в пучинистых грунтах (под фундаментными балками) устраивают подушку из песка или шлака высотой 50. 60 см.

Столбчатые фундаменты устраивают и под отдельно стоящими опорами зданий: под каменные колонны — сборный фундамент из железобетонных блоков-подушек.

Свайные фундаменты устраивают на деревянных, бетонных и (редко) стальных сваях.

Свайные фундаменты различают:

1) по способу изготовления и погружения свай в грунт — на сваи забивные, погружаемые в грунт в готовом виде, и набивные, изготовляемые непосредственно в грунте;

Рис.13.Свайныйфундамент: 1 — бетонная свая; 2 — гидроизоляция; 3 —железобетонныйпояс; 4 —отмост- ка; 5 — стенка цоколя из кирпича; 6 — железобетонная плита перекрытия

2) по характеру работы в грунте — на сваях-стойках, которые проходят через слабые грунты и опираются на прочный грунт, и висячих сваях (сваях трения), которые уплотняют слабый грунт и передают нагрузку на грунт трением, возникающим между грун-

том и боковой поверхностью свай.

Для равномерного распределения на-

грузки от здания на все сваи, располагаемые

рядами или в шахматном порядке, головы свай заделывают в бетонную или железобетонную плиту (ростверк).


Свайные фундаменты позволяют сократить объем земляных работ, расход бетона, снизить стоимость фундаментов. Вместе с тем свайные фундаменты менее экономичны по расходу стали.

Забивные железобетонные и деревянные сваи погружают с помощью копров, вибропогружателей и вибровдавливающих агрегатов.

Набивные сваи устраивают методом заполнения бетонной или иной смесью предварительно пробуренных, пробитых или

выштампованных скважин. Нижняя часть скважин может быть уширена с помощью взрывов (сваи с камуфлетной пятой).

Буроопускные сваи отличает oт набивных то, что в скважину устанавливают готовые железобетонные сваи с заполнением зазора между сваей и скважиной песчано-цементным раствором.

Свайные фундаменты в плане могут состоять: из одиночных свай — под опоры;

лент свай — под стены здания, с расположением свай в один, два и более рядов;

кустов свай — под тяжело нагруженные опоры; сплошного свайного поля — под тяжелые сооружения с равномерно

распределенными по плану здания нагрузками.

Расстояние между сваями и их число определяют расчетом. Минимальное расстояние между висячими сваями принимают 3 d (где

d — диаметр круглой или сторона квадратной сваи).

Рис. 14. Виды свай: 1 , 2 , 3 , 4 — бетонные и железобетонные сваи квадратные, круглые, сплошные,пустотелые; 5 , 6 —набивныеобычныеисуширеннойпятой; 7 , 8 —камуфлетные; 9 —сшарнирно раскрывающиеся упорами; 10 — призматические; 11 — свая в лидерной скважине

Рис. 15. Свайный фундамент из сборных винтовых свай

Сплошные фундаменты проектируют в виде балочных или безбалочных, бетонных или железобетонных плит. Ребра балочных плит могут быть обращены вверх и вниз. Места пересечения ребер служат для установки колонн каркаса. Пространство между ребрами в плитах с ребрами

вверх заполняют песком или гравием, а поверх устраивают бетонную подготовку.Бетонныеплитынеармируют.Железобетонныеармируютпорасчету. При большом заглублении сплошных фундаментов и необходимости обеспечить большую их жесткость фундаментные плиты можно проектировать коробчатого сечения с размещением между ребрами и перекрытиями коробок помещений подвалов.

Рис. 16. Сплошные фундаментные плиты: а — под стены или колонны; б — плитно-

балочный вариант; в — коробчатые; г — в виде цилиндрических оболочек; д — оболочек двоякой кривизны

Сечения ленточных фундаментов в зависимости от климатических и геологических условий

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

Проектирование и устройство оснований и фундаментов зданий и сооружений

Design and construction of soil bases and foundations for buildings and structures

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н.М.Герсеванова (НИИОСП) - филиалом ФГУП "НИЦ "Строительство"

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2008 г. и опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2010 г.

Опечатки внесены изготовителем базы данных.

Введение

Свод правил по проектированию и устройству оснований и фундаментов зданий и сооружений разработан в развитие обязательных положений и требований СНиП 2.02.01-83* и СНиП 3.02.01-87.

Свод правил содержит рекомендации по проектированию и устройству оснований и фундаментов зданий и сооружений, в том числе подземных и заглубленных, возводимых в различных инженерно-геологических условиях, для различных видов строительства.

Разработан НИИОСП им. Н.М.Герсеванова - филиалом ФГУП НИЦ "Строительство" (доктора техн. наук В.А.Ильичев и Е.А.Сорочан - руководители темы; доктора техн. наук: Б.В.Бахолдин, А.А.Григорян, П.А.Коновалов, В.И.Крутов, В.О.Орлов, В.П.Петрухин, Л.Р.Ставницер, В.И.Шейнин; кандидаты техн. наук: Ю.А.Багдасаров, Г.И.Бондаренко, В.Г.Буданов, Ю.А.Грачев, Ф.Ф.Зехниев, М.Н.Ибрагимов, О.И.Игнатова, И.В.Колыбин, Н.С.Никифорова, B.C.Поляков, В.Г.Федоровский, М.Л.Холмянский; инженеры: Я.М.Бобровский, Б.Ф.Кисин, А.Б.Мещанский); ГУП Мосгипронисельстрой (д-р техн. наук B.C.Сажин).

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на основания и фундаменты вновь строящихся и реконструируемых зданий и сооружений*, возводимых в открытых котлованах.

* Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения.

Настоящий СП не распространяется на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-22-81* Каменные и армокаменные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.02-85* Основания гидротехнических сооружений

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения

СНиП 2.06.03-85 Мелиоративные системы и сооружения

СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод

СНиП 2.06.15-85 Инженерная защита территории от затопления и подтопления

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы

СНиП 3.07.03-85* Мелиоративные системы и сооружения

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 12-01-2004 Организация строительства

СНиП 23-01-99* Строительная климатология

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства (ч.I-III)

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) состава

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 22733-2002 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-90 Грунты. Методы радиоизотопных измерений плотности и влажности

ГОСТ 23161-78 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 25100-95 Грунты. Классификация

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-99 Грунты. Полевые испытания. Общие положения

3 Определения

Определения основных терминов приведены в приложении А.

4 Общие положения

4.1 Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.4 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.5 Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание - При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8 Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

Глубина заложения ленточного фундамента

Влияющие условия

заливка ленты фундамента

Заливка ленты фундамента

Построить ленточный фундамент можно, если не вступают в противоречие следующие показатели:

  • Суммарный вес дома (нагрузка на площадь основания);
  • Полная высота строения (от низа ленты до конька крыши);
  • Площадь опоры (по наружному периметру);
  • Предполагаемое использование пространства внутри ленты (подвал, засыпка);
  • Геологические характеристики участка;
  • Климатические условия;
  • Плотность окружающей застройки.

Первые четыре условия задаются застройщиком при проектировании. По ВСН 29-85 учитывается длина стороны ленты. На слабо пучинистых грунтах она не может превышать 30 м. С нарастанием показателя пучинистости, длина, соответственно, уменьшается до 25, 20 и 15 м.

Глубина заложения ленточного фундамента

Влияние геологических и климатических характеристик

На объем работ по устройству добротного основания влияют:

  • Склонность грунта к пучению;
  • Уровень грунтовых вод;
  • Глубина промерзания.

На чрезмерно пучинистых, глубокопромерзающих, сильноподвижных и влажных грунтах использовать ленточный тип основания не рекомендуется. Лучше выбрать сваи или плиту.

Выполнить достаточное заглубление можно, пользуясь СНиП 2.02.01-83. Рекомендации по величине:

  • Если уровень грунтовых вод (УГВ) ниже глубины промерзания (ГП), то для глины и суглинка отметка низа основания равна половине ГП. В остальных типах грунта – не зависит;
  • Если УГВ выше ГП, то, кроме гравелистых, скалистых песков, – не ниже ГП.

Расчетный показатель промерзания в разных регионах колеблется от 1 до 3,1 м. Соответственно, здание опирают на разной отметке от 0,6 до 1,5 м. Для легких зданий (деревянных, пенобетонных, малых кирпичных) на слабо-пучинистых грунтах она составит 0,5-0,7 м.

Практика показывает, что, среднестатистически, частные строители закладывают начало на 0,9 м, опытные застройщики используют отметки 1,1 м (на сильные морозы). В расчете применяют коэффициент 1,1.

Заглубленный ленточный фундамент выбирают для зданий большим весом, ветровой и снеговой нагрузкой. Заглубление делают ниже ГП на 0,2-0,3 м. Если грунтовые воды расположены близко к нижней границе основания, нельзя для него в качестве строительного материала использовать кирпич.

Сруб, каркасный дом без погреба, потребуют мелкозаглубленный вариант (0,5 м). Структура древесных материалов достаточно устойчива к небольшим деформациям, вызываемыми движениями подошвы. К строительству из кирпича, шлакоблока, следует подходить на проведении более точного расчета. Посмотрите видео, как сделать мелкозаглубленный фундамент своими руками.

Меры по снижению воздействия внешних условий

Вертикальный габарит ниже уровня земли, влияет и на количество расходных материалов. Его можно уменьшить разными методами:

Внутренние перемычки допускается погружать меньше, минимально на 0,4 м. Наибольшая высота над землей малозаглубленного основания при внутреннем заполнении грунтом под полом не превышает четыре ширины ленточного фундамента.

Если ленточную заливку делают, например, для забора, то все равно учитывают геологию участка. Силы воздействия на слабую конструкцию могут разрушить ее за один зимний период.

Цокольное исполнение

Большая глубина заложения у ленточного фундамента может быть по причине устройства цокольного уровня в частном доме. Дополнительная полезная площадь, не входящая в этажность, это одно из преимуществ такой конструкции. Внутреннее пространство сразу предполагается:

  1. Отапливаемым, бытовым. Заложение начинается на 20÷30% выше границы промерзания. Для отапливаемого подвала ГП не является определяющим показателем.
  2. Не отапливаемым, подсобным, овощехранилищем. Заглубить + 10% к уровню промерзания.

По нормам заглубление не превысит 2,5 м (при внутренней высоте до нулевой отметки не более 2 м). Материал стен, этажность повлияют на толщину монолита, а не на глубину. Можно даже уменьшить этот показатель, так как опорная площадь увеличится за счет заливки пола. С другой стороны, надземная часть цокольного уровня должна составлять не более половины подземной. Нужно соизмерять, в каком помещении есть потребность. Посмотрите видео, как выбрать глубину цокольного уровня.

При заглублении больше 1 м, боковое действие сил пучения вызывает значительное давление на боковую поверхность стен подвала, лента проектируется толще. В помещениях большой площади устанавливаются простенки.

Разница глубины соседних фундаментов

Заложение фундаментов рядом расположенных построек не требует соблюдения одной глубины. Особенно в случаях значительной разницы в передаваемых нагрузках.

Гараж, сарай, забор в сравнении с двухэтажным домом оказывают гораздо меньшее воздействие на опору. Взаимное воздействие лучше развязать. В случае, если осуществляется пристройка по единой связке с разными уровнями, то уровни соединяются по всей длине косыми уступами. Высота 0,3÷0,6 м, угол наклона значения не имеет.

Срок службы в зависимости от глубины

Ленточный заглубленный фундамент, выполненный по стандартам СНиП II-15-74, рассчитан на срок не менее 50 лет. Мелкозаглубленное конструктивное решение подвергается деформирующим подвижкам грунта сильнее.

Поэтому, даже с учетом давления на него легкой постройки, расчетный срок эксплуатации в 2 раза меньше.

Сечения ленточных фундаментов в зависимости от климатических и геологических условий

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

____________________________________________________________________
Текст Сравнения СНиП 2.02.01-83* с СП 22.13330.2011 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 1985-01-01

РАЗРАБОТАНЫ НИИОСП им. Н.М.Герсеванова Госстроя СССР (руководитель темы - д-р техн. наук, проф. Е.А.Сорочан, ответственный исполнитель - канд. техн. наук А.В.Вронский); институтом Фундаментпроект Минмонтажспецстроя СССР (исполнители - канд. техн. наук Ю.Г.Трофименков и инж. М.Л.Моргулис) с участием ПНИИИС Госстроя СССР, производственного объединения Стройизыскания Госстроя РСФСР, института Энергосетьпроект Минэнерго СССР и ЦНИИС Минтрансстроя.

ВНЕСЕНЫ НИИОСП им. Н.М.Герсеванова Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главным управлением технического нормирования и стандартизации Госстроя СССР (исполнитель - О.Н.Сильницкая)

УТВЕРЖДЕНЫ постановлением Государственного комитета СССР по делам строительства от 5 декабря 1983 г. N 311

ВЗАМЕН СНиП II-15-74 и СН 475-75

СНиП 2.02.01-83* является переизданием СНиП 2.02.01-83 с изменениями N 1, 2 утвержденными постановлениями Госстроя СССР от 9 декабря 1985 г. N 211, от 1 июля 1987 г. N 125.

Номера пунктов и приложений, в которые внесены изменения, отмечены звездочкой.

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале "Бюллетень строительной техники" и информационном указателе "Государственные стандарты".

Настоящие нормы должны соблюдаться при проектировании оснований зданий и сооружений.

Далее для краткости, где это возможно, вместо термина "здания и сооружения" используется термин "сооружения".

Настоящие нормы не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками.

Положения данных норм соответствуют СТ СЭВ 5507-86*.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основания сооружений должны проектироваться на основе:

а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;

в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

1.2. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями.

1.3. Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82*.

1.4. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.

1.5. Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п.

1.6. В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания.

Натурные измерения деформаций основания должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания.

2. ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ

ОБЩИЕ УКАЗАНИЯ

2.1. Проектирование оснований включает обоснованный расчетом выбор:

типа основания (естественное или искусственное);

типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, бутобетонные и др.);

мероприятий, указанных в пп.2.67-2.71, применяемых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность сооружений.

2.2. Основания должны рассчитываться по двум группам предельных состояний: первой - по несущей способности и второй - по деформациям.

Основания рассчитываются по деформациям во всех случаях и по несущей способности - в случаях, указанных в п.2.3.

В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов).

2.3. Расчет оснований по несущей способности должен производиться в случаях, если:

а) на основание передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и т.п.), в том числе сейсмические;

б) сооружение расположено на откосе или вблизи откоса;

в) основание сложено грунтами, указанными в п.2.61;

г) основание сложено скальными грунтами.

Расчет оснований по несущей способности в случаях, перечисленных в подпунктах "а" и "б", допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует производить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

2.4. Расчетная схема системы сооружение-основание или фундамент-основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

НАГРУЗКИ И ВОЗДЕЙСТВИЯ, УЧИТЫВАЕМЫЕ В РАСЧЕТАХ ОСНОВАНИЙ

2.5. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.

Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.

Нагрузки на основание допускается определять без учета их перераспределения над фундаментной конструкцией при расчете:

а) оснований зданий и сооружений III класса;

б) общей устойчивости массива грунта основания совместно с сооружением;

в) средних значений деформаций основания;

г) деформаций основания в стадии привязки типового проекта к местным грунтовым условиям.

Здесь и далее класс ответственности зданий и сооружений принят согласно "Правилам учета степени ответственности зданий и сооружений при проектировании конструкций", утвержденным Госстроем СССР.

2.6. Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности - на основное сочетание, а при наличии особых нагрузок и воздействий - на основное и особое сочетание.

При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.

2.7. В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.

2.8. Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.

2.9. Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ

2.10. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения , удельное сцепление , модуль деформации грунтов , предел прочности на одноосное сжатие скальных грунтов и т.п.). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).

Примечание. Далее, за исключением специально оговоренных случаев, под термином "характеристики грунтов" понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

2.11. Характеристики грунтов природного сложения, а также искусственного происхождения должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

2.12. Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75.

На территории Российской Федерации действует ГОСТ 20522-96. - Примечание изготовителя базы данных.

2.13. Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов , определяемых по формуле


, (1)

где - нормативное значение данной характеристики;

- коэффициент надежности по грунту.

Коэффициент надежности по грунту при вычислении расчетных значений прочностных характеристик (удельного сцепления , угла внутреннего трения нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов , а также плотности грунта ) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности . Для прочих характеристик грунта допускается принимать 1.

3.2. Ленточные фундаменты

Ленточные фундаменты устраиваются под внутренние и наружные несущие и самонесущие стены. По форме сечения (рис.3.4) ленточные фундаменты подразделяются на:

Толщина фундаментной стены определяется расчетом или принимается по конструктивным соображением. Расположение стены относительно ленточного фундамента может быть решено в нескольких вариантах (рис.3.5):

ширина фундамента больше толщины стены;

ширина фундамента равна толщине стены;

ширина фундамента меньше толщины стены.

Наружная стена может быть сдвинута внутрь или наружу относительно стены ленточного фундамента.

3.2.2. Глубина заложения фундаментов

Глубина заложения фундамента для здания без подвала зависит от назначения здания, конструктивных особенностей, величины и характера нагрузок, геологических и гидрогеологических условий, климатических условий района строительства (глубина промерзания грунтов) и ряда других факторов. Глубина заложения фундаментов под наружные стены и колонны должна быть не



Рис. 3.4. Форма поперечного сечения ленточных фундаментов:

а - фундамент прямоугольной формы ; б – то же «с подушкой», в - то же, ступенчатой формы; г – то же трапециевидной; 1 - подошва фундамента ; 2 - подушка ; 3 - обрез фундамента.

менее 0,5 м; На пучинистых грунтах глубина заложения должна быть не менее глубины промерзания грунта.

Глубина заложения фундамента под внутренние стены отапливаемых зданий не зависит от промерзания грунта и назначается не менее 0,5 м. от уровня поверхности земли или пола подвала.

3.2.3. Ленточные фундаменты из сборных железобетонных блоков

Ленточные фундаменты могут выполняться из сборных железобетонных блоков, из монолитного бетона или бутобетона, из бутового камня. Наиболее распространенными являются ленточные сборные фундаменты из крупных железобетонных блоков. Они наиболее индустриальны, их применение позволяет значительно сократить сроки строительства и уменьшить трудоемкость работ.

Сборный ленточный фундамент состоит из фундаментных блоков-подушек и фундаментных стеновых блоков. Фундаментные подушки могут быть прямоугольной или трапециевидной формы, а фундаментные блоки – прямоугольные параллелепипеды (рис.3.5). Фундаментные блоки изготавливаются на заводах ЖБИ определенных типоразмеров. Фундаментные блоки обычно делают без пустот, но могут выпускаться и с пустотами.


Рис. 3.5. Конструктивные схемы ленточных фундаментов:

1 – бутовый, шире стены; 2 – бутобетонный, равен ширине стены; 3 - из пустотелых блоков, равен толщине стены; 4 - из железобетонных блоков, тоньше ширины стены; 5 - из крупных панелей


Рис.3.6. Элементы сборных ленточных фундаментов:

1, 3 - блок-подушка с предварительно напряженной арматурой; 2 - укороченный стеновой блок; 4 – укороченная фундаментная подушка; 5 – стеновой фундаментный блок

Блоки - подушки укладываются на выровненную поверхность основания при песчаных грунтах и на песчаную подсыпку толщиной 100 мм при прочих грунтах. Под пустотелые подушки следует сделать бетонную подготовку.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

3.2. Выбор и обоснование глубины заложения фундамента Глубина заложения согласно инженерно-геологическим условиям

Согласно инженерно-геологическим условиям и анализа характера напластования основанием для фундамента мелкого заложения под сечение 2-2 является пылеватый песок. Мощность слоя 2,6 м, глубина залегания – 1,2 м. Поскольку фундамент должен быть заделан в несущий слой не менее чем на 0,1 м, то минимальная глубина заложения фундамента:

Глубина заложения согласно природно-климатическим условиям

Нормативная глубина промерзания грунта для г. Ухты [3, стр.80, рис. 38] равна 2,1 м.

Для пылеватого песка данного района нормативная глубина промерзания:

dfn = 2.1 * 0.28 / 0.23 = 2.56 м

Расчетная глубина сезонного промерзания грунта:

где kh – коэффициент, учитывающий влияние теплового режима сооружения.

Для здания с подвалом принимаем kh = 0,6 [4, табл. 1]. Тогда:

dа = 0,6 * 2,56 = 1,536 м

По условиям СНиПа [4, табл. 2] глубина заложения фундамента не зависит от расчетной глубины промерзания грунта.

Глубина заложения в зависимости от конструктивных особенностей фундамента и здания в целом.

Фундамент под кирпичную внутреннюю стену толщиной 0,51 м принимаем ленточный.

Высота подвала 2,1 м. Толщина пола подвала hs = 0,1 м. От низа пола подвала до подошвы фундамента должно быть hcf  0,5 м. Следовательно, подошва фундамента находится на отметке не менее

- (2,1 + 0,1 + 0,5) = - 2,7 м

Поскольку отметка уровня земли – (-1,05), то глубина заложения фундамента по его конструктивным особенностям равна: 2,7 – 1,05 = 1,65 м (см. рис. 5 )

ЗАКЛЮЧЕНИЕ: По расчетам глубина заложения фундамента принимается исходя из его конструктивных особенностей:

3.3. Определение размеров подошвы фундамента

Глубина заложения фундамента d = 1.65 м.

Принимаем фундаментную подушку Ф14: l = 2.38 м; b = 1,2 м; h = 0,3 м; вес плиты - 18,2 кН

Блоки бетонные для стен подвала ФС6: l = 2.38 м; b = 0,6 м; h = 0,6 м; вес блока - 19,6 кН

Добавочный бетонный блок ФС3: l = 2.38 м; b = 0,6 м; h = 0,3 м; вес блока - 9,8 кН

Вычисляем расчетное сопротивление грунта по формуле (расчетная схема на рисунке 6):


, где

с1 и  с2 - коэффициенты условий работы [4, табл. 3]:

k - коэффициент, принимаемый в зависимости от способа определения прочносных характеристик грунта: k = 1,1

Mj , Mq и Mc коэффициенты принимаемые по таблице 3 для даного грунта:

kz = 1, т. к. b = 1,2 м < 10 м

сII - расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (таблица 1):

II - осредненное значение удельного веса грунтов, залегающих ниже подошвы фундамента;

II - то же, залегающих выше подошвы.


dв - глубина подвала: dв = 1,05 м

d1 - приведенная глубина заложения наружных и внутренних фундаментов от пола подвала:


, (см. рис. 6)

Следовательно, расчетное сопротивление грунта:


Расчет по второй группе предельных состояний.

Среднее давление по подошве фундамента:

N 0 II = 359,94 кН = 0,35994 МН - общая нормативная нагрузка на 1 погонный метр стены (до уровня земли)

N ф II - нормативная нагрузка по фундаменту на 1 погонный метр:


=0,02709 МН

N гр II - нормативная нагрузка грунта на уступах фундаментной подушки на 1 погонный метр:


=0,00114 МН

РII ср = (0,3599 + 0,0271 + 0,0011) / 1,2 = 0,3234 МПа

Среднее давление по подошве фундамента не должно превышать расчетного сопротивления более чем на 5 %.

(R - РII ср ) * 100% / R = (0.312 – 0.323) * 100% / 0.312 = -4 %

Читайте также: