Реферат устройство свайных фундаментов

Обновлено: 17.05.2024

Свайные фундаменты

1.1 По способу заглубления в грунт различают следующие виды свай:
а) забивные (вдавливаемые) железобетонные, деревянные и стальные, погружаемые в грунт без его выемки или в лидерные скважины с помощью молотов, вибропогружателей, вибровдавливающих, виброударных и вдавливающих устройств, а также железобетонные сваи-оболочки диаметром до 0,8 м, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью;

Содержимое работы - 1 файл

основания и фундаменты.docx

Свая — деревянный, металлический, или железобетонный стержень, который заглубляют в землю в основании зданий, сооружений для придания прочности фундаменту.

1.1 По способу заглубления в грунт различают следующие виды свай:

а) забивные (вдавливаемые) железобетонные, деревянные и стальные, погружаемые в грунт без его выемки или в лидерные скважины с помощью молотов, вибропогружателей, вибровдавливающих, виброударных и вдавливающих устройств, а также железобетонные сваи-оболочки диаметром до 0,8 м, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью;

б) сваи-оболочки железобетонные, заглубляемые вибропогружателями с выемкой грунта и заполняемые частично или полностью бетонной смесью;

в) набивные бетонные и железобетонные, устраиваемые в грунте путем укладки бетонной смеси в скважины, образованные в результате принудительного отжатия (вытеснения) грунта;

г) буровые железобетонные, устраиваемые в грунте путем заполнения пробуренных скважин бетонной смесью или установки в них железобетонных элементов;

1.2 По условиям взаимодействия с грунтом сваи следует подразделять на сваи-стойки и висячие.

К сваям-стойкам следует относить сваи всех видов, опирающиеся на скальные грунты, а забивные сваи, кроме того, - на малосжимаемые грунты.

Силы сопротивления грунтов, за исключением отрицательных (негативных) сил трения, на боковой поверхности свай-стоек в расчетах их несущей способности по грунту основания на сжимающую нагрузку не должны учитываться.

К висячим сваям следует относить сваи всех видов, опирающиеся на сжимаемые грунты и передающие нагрузку на грунты основания боковой поверхностью и нижним концом.

Примечание - К малосжимаемым грунтам относятся крупнообломочные грунты с песчаным заполнителем средней плотности и плотным, а также глины твердой консистенции в водонасыщенном состоянии с модулем деформации E ≥ 50 МПа.

1.3 Забивные железобетонные сваи размером поперечного сечения до 0,8 м включительно и сваи-оболочки диаметром 1 м и более следует подразделять:

а) по способу армирования - на сваи и сваи-оболочки с ненапрягаемой продольной арматурой с поперечным армированием и на предварительно напряженные со стержневой или проволочной продольной арматурой (из высокопрочной проволоки и арматурных канатов) с поперечным армированием и без него;

б) по форме поперечного сечения - на сваи квадратные, прямоугольные, таврового и двутаврового сечений, квадратные с круглой полостью, полые круглого сечения;

в) по форме продольного сечения - на призматические, цилиндрические и с наклонными боковыми гранями (пирамидальные, трапецеидальные, ромбовидные);

г) по конструктивным особенностям - на сваи цельные и составные (из отдельных секций);

д) по конструкции нижнего конца - на сваи с заостренным или плоским нижним концом, с плоским или объемным уширением (булавовидные) и на полые сваи с закрытым или открытым нижним концом или с камуфлетной пятой.

Примечание - Сваи забивные с камуфлетной пятой устраивают путем забивки полых свай круглого сечения с закрытым стальным полым наконечником с последующим заполнением полости сваи и наконечника бетонной смесью и устройством с помощью взрыва камуфлетной пяты в пределах наконечника. В проектах таких свай следует предусматривать указания о соблюдении правил производства буровзрывных работ.

1.4 Набивные сваи по способу устройства подразделяют на:

а) набивные, устраиваемые путем погружения инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью;

б) набивные виброштампованные, устраиваемые в пробитых скважинах путем заполнения скважин жесткой бетонной смесью, уплотняемой виброштампом в виде трубы с заостренным нижним концом и закрепленным на ней вибропогружателем;

в) набивные в выштампованном ложе, устраиваемые путем выштамповки в грунте скважин пирамидальной или конусной формы с последующим заполнением их бетонной смесью.

1.5 Буровые сваи по способу устройства подразделяют на:

а) буронабивные сплошного сечения с уширениями и без них, бетонируемые в скважинах, пробуренных в глинистых грунтах выше уровня подземных вод без крепления стенок скважин, а в любых грунтах ниже уровня подземных вод - с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами;

б) буронабивные полые круглого сечения, устраиваемые с применением многосекционного вибросердечника;

в) буронабивные с уплотненным забоем, устраиваемым путем втрамбовывания в забой скважины щебня;

г) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом и заполнением скважин бетонной смесью;

д) буроинъекционные диаметром 0,15 - 0,25 м, устраиваемые в пробуренных скважинах путем нагнетания (инъекции) в них мелкозернистой бетонной смеси или цементно-песчаного раствора, или буроинъекционные с уплотнением окружающего грунта путем обработки скважины по разрядно-импульсной технологии (сваи РИТ);

е) буроинъекционные, устраиваемые полым шнеком:

ж) сваи-столбы, устраиваемые путем бурения скважин с уширением или без него, укладки в них омоноличивающего цементно-песчаного раствора и опускания в скважины цилиндрических или призматических элементов сплошного сечения со сторонами или диаметром 0,8 м и более;

з) буроопускные сваи с камуфлетной пятой, отличающиеся от буронабивных свай с камуфлетной пятой (см. подпункт «г») тем, что после образования и заполнения камуфлетного уширения в скважину опускают железобетонную сваю.

1 Обсадные трубы допускается оставлять в грунте только в случаях, когда исключена возможность применения других решений конструкции фундаментов (при устройстве буронабивных свай в пластах грунтов со скоростью фильтрационного потока более 200 м/сут, при применении буронабивных свай для закрепления действующих оползневых склонов и в других обоснованных случаях).

2 При устройстве буронабивных свай в водонасыщенных глинистых грунтах для крепления стенок скважин допускается использовать избыточное давление воды.

1.6 Номенклатура забивных железобетонных и буронабивных свай приведена в приложении Г.

1.7 Железобетонные и бетонные сваи следует проектировать из тяжелого бетона.

Для забивных железобетонных свай с ненапрягаемой продольной арматурой, на которые отсутствуют государственные стандарты, а также для набивных и буровых свай необходимо предусматривать бетон класса не ниже В15, для забивных железобетонных свай с напрягаемой арматурой - не ниже В22,5.

1.8 Железобетонные ростверки свайных фундаментов следует проектировать из тяжелого бетона класса не ниже: для монолитных - В15, для сборных - В20.

Для опор мостов класс бетона свай и свайных ростверков следует назначать в соответствии с требованиями СНиП 2.05.03, для гидротехнических сооружений - СНиП 2.06.06 и СНиП 2.06.08.

6.9 Бетон для замоноличивания железобетонных колонн в стаканах свайных ростверков, а также оголовков свай при сборных ленточных ростверках следует предусматривать в соответствии с требованиями СНиП 52-01, но не ниже класса В15.

Примечание - Для опор мостов и гидротехнических сооружений класс бетона для замоноличивания сборных элементов свайных фундаментов должен быть на ступень выше класса бетона соединяемых сборных элементов.

1.10. Марки бетона по морозостойкости и водонепроницаемости свай и свайных ростверков следует назначать, руководствуясь требованиямиГОСТ 19804, СНиП 52-01, для мостов и гидротехнических сооружений - соответственно СНиП 2.05.03 и СНиП 2.06.06.

1.11. Деревянные сваи должны быть изготовлены из бревен хвойных пород (сосны, ели, лиственницы, пихты), соответствующих требованиямГОСТ 9463, диаметром 22-34 см и длиной 6,5 и 8,5 м. Естественная коничность (сбег) бревен сохраняется.

Размеры поперечного сечения, длину и конструкцию пакетных свай принимают по результатам расчета и в соответствии с особенностями проектируемого объекта.

ПРОЕКТИРОВАНИЕ СВАЙНЫХ ФУНДАМЕНТОВ

1.1 ОСНОВНЫЕ УКАЗАНИЯ ПО РАСЧЕТУ

1.1.1 Расчет свайных фундаментов и их оснований должен быть выполнен в соответствии с ГОСТ 27751 по предельным состояниям:

1) первой группы:

а) по прочности материала свай и свайных ростверков;

б) по несущей способности грунта основания свай;

в) по несущей способности грунта оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.), в том числе сейсмические, если сооружение расположено на откосе или вблизи него или если основание сложено крутопадающими слоями грунта;

2) второй группы:

а) по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок;

б) по перемещениям свай (горизонтальным и углам поворота головы свай) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов (см. подраздел 7.4 и приложение Д);

в) по образованию или чрезмерному раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Расчет по несущей способности, регламентированный подпунктом «в» для первой группы, допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.

1.1.2 В расчетах оснований свайных фундаментов следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние подземных вод на физико-механические свойства грунтов и др.).

Сооружение и его основание должны рассматриваться совместно, т.е. должно учитываться взаимодействие сооружения со сжимаемым основанием.

Расчетная схема системы «сооружение - основание» или «фундамент - основание» должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов, развитие областей пластических деформаций под фундаментом.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

1.1.3 Нагрузки и воздействия, учитываемые в расчетах свайных фундаментов, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок следует принимать в соответствии с требованиями СНиП 2.01.07 с учетом указаний СНиП 2.02.01.

1.1.4 Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям - на основные сочетания.

1.1.5 Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете свайных фундаментов мостов и гидротехнических сооружений следует принимать согласно требованиям СНиП 2.05.03 и СНиП 2.06.06.

1.1.6 Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов.

Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СНиП 52-01, СНиП II-23, СНиП II-25, СНиП 2.05.03 и СНиП 2.06.06.

Расчетные значения характеристик грунтов следует определять в соответствии с ГОСТ 20522, расчетные значения коэффициентов постели грунта сz, окружающего сваю, следует принимать в соответствии с приложением Д.

Расчетные сопротивления грунта под нижним концом сваи R и на боковой поверхности сваи fi следует определять по указаниям подраздела 7.2.

При наличии результатов полевых исследований, проведенных в соответствии с требованиями подраздела 7.3, несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний, учитывая рекомендации 7.3.

Реферат устройство свайных фундаментов

Свайные фундаменты. Новая технология «Свая в трубе»

Тип фундамента выбирается исходя из большого количества факторов. Проблема рационального проектирования фундаментов является одной из актуальных в области строительства. Особенно остро эта проблема стоит при строительстве в сложных инженерно-геологических условиях, в которых наиболее целесообразным является применение свайных фундаментов. Доля затрат на возведение подземной части зданий и сооружений в таких грунтовых условиях составляет до 20%. Развитие фундаментостроения направлено по пути разработки новых, экономичных и надежных конструкций фундаментов и методов их устройства, обеспечивающих повышение несущей способности грунтов в основаниях, более полного использования несущей способности материала фундаментов.

В своей работе я расскажу о новой технологии возведения свайных фундаментов «Свая в трубе», о преимуществах данного метода и истории его развития.

1. Что такое фундамент? Его виды

Фундамент, или основание, - несущая конструкция, часть здания, сооружения, которая воспринимает все нагрузки от вышележащих конструкций и распределяет их по основанию.

Основная классификация фундаментов - по назначению. По назначению фундаменты делятся на:

2. Комбинированный, то есть способный, в дополнение к несущим функциям, выполнять еще и функции сейсмической защиты;

. Неглубокого заложения на естественных основаниях или искусственных;

. Специальные, например, экспериментальные антисейсмические «качающиеся» фундаменты; «плавающие» фундаменты, давление которых равно давлению вынутого грунта и другие.

По типу фундаменты классифицируются на:

1. Столбчатый фундамент

2. Ленточный (сборный или монолитный):

1. заглубленный (ниже глубины промерзания);

2. малозаглубленный (выше глубины промерзания);

3. Свайный (сборный или монолитный):

1. на забивных сваях;

2. на трубобетонных сваях;

. на буронабивных сваях;

. на набивных сваях;

. на винтовых сваях;

4. Свайно-ростверковый фундамент

В данной работе будет более подробно рассмотрен свайный тип фундаментов, и, как ранее уже было сказано, будет описан новый, предложенный Санкт - Петербуржскими конструкторами, метод «Свая в трубе». Но обо всем по порядку. Предлагаю рассмотреть, как все-таки развивалось свайное фундаментостроение.

2.Развитие свайного фундаментостроения

Применение свайных фундаментов имеет многовековую историю, однако широкое использование забивных свай в промышленном и гражданском строительстве началось только в конце XIX в. в связи с появлением и развитием железобетона. Для погружения железобетонных свай были созданы мощные копровые установки с паровыми молотами. В ходе развития техники свайных работ наряду с ударными методами стали использовать вибрацию, вдавливание и их комбинации.

В 1899 г. инженер А.Э. Страусс предложил устраивать сваи непосредственно в грунте, в подготовленных для этой цели скважинах. Такие сваи стали называть набивными. В качестве материалов для набивных свай используют не только бетон и железобетон, но и песок, щебень и другие материалы. При устройстве набивных свай имеется возможность оперативно менять их размеры (диаметр и длину) в зависимости от нагрузок и грунтовых условий, а также устраивать уширение в нижней части.

В ФРГ, Франции, Японии, Италии и ряде других стран созданы универсальные высокопроизводительные установки, позволяющие изготавливать набивные сваи диаметрами 0,2…2,0 м и длиной до 100 м и более практически в любых гидрогеологических условиях. Это привело к значительному увеличению объема применения набивных свай.

В то же время объем применения готовых (погружаемых) свай несколько снизился, что связано с ограничением применения ударных и вибрационных методов погружения в условиях плотной застройки и в глубоких котлованах (более 6 м).

Однако погружаемые сваи остаются вне конкуренции при строительстве на вечной мерзлоте, при производстве работ в зимнее время. Им отдается предпочтение при возведении гидротехнических сооружений. Большинство причалов в портах Балтийского, Охотского, Черного, Белого и Баренцевого морей стоят на сваях-оболочках или призматических сваях, погруженных вибрационными или ударными методами. Значительная часть морских нефтяных платформ также стоит на погружаемых сваях. В Мексиканском заливе на глубине 313 м установлена платформа на забивных сваях длиной более 450 м и массой более 600 т при погружении в грунт на 150 м.

В настоящее время для погружения свай используют высокопроизводительные установки, в том числе для работы под водой. Созданы молоты с массой ударной части 100 т и более.

Выбор типа свайного фундамента (количество и размеры свай, способ устройства) производится, как правило, на основе технико-экономического анализа с учетом стоимости материалов, механизмов и трудозатрат по различным вариантам.

При устройстве свайных фундаментов сваи в верхней части объединяют, как правило, монолитным ростверком в виде балки (однорядное расположение свай) или плиты. Перед устройством ростверка головы свай срезают (срубают) до проектной отметки. Различают низкие ростверки, полностью или частично расположенные в грунте, и высокие - не соприкасающиеся с грунтом.

Если нагрузка передается непосредственно на сваи выше уровня грунта, то такие сваи называют сваи-колонны.

По характеру работы в грунте различают сваи-стойки и висячие сваи. Сваи-стойки опираются нижними концами на практически несжимаемые грунты (скальные, плотные крупнообломочные, плотные пески) и передают нагрузку на грунт только по площади поперечного сечения. Боковая поверхность свай при этом в работу не вовлекается. Висячие сваи опираются на сжимаемые грунты и передают нагрузку на грунт не только по площади поперечного сечения, но и по всей боковой поверхности за счет сил трения.

В последние годы широко возводились причальные сооружения на металлических сваях-оболочках, так как они имеют много достоинств. Железобетонные цилиндрические полые сваи диаметром более 0,8 м называют сваями-оболочками (оболочками). Полые сван и оболочки небольшого диаметра после их погружения в грунт обычно заполняют бетонной смесью, в результате чего их поперечные сечения становятся сплошными.

фундамент свайной сооружение

3.Самые распространенные методы погружения свай

Метод основан на использовании энергии удара (ударной нагрузки), под действием которой свая нижней заостренной частью внедряется в грунт. По мере погружения она смещает частицы грунта в стороны, частично вниз, частично вверх (на дневную поверхность). В результате погружения свая вытесняет объем фунта, практически равный объему ее погруженной части, и таким образом дополнительно уплотняет фунтовое основание. Зона заметного уплотнения фунта вокруг сваи распространяется в плоскости, нормальной к продольной оси сваи, на расстояние, равное 2… 3 диаметрам сваи.

Ударную нагрузку на оголовок сваи создают специальными механизмами - молотами самых разных типов, основными из которых являются дизельные.

На строительных площадках применяют штанговые и трубчатые дизель-молоты.

Метод основан на значительном уменьшении при вибрации коэффициента внутреннего трения в грунте и сил трения по боковой поверхности свай. Благодаря этому при вибрировании для погружения свай требуется усилий иногда в десятки раз меньше, чем при забивке. При этом наблюдается также частичное уплотнение грунта (виброуплотнение). Зона уплотнения составляет 1,5…3 диаметра сваи (в зависимости от вида грунта и его плотности).

При вибрационном методе сваю погружают с помощью специальных механизмов - вибропогружателей. Вибропогружатель, представляющий собой электромеханическую машину вибрационного действия, подвешивают к мачте сваепогружающей установки и соединяют со сваей наголовником.

Действие вибропогружателя основано на принципе, при котором вызываемые дебалансами вибратора горизонтальные центробежные силы взаимно ликвидируются, в то время как вертикальные суммируются.

Амплитуда колебаний и масса вибросистемы (вибропогружатель, наголовник и свая) должны обеспечить разрушение структуры грунта с необратимыми деформациями.

Погружение свай завинчиванием.

Метод основан на завинчивании стальных и железобетонных свай со стальными наконечниками с помощью установок, смонтированных на базе автомобилей или автомобильных тягачей.

Метод - применяют главным образом при устройстве фундаментов под мачты линий электропередачи, радиосвязи и других сооружений, где в достаточной мере могут быть использованы несущая способность винтовых свай и их сопротивление выдергиванию. Эти установки имеют рабочий орган, четыре гидравлические выносные опоры, привод вращения и наклона рабочего органа, гидросистему, пульт управления и вспомогательное оборудование.

Конструкция рабочего органа позволяет выполнять следующие операции: втягивать винтовую сваю внутрь трубы рабочего органа (предварительно на сваю надевают инвентарную металлическую оболочку), обеспечивать заданный угол погружения сваи в пределах 0…450 от вертикали, погружать сваю в грунт путем вращения с одновременным использованием осевого усилия, при необходимости вывертывать сваю из грунта. Вращение рабочего органа и его наклон осуществляют от коробки отбора мощности автомобиля через соответствующие редукторы.

Рабочие операции при погружении сваи методом завинчивания аналогичны операциям, выполняемым при погружении свай методом забивки или вибропогружением. Только вместо установки и снятия наголовника здесь надевают и снимают оболочки.

.Свая в трубе

Данный метод, не имея еще названия «Свая в трубе « впервые был описан в реферате-патенте в 2005 году Булатовым Георгием Яковлевичем, преподавателем ГОУ «СПбГПУ». В качестве описания патента была представлена данная статья с аналогичным названием.

« ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области строительства, в частности к возведению свайных фундаментов, конкретно к применению трубчатых свай, погружаемых с открытым нижним концом в слабые грунты.

Известно устройство, представляющее собой трубчатую сваю [А.с. 129549 СССР, МКИ Е 02 D 27/44. Свая], содержащую в полости поперечную диафрагму, жестко закрепленную на стенках трубы.

Известен способ возведения фундамента [А.с. 129549 СССР, МКИ Е 02 D 27/44. Свая], по которому в полости трубчатой сваи устраивают поперечную диафрагму, погружают сваю в грунт до уровня диафрагмы и возводят ростверк.

Недостатком данного устройства и способа является повышенная осадка трубчатой сваи на слабых грунтах основания.

Из известных наиболее близким по технической сущности является устройство, которое содержит трубчатую сваю [А.с. 542790 СССР, МКИ Е 02 D 5/24. Свая], в нижней части полости которой жестко закреплены на стенках вертикальные продольные перегородки.

Из известных наиболее близким по технической сущности является способ возведения фундамента [А.с. 542790 СССР, МКИ Е 02 D 5/24. Свая], по которому в полости трубчатой сваи устраивают вертикальные продольные перегородки, погружают сваю в грунт глубже верхней границы перегородок и устраивают ростверк.

Недостатком устройства и способа [А.с. 542790 СССР, МКИ Е 02 D 5/24. Свая] являются повышенные энергоемкость погружения трубчатой сваи и динамическое воздействие на окружающий грунт, опасное для окружающей среды.

Технической задачей изобретения является расширение функциональных возможностей, повышение эффективности и безопасности способа и устройства для окружающей среды.

Поставленная задача в части устройства решена за счет того, что в известном устройстве, содержащем трубчатую сваю и закрепленные внутри ее полости твердые вертикальные продольные элементы-перегородки, упомянутые элементы установлены с возможностью перемещения относительно стенок сваи и выполнены с утолщениями на уровне нижней части ядра, а в ячейки между перегородками и (или) стенками сваи введены дополнительные объемы материалов, например, в виде свай, причем утолщения выполнены в виде лопастей и (или) патрубков, установленных по винтовой линии относительно оси сваи. Указанные признаки позволяют управлять степенью упрочнения грунтового ядра в процессе возведения свай путем изменения числа дополнительных свай, их диаметра и глубины погружения.

Поставленная задача в части способа решена за счет того, что в известном способе, включающем операции погружения трубчатой сваи с открытым нижним концом и возведение ростверка, после погружения сваи в образовавшееся внутри ее полости грунтовое ядро вводят продольные перегородки, а в грунтовые ячейки между перегородками и (или) стенками сваи вводят дополнительные объемы материалов и подают дополнительную энергию, преимущественно в нижнюю часть ядра, чем упрочняют грунтовое ядро, создают дополнительные радиальные сжимающие напряжения в грунте ядра, обеспечивают дополнительные трение и сцепление его со стенками сваи и превращают ее в квазимонолитный фундамент глубокого заложения»

Данная разработка не могла остаться лишь теоретической, идее было необходимо продвижение, и в итоге она его получила. Помимо теоретического обоснования необходимо было описать именно технологию погружения сваи, и, наконец придать методу название. «Свая в трубе»

Проблема рационального проектирования фундаментов является одной из актуальных в области фундаментостроения. Особенно остро эта проблема стоит при строительстве в сложных инженерно-геологических условиях, в которых наиболее целесообразным является применение свайных фундаментов. Доля затрат на возведение подземной части зданий и сооружений в таких грунтовых условиях составляет до 20%. Развитие фундаментостроения направлено по пути разработки новых, экономичных и надежных конструкций фундаментов и методов их устройства, обеспечивающих повышение несущей способности грунтов в основаниях, более полного использования несущей способности материала фундаментов. В последние годы широко возводились причальные сооружения на металлических сваях-оболочках, так как они имеют много достоинств. Стальные сваи лучше выдерживают динамические нагрузки и воспринимают большие изгибающие моменты по сравнению с железобетонными сваями. Применение открытых снизу стальных трубчатых свай способствует сокращению объемов и сроков производства строительных работ, расходов рабочей силы и материала свай за счет более рациональной работы поперечного сечения ствола под расчетной нагрузкой. Основным недостатком металлических свай-оболочек является их коррозия. Железобетонные сваи экономичны, но их несущая способность невысока. Технической задачей технологии было желание объединить преимущества того и другого вида свай. Один из вариантов такого объединения рассмотрен ниже. В данной технологии погружают в грунт стальную трубчатую сваю с открытым нижним концом и возводят ростверк. После погружения трубчатой сваи в образовавшееся внутри её полости грунтовое ядро вводят продольные перегородки, а в грунтовые ячейки между перегородками и стенками сваи вводят дополнительные объемы материалов и подают дополнительную энергию, преимущественно в нижнюю часть ядра. Таким образом упрочняют грунтовое ядро, создают дополнительные радиальные сжимающие напряжения в грунте ядра, обеспечивают дополнительные трение и сцепление его со стенками сваи и превращают её в квазимонолитный фундамент глубокого заложения. Сущность предложения поясняется чертежами. Устройство на рис. 1 и 2 содержит ростверк 1 на бетонной подготовке толщиной S0, опирающийся на трубчатую сваю 2 и грунтовое ядро 3, в которое погружены дополнительные внутренние сваи: например, свая 4 с продольными лопастями 5 и монолитные сваи 6 и 7. На рис. 3, 4 дополнительная свая 8 снабжена утолщением в виде нескольких соединенных с ней патрубков 9, которые одновременно служат и направляющими. В качестве дополнительных внутренних свай 4, 6, 7 и 8 могут быть применены сваи любого рода и конфигурации. Рис. 1 - 4. Технология возведения фундаментов - «свая в трубе» В качестве материалов могут быть использованы твердые (все типы свай и др. устройства), сыпучие (грунтовые, бетонные, порошковые и др.), жидкие (расширяющиеся цементные растворы и др. закрепляющие составы), газообразные (воздух, закрепляющие смеси), причем текучие материалы могут быть применены в оболочках. В качестве энергии можно использовать тепловую и электрическую для обжига, плавления, замораживания и электрохимического закрепления грунтов ядра в полости трубчатой сваи, чем обеспечивают упрочнение и сцепление ядра со стенками сваи и исключают возможность проталкивания ядра вверх при осадке сваи под воздействием сжимающих нагрузок, передаваемых от ростверка. Рассмотрим работу предлагаемого способа, используя рис. 1 и 2. При погружении трубчатой сваи 2 в её полость входит грунт в виде ядра 3 цилиндрической формы, поскольку свая легко прорезает толщу грунта основания своими тонкими стенками. При этом несущая способность её по грунту будет малой. Для повышения эффективности трубчатой сваи 2 в грунтовое ядро 3 погружают вторую трубчатую сваю 4, усиленную лопастями 5, и тем самым упрочняют грунтовое ядро. Трение грунта в узких ячейках между трубами 2 и 4 тормозит его проталкивание вверх и повышает несущую способность устройства. Дополнительно грунтовое ядро внутри трубы 4 закрепляют погружением дополнительной сваи второго порядка, например монолитной сваи 6 (рис. 1 и 2). Для закрепления ядра в ячейках между трубчатой сваей 2 и трубчатой сваей 4 с лопастями 5 в ячейки погружают дополнительные сваи третьего порядка, например, монолитные сваи 7. И в этом случае трубчатая свая 2 будет работать как монолитный фундамент глубокого заложения, поскольку весь грунт ядра будет заклинен в узком зазоре между трубами 2 и 4 и напряжен сжатием в радиальном направлении, при введении сваи 6 в грунтовое ядро трубы 4. Устройство на рис. 3 и 4 работает следующим образом. Дополнительная свая 8 и её трубчатое утолщение в виде патрубков 9 выполняют роль перегородок и расчленяют грунтовое ядро 3 в поперечном сечении на отдельные ячейки, грунт в которых «самозапирается» за счет сил трения и сцепления со стенками патрубков 9 и тем препятствует его проталкиванию вверх. Для повышения эффекта «самозапирания» грунта патрубки могут быть выполнены изогнутыми по винтовой линии. В этом случае утолщение играет роль плиты, перекрывающей поперечное сечение грунтового ядра 3 и тем самым омоноличивающей его с трубчатой сваей 2. Вариантом устройства перегородок может быть их выполнение в виде шпунтовых стенок. Расчет площади сечения дополнительной сваи Дополнительная свая предназначена для получения дополнительной несущей способности по сравнению с обычной трубчатой сваей (если не произошло «самозапирание» ядра).

В зависимости от площади сечения дополнительной сваи Отметим следующие преимущества предлагаемых технических решений: - они сочетают в себе положительные свойства двух типов свай (стальные трубчатые и железобетонные монолитные) и уменьшают их отрицательные свойства за счёт того, что трубчатая свая будет работать как фундамент глубокого заложения с площадью опирания на грунт, равной площади сечения «брутто» трубчатой сваи. Несущая же способность такого фундамента по материалу будет складываться из несущей способности стали и железобетона; - они позволяют создать фундамент с высокой несущей способностью с помощью обычных строительных средств; - погружение внутренних дополнительных свай позволяет управлять степенью упрочнения грунтового ядра в процессе возведения трубчатых свай путем изменения числа дополнительных свай, их диаметра и глубины погружения; - способ относится к щадящим окружающую среду технологиям, поскольку предусматривается лишь погружение тонкостенных (режущих) трубчатых свай. Погружение элементов сваи производится поэтапно, а влияние динамики погружения внутренних дополнительных свай при этом локализуется грунтовым ядром внутри трубчатой сваи. При этом внутренние сваи имеют и относительно меньшие параметры, и, соответственно, меньшую динамику их погружения.

Развитие свайного фундаментостроения крайне необходимо в нашей стране. Очень часто приходится возводить здания в очень сложных грунтовых условиях, где ленточные фундаменты не могут дать необходимую несущую способность. К сожалению, сейчас очень редко предлагаются новые разработки в данной области. Я считаю, что метод «Свая в трубе», описанный в моей работе весьма интересен. Интересен прежде всего тем, что он сочетает в себе только положительные стороны материалов, которые используются в данном виде фундамента. На практике этот метод еще не применялся, но я надеюсь, что в ближайшем будущем эта конструкторская разработка найдет свое применение.

Библиографический список

1. СНиП 2.02.01-83* « Основания зданий и сооружений».

. СНиП 2.02.03-85 « Свайные фундаментны».

. А.Ю Костюкова. «Свая в трубе» Инженерно-строительный журнал, №1, 2008 г.

Устройство свайных фундаментов. Виды свай. Их работа. Виды технологий погружения забивных свай. Их оценка

Общественные здания наиболее многочисленны и разнообразны по своему назначению, функциональным особенностям, габаритам, планировке, этажности и облику. В соответствии с этим также разнообразны и конструкции зданий, являющиеся одним из главных тектонических средств архитектуры.

Содержание

1. Введение
2. Устройство свайных фундаментов
3. Виды свай
4. Работа свай
5. Технология погружения забивных свай
6. Виды технологий погружения забивных свай
7. Ударная технология погружения
8. Технология вибропогружения
9. Технология вдавливания
10. Технология завинчивания
11. Методы ускорения процесса погружения свай
12. Оценка методов
13. Безопасность процесса
14. Список использованной литературы

Прикрепленные файлы: 1 файл

Миронова устройство свайных фундаментов.docx

Этот метод применяют для коротких свай сплошного и трубчатого сечения (3..5м). Статическое вдавливание осуществляется в такой последовательности: сваю устанавливают в вертикальное положение в направляющей стреле агрегата. Далее на голову сваи опускают и закрепляют оголовник, передающий давление от базовой машины (трактор, экскаватора) через систему блоков и полиспастов непосредственно на сваю, которая благодаря этому давлению постепенно погружается в грунт. После достижения сваей проектной отметки погружение прекращают, снимают наголовник, агрегат переезжает на новую позицию. Применимо статическое вдавливание с использованием одновременно задействованных двух механизмов.

10.Технология завинчивания

В настоящее время при строительстве объектов различного назначения все чаще используется свайно-винтовой фундамент. Благодаря многочисленным достоинствам, свайно-винтовые фундаменты несколько десятилетий широко применяются во всем мире. Так как технология завинчивания может использоваться даже в тех случаях, когда возведение фундамента традиционными способами не просто проблематично, но и невозможно, она получает распространение и в России.

Метод основан на завинчивании стальных и железобетонных свай со стальными наконечниками с помощью установок, смонтированных на базе автомобилей или автомобильных тягачей.

Метод - применяют главным образом при устройстве фундаментов под мачты линий электропередачи, радиосвязи и других сооружений, где в достаточной мере могут быть использованы несущая способность винтовых свай и их сопротивление выдергиванию. Эти установки имеют рабочий орган, четыре гидравлические выносные опоры, привод вращения и наклона рабочего органа, гидросистему, пульт управления и вспомогательное оборудование.

Конструкция рабочего органа позволяет выполнять следующие операции: втягивать винтовую сваю внутрь трубы рабочего органа (предварительно на сваю надевают инвентарную металлическую оболочку), обеспечивать заданный угол погружения сваи в пределах 0. 450 от вертикали, погружать сваю в грунт путем вращения с одновременным использованием осевого усилия, при необходимости вывертывать сваю из грунта. Вращение рабочего органа и его наклон осуществляют от коробки отбора мощности автомобиля через соответствующие редукторы.

Рабочие операции при погружении сваи методом завинчивания аналогичны операциям, выполняемым при погружении свай методом забивки или вибропогружением. Только вместо установки и снятия наголовника здесь надевают и снимают оболочки.

11. Методы ускорения процесса погружения свай

В тех случаях, когда по гидрогеологическим условиям или по конструктивным соображениям необходимо значительно заглублять сваи, следует изыскивать способы облегчения процесса погружения их в плотные грунты.

К числу таких мероприятий относятся обмазка поверхностей сваи синтетическими полимерами, глинами, погружение с применением электроосмоса и с подмывом грунта. Наиболее распространен способ забивки или вибропогружения свай методом подмыва грунта. Сущность метода заключается в подаче под давлением к острию свай воды,-разжижающей грунт и облегчающей вследствие этого процесс погружения.

Погружать сваи способом подмыва грунта разрешается на участках, удаленных от существующих зданий и сооружений не менее чем на 20 м, так как в процессе подмыва грунт может разжижаться не только под сваей, но и на некотором расстоянии от нее.

Расстояния от коммуникаций до мест подмыва грунта должны быть определены в рабочих чертежах или ППР; они зависят от характеристик и фильтрующих особенностей грунтов, а также и технического состояния подземных коммуникаций. Если решено погружать сваи методом подмыва грунта, на стадии разработки ППР должны быть разработаны мероприятия по обеспечению сохранности подземных коммуникаций на период производства работ.

В призматических сваях, погружаемых методом подмыва, воду подают по трубе, подведенной к острию свай с укреплением вдоль ствола или забетонированной в нее.Для погружения свай в песчаные и илисто-глинистые грунты подмывом достаточны незначительные усилия от работающего молота или вибропогружателя.

Для погружения свай на глубину более 15 м в плотные связные грунты на квадратные сваи можно устанавливать по две трубы, располагаемые с двух сторон вдоль ствола сваи.

Наиболее применим метод подмыва грунта при погружении трубчатых свай и свай-оболочек. Число труб при погружении трубчатых свай должно быть не менее двух, а при больших диаметрах— одна труба на 1,0—1,5 м периметра сваи.

Погружение свай с использованием электроосмоса применяют при наличии водонасыщенных плотных глинистых грунтов, моренных суглинков и глин. Для практической реализации метода погруженную сваю присоединяют к положительному полюсу (аноду) источника тока, а соседнюю с ней погружаемую - отрицательному полюсу (катоду) того же источника тока. При включении тока вокруг сваи (анод) снижается влажность фунта, а у погружаемой сваи (катод), наоборот, повышается. После прекращения подачи тока происходит восстановление первоначального состояния фунтовых вод и несущая способность свай, являющихся катодами, возрастает.

Дополнительные операции при погружении железобетонных свай с использованием электроосмоса связаны с оснащением свай полосами стали - электродами, площадь которых занимает 20. 25% боковой поверхности свай. Эта операция отпадает при погружении металлических свай методом завинчивания.

Применение метода электроосмоса, позволяет на 25. 40% ускорить процесс погружения сваи, а также уменьшить нагрузки, необходимые для погружения сваи.

12.Оценка методов.

Использование свай вместо обычных фундаментов (ленточных, столбчатых) позволяет сократить расход бетона на 20-40 %, разработку грунта на 70-90%; упрощает работы нулевого цикла при высоком уровне грунтовых вод, а также при отрицательных температурах. Общая стоимость фундаментов снижается на 20-30%.

В сложных грунтовых условиях (слабые грунты, высокий уровень грунтовых вод и т. п.), а также в стесненных условиях свайные фундаменты нередко являются единственным эффективным решением устройства фундаментов здания.

Каждая технология имеет свои преимущества и недостатки. Достоинством ударного метода является погружение в любые грунты, в отличии от других способов, повышение несущей способности на 10-30% за счет образования грунтовой пробки. Достоинством технологии вдавливания является отсутствие динамики на сваю и окружающую среду. Достоинством вибропогружения является быстрота погружения, отсутствие динамики, погружение до проектной отметки.

13. Безопасность процесса

Перед началом работ на площадке необходимо обозначить все опасные зоны.

В процессе забивки свай запрещено:

- ремонтировать или смазывать копры и молоты;

- оставлять на ферме копра, копровой стреле и других механизмах копра какие-либо предметы или инструменты;

- извлекать поврежденные или отклонившиеся от проектного положения сваи с помощью копра;

- запрещается находиться под работающим погружателем;

- замер скорости погружения сваи производить с максимальными предосторожностями;

- при разрушении головы забиваемой сваи следует прекратить работу;

- работы по забивке свай с помощью копров или краном останавливают при скорости ветра 9,9 - 12,4 м/с. При этом копер следует предохранять от опрокидывания и перемещения, а молот или вибропогружатель опустить в крайнее положение.

Если свая при забивке погружается от одного удара молотом менее чем на 10 мм, дальнейшую работу необходимо прекратить, так как при таком режиме молот или копер могут быстро выйти из строя.

При длительных перерывах в работе копер высотой более 12 м закрепляют растяжками.

Грузоподъемность кранов, применяемых для погружения и извлечения свай вибропогружателем, должна быть не менее удвоенной суммарной массы вибропогружателя и погружаемой сван.

Запрещено во время работы натягивать и перегибать рукава пневмоинстумента. Металлические части копра и механизмов с электроприводом должны быть заземлены.

При выполнении работ в зимних условиях должны быть приняты меры, обеспечивающие нормальную работу всех механизмов копра и молота. Кроме того, необходимо следить за тем, чтобы ходовая часть копра не вмерзала в грунт.

Погружение наклонных свай можно выполнять только копровыми установками, оснащенными специальными механизмами для наклона копровой стрелы.

Читайте также: