Расчет внецентренно нагруженного свайного фундамента

Обновлено: 18.05.2024

Внецентренно нагруженный свайный фундамент

Типы фундаментов, используемые в строительстве, различаются в зависимости от характера конструкций, которые планируется организовывать на их основании.

Так, внецентренно нагруженный фундамент представляет собой несущую строительную конструкцию, которая характеризуется несовпадением центра тяжести площади ее подошвы и равнодействующей внешних нагрузок.

Такая ситуация влечет за собой определенную степень неустойчивости конструкции, которая должна быть учтена и скорректирована в ходе осуществления проектных работ: например, посредством использования такой технологии, как армирование.

Основное отличие центрально нагруженного фундамента от внецентренно нагруженного в различных вариантах, включая использование такой технологии, как армирование, заключается в том, что в последнем случае максимальная нагрузка приходится на край несущей конструкции, что обусловливает дополнительные требования к ее несущей способности. В некоторых случаях такую способность необходимо усиливать для придания конструкции достаточной устойчивости, обеспечивающей возможность возведения на этом основании планирующегося к строительству здания.

Например, осуществить это усиление можно, прибегнув к армированию подошвы фундамента или установив колонну. Однако нужно понимать, что конструкции армируются в случае, если этого требует ситуация. Таким же образом складывается ситуация, если решено установить колонну: конкретный способ усиления несущей способности внецентренно нагруженного фундамента и необходимость его использования должна быть осуществлена непосредственно в ходе проектных работ после того, как произведен необходимый расчет.

№ 15 ЕМТИХАН БИЛЕТІ/ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

1. Расчет и проектирование свайных фундаментов: основные положения, выбор конструкции

Согласно рекомендациям сельскохозяйственные здания в зависимости от характера технологического процесса и вида возможного увлажнения грунтов подразделяются на следующие группы: животноводческие здания с мокрым технологическим процессом и оборудованные водосодержащими лотками навозоудаления, вследствие чего возможно интенсивное замачивание грунта, приводящее к его частичной просадке или (реже) всей просадочной толщи; здания, не имеющие мокрого технологического процесса, оснащенные сетями и устройствами производственного бытового назначения, с удельным расходом воды не более площади здания в сутки. А также здания с одиночными с перечными каналами для гидросплава навоза: здания, не оснащенные сетями и устройствами, с расположением несущих сетей от здания на расстояниях, превышающих полуторную глубину просадочной толщи, вследствие чего возможно только медленное повышение влажности грунтов.

Такая классификация сельскохозяйственных зданий позволяет более дифференцированно назначать несущую способность пирамидальной сваи с учетом возможного увлажнения грунтов основания, обеспечивая при этом нормальную эксплуатацию зданий.

При проектировании фундаментов на коротких пирамидальных сваях важным вопросом является правильный выбор их размеров и угла коничности свай.

Предварительный выбор размеров пирамидальных свай производится на основании следующего: при увеличении угла коничности свай одинакового объема от 5 до 13° увеличивается зона уплотнения в плане (в связном грунте) и удельная несущая способность единицы объема сваи возрастает до 30%, однако погружение свай с наибольшими углами коничности в плотные грунты затруднительно; в грунтовых условиях I типа по просадочности потери несущей способности сваи при замачивании тем меньше, чем больше угол коничности сваи; короткие пирамидальные сваи с углами коничности 5. 9° целесообразно применять в грунтах плотных и средней плотности, сваи же с углом коничности 10. 13° - в грунтах рыхлых; при наличии верхнего более прочного слоя грунта длина свай в первую очередь определяется исходя из недопущения прорезки этого слоя и выхода зон уплотнения в массив слабого грунта.

Расчет фундаментов на коротких пирамидальных сваях и их оснований производится в соответствии со СНиП II-17-77 «Свайные фундаменты» по предельным состояниям двух групп: по несущей способности грунта основания свайных фундаментов и по прочности конструкций фундаментов; по осадкам, перемещению свай и по образованию или раскрытию трещин в железобетонных сваях.

В зависимости от конструктивной схемы сельскохозяйственного здания или сооружения сваи в плане могут устраиваться в виде: лент - для зданий с неполным несущим каркасом, в которых преобладают равномерно распределенные нагрузки.

Сваи в этом случае располагаются в один или в шахматном порядке в два и более рядов; одиночных свай - под отдельно стоящие опоры каркасных зданий; кустов из двух и более свай в случаях, если несущая способность одиночной пирамидальной сваи ниже требуемой; сваи располагают на участке треугольной, прямоугольной и квадратной формы в плане; сплошного свайного поля - для сооружений, в которых нагрузка распределена по всей площади, например резервуары, силосные сооружения и др.

2 Объемные и сдвиговые деформации в грунтах

Пластические деформации в грунтах можно разделить на объемные и сдвиговые. Объемные деформации приводят к изменению объема пор в грунте, т.е. к его уплотнению, сдвиговые – к изменению его первоначальной формы и могут вызвать разрушение грунта

В зависимости от граничных условий ползучесть может быть объемной и сдвиговой. Объемная ползучесть наблюдается при постоянном всестороннем сжатии, например при компрессии водонасыщенной высокопористой глины (консолидация), и всегда имеет затухающий характер. Сдвиговая ползучесть проявляется при постоянно действующих сдвигающих усилиях, например в основаниях и теле сооружений, в откосах, в основании плотин и т. п.

Обычно сдвиговую ползучесть изучают при постоянных уровнях напряжений. В начальный момент нагружения в теле возникают упругие деформации или (при достаточно больших напряжениях) упругопластические, а затем развиваются деформации ползучести. При этом кривая переходит от упругой или упругопластической ее части к вязкоупругой плавно, без излома. Со временем скорость ползучести уменьшается и через некоторый промежуток времени может стать нулевой или конечной величиной, но иногда после убывания она начинает возрастать.

Деформации грунтов возникают при динамических вибрационных и взрывных воздействиях. Динамические вибрационные нагрузки вызывают в грунте появление сил инерции. Колебания от таких нагрузок могут распространяться в грунте на значительные расстояния, усиливая развитие осадок сооружений и ослабляя грунты. При взрывах в грунтовом массиве образуются полости (воронки) и колебания различной интенсивности, уменьшающейся по мере удаления от места взрыва. Кроме того, взрывы приводят к деформации грунта в результате возникновения и движения взрывных волн и газов. Возникающее при взрыве давление достигает десятков гигапаскалей, оно распространяется в грунте с высокой скоростью, но действует в течение очень короткого промежутка времени (миллисекунды). На поверхности раздела заряд-грунт образуется ударная волна, вызывающая перемещение и измельчение грунта, находящегося в условиях всестороннего неравномерного сжатия. Возникающая при этом полость зависит от свойств грунта и массы заряда взрывчатого вещества. При взрыве внутри грунтового массива радиус, возникающей полости оценивается по эмпирической формуле, предложенной Г. И. Покровским.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ И ЕГО ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Типы фундаментов, используемые в строительстве, различаются в зависимости от характера конструкций, которые планируется организовывать на их основании.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №1

Внецентренно нагруженный фундамент требует усиления края несущей конструкции, так как основная нагрузка в подобном строении приходится именно на край.

Так, внецентренно нагруженный фундамент представляет собой несущую строительную конструкцию, которая характеризуется несовпадением центра тяжести площади ее подошвы и равнодействующей внешних нагрузок.

Такая ситуация влечет за собой определенную степень неустойчивости конструкции, которая должна быть учтена и скорректирована в ходе осуществления проектных работ: например, посредством использования такой технологии, как армирование.

ОТЛИЧИЕ ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА ОТ ДРУГИХ ТИПОВ

Основное отличие центрально нагруженного фундамента от внецентренно нагруженного в различных вариантах, включая использование такой технологии, как армирование, заключается в том, что в последнем случае максимальная нагрузка приходится на край несущей конструкции, что обусловливает дополнительные требования к ее несущей способности. В некоторых случаях такую способность необходимо усиливать для придания конструкции достаточной устойчивости, обеспечивающей возможность возведения на этом основании планирующегося к строительству здания.

Например, осуществить это усиление можно, прибегнув к армированию подошвы фундамента или установив колонну. Однако нужно понимать, что конструкции армируются в случае, если этого требует ситуация. Таким же образом складывается ситуация, если решено установить колонну: конкретный способ усиления несущей способности внецентренно нагруженного фундамента и необходимость его использования должна быть осуществлена непосредственно в ходе проектных работ после того, как произведен необходимый расчет.

РАСЧЕТ ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА: НАЧАЛО РАБОТ

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №2

Схема внецентренно нагруженного свайного фундамента.

В целом порядок осуществления таких расчетов можно описать в виде алгоритма, состоящего из нескольких ключевых шагов. При этом проектирование должно вестись с учетом, что проектировщику необходимо тщательно следить не только за тем, чтобы все перечисленные этапы были произведены в ходе расчетов, но и за соблюдением их последовательности, поскольку нарушение одного из этих условий может привести к существенным ошибкам в проектировании. Такие ошибки, в свою очередь, повлекут за собой несоответствие фактических параметров спроектированного здания запланированным. Это потребует использования дополнительных дорогостоящих технологий, включая например, армирование.

Расчет внецентренно нагруженного фундамента должен начинаться с определения сил, действующих по периметру фундамента. Для удобства осуществления таких расчетов их обыкновенно приводят к конечному числу результирующих, которые отражают характер и интенсивность внешнего воздействия нагрузок на фундамент. При этом необходимо найти точки приложения результирующих сил к плоскости подошвы несущей строительной конструкции.

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ФУНДАМЕНТА

Второй этап представляет собой расчет характеристик самого фундамента. В частности, расчет площади несущей конструкции должен стать первым шагом в рамках алгоритма, аналогичного расчету площади центрального нагруженного фундамента, которая впоследствии будет скорректирована с учетом фактического характера нагрузок на конструкцию.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №3

Схема не симметричного свайного фундамента с определением смещенного центра тяжести.

На этом этапе потребуется расчет эпюры давления грунта, которая представляют собой количественные характеристики степени интенсивности воздействия, оказываемого грунтом на фундаментальную конструкцию. На практике эпюра давления грунта может оказаться как однозначной, так и двузначной. Однако следует иметь в виду, что специалисты рекомендуют стремиться к тому, чтобы эпюра была однозначной, поскольку в этом случае вероятность отрыва подошвы несущей строительной конструкции от грунта оказывается более низкой.

Необходимо осуществить расчет характеристик давления на подошву рассчитываемого фундамента на предмет соотношения между максимальной и минимальной нагрузкой, предусмотренной в отношении указанной несущей строительной конструкции разработанным проектом. Так, одним из соотношений, которые надлежит принять во внимание, является частное от деления минимального и максимального значения напряжения, фиксируемого под подошвой внецентренно нагруженной фундаментальной конструкции.

Согласно действующим нормам, соотношение между указанными показателями зависит не только от характеристик здания, которое планируется к возведению на рассматриваемой строительной площадке, и воздействия природных факторов на рассчитываемую конструкцию, но и от наличия строительной техники на площадке.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №4

Эпюры давлений под подошвой фундамента при действии внецентренной нагрузки.

Так, если в процессе строительства планируется организация крановой нагрузки на внецентренно нагруженную фундаментальную конструкцию, частное от деления минимального и максимального значения напряжения, фиксируемого под ее подошвой, должно быть не менее 0,25. Допускается также расчет значения, равного указанной величине. Если же воздействия строительной техники на рассматриваемый фундамент в процессе строительства не предусмотрено, достаточно того, чтобы указанное соотношение было больше 0. По аналогии с предыдущей рассмотренной ситуацией, допускается расчет значения, равного указанной величине.

Отрыв подошвы фундамента от грунта, в котором она устроена, чреват самыми неблагоприятными последствиями. При этом их перечень не исчерпывается снижением устойчивости здания, связанного непосредственно с самим фактом отсутствия полного прилегания 2-х рассматриваемых плоскостей. Дело в том, что наличие зазора между поверхностью несущей строительной конструкции и прилегающим грунтом обеспечивает возможность попадания воды в имеющуюся полость, что, в свою очередь, может повлечь за собой общее нарушение первоначальных свойств фундамента.

ОПРЕДЕЛЕНИЕ СООТНОШЕНИЯ МЕЖДУ ХАРАКТЕРИСТИКАМИ ФУНДАМЕНТА И ИНТЕНСИВНОСТЬЮ ВОЗДЕЙСТВИЯ ВНЕШНИХ ФАКТОРОВ

Наконец, третьим этапом проектных работ, в ходе которых осуществляется расчет внецентренно нагруженного фундамента, является сопоставление характеристик разработанной несущей строительной конструкции с интенсивностью воздействия внешних сил на нее в процессе функционирования. Речь идет о том, чтобы осуществить расчет сопротивления грунта и сопоставить его с допустимым давлением на поверхность подошвы фундамента. Необходимо принимать во внимание следующие основные виды соотношений:

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №5

Схема центрально нагруженного фундамента.

  • расчет соотношения между максимальным значением напряжения, фиксируемого под подошвой несущей строительной конструкции, и расчетным значением сопротивления грунта на строительной площадке, где планируется возведение здания. Поскольку при использовании внецентренно нагруженного фундамента максимальное напряжение фиксируется лишь на отдельных участках поверхности конструкции, наибольшее допустимое сопротивление грунта принимается в пределах, на 20% превышающих стандартные расчетные показатели. Таким образом, необходимо следить за тем, чтобы максимальное значение напряжения, фиксируемого под подошвой несущей строительной конструкции, составляло не более 1,2 расчетного сопротивления грунта. Кроме того, допускается наличие значения, равного указанной величине;
  • расчет соотношения между средним значением напряжения, фиксируемого под подошвой внецентренно нагруженного фундамента, и расчетным значением сопротивления грунта, воздействующего на указанную несущую строительную конструкцию. Поскольку речь идет о среднем значении напряжения, которое испытывает строительная конструкция, то в ходе осуществления проектных работ необходимо обеспечить достаточную степень устойчивости фундамента по отношению к нагрузкам. По этой причине проектирование должно осуществляться с учетом того, чтобы среднее значение напряжения под подошвой рассматриваемой несущей строительной конструкции не превышало расчетного значения сопротивления грунта. При этом допускается наличие значения, равного указанной величине.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №6

Фундаменты зданий внецентренно нагруженные необходимо дополнительно армировать не только в том месте где будет основная нагрузка, но и рядом.

Таковы основные этапы проектных работ, которые должны быть реализованы в ходе расчета основных характеристик фундамента. Важно иметь в виду, что все перечисленные соотношения и ограничения должны быть тщательно проверены проектировщиком на предмет их соблюдения, поскольку нарушение этих норм может привести к самым неблагоприятным последствиям, включая полное или частичное разрушение здания. В этом случае потребуются дополнительные меры по усилению конструкции, например армирование. Кроме того, необходимо максимально тщательным образом учесть весь спектр факторов, которые будут оказывать влияние на рассматриваемую несущую строительную конструкцию как в процессе ее возведения, так и в ходе дальнейшей эксплуатации.

Лишь максимально полный учет всех факторов, оказывающих влияние на формирование и использование фундаментальной конструкции, позволит обеспечить ей нужный запас прочности, гарантирующий длительный срок службы возведенного строения, основанного на внецентренно нагруженном фундаменте. При этом в современных условиях высокой конкуренции на рынке недвижимости требование максимальной протяженности срока службы жилья или коммерческого здания является одним из основных при осуществлении строительных работ.

ФОРМУЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ РАСЧЕТЕ

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №7

Формула для расчета площади фундамента.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №8

Схема бурения скважины под фундамент.

Параметр d‚ отражает глубину заложения фундамента в случае, если рассматриваемое здание не имеет подвала, а d„ — глубину подвала в случае его наличия. Наконец, показатель с представляет собой один из параметров, характеризующих грунт: в частности, он отражает расчетное удельное сцепление грунта, который залегает непосредственно под подошвой фундамента.

Третья важная формула определяет величину давления под подошвой внецентренно нагруженного фундамента: pmax=N/Aф+M/W, pmin=N/Aф-M/W. В указанной формуле параметр N отражает вертикальную силу, воздействующую на фундамент, Aф представляет собой площадь поверхности указанной несущей строительной конструкции, М — момент, присутствующий на поверхности конструкции, а W — момент, отражающий величину сопротивления на поверхности фундамента.

Наконец, проектирование внецентренно нагруженного фундамента требует учитывать, что необходимо не просто осуществить расчет необходимых показателей, но и соблюсти требуемое соотношение между ними. В частности, такие соотношения устанавливаются формулами pmax<1,2R, pmin>0. Кроме того, допускается наличие соотношения, при котором pmax=1,2R.

ПРИМЕР РАСЧЕТА

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №9

Схема сплошного плитного фундамента.

Теперь необходимо определить соотношение сторон фундамента. Специалисты обыкновенно рекомендуют придавать внецентренно нагруженной несущей строительной конструкци прямоугольную форму, поэтому допустимое соотношение сторон этой фигуры может быть установлено на уровне 1:1,5. В этом случае длина короткой стороны может быть рассчитана как квадратный корень из частного 10,91/1,5, что составит 2,70 м. Соответственно, длинная сторона основания будет равна 2,7*1,5=4,05 м.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ.ПОРЯДОК РАСЧЕТА, изображение №10

Схема свайного монолитного фундамента.

Максимальное значение давления под подошвой рассчитаем по формуле pmax=N/Aф+M/W. Пусть момент, присутствующий на поверхности конструкции, равен 2,2 НМ, а момент, отражающий величину сопротивления на поверхности фундамента, — 50 НМ. Таким образом, значение максимального давления pmax=2,0/10,91+2,2/50=0,23 МПа. Минимальное давление под подошвой фундамента будет рассчитано следующим образом: pmin=2,0/10,91-2,2/50=0,14 МПа.

Осталось проверить соотношение между полученными показателями и расчетным давлением грунта. Так, pmax=0,23 МПа, R=0,2 МПа. Таким образом, pmax<1,2R, то есть условие соблюдается. pmin=0,14 МПа, то есть pmin>0, что свидетельствует о соблюдении второго необходимого условия.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЙ ФУНДАМЕНТ И ЕГО ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Типы фундаментов, используемые в строительстве, различаются в зависимости от характера конструкций, которые планируется организовывать на их основании.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №1

Так, внецентренно нагруженный фундамент представляет собой несущую строительную конструкцию, которая характеризуется несовпадением центра тяжести площади ее подошвы и равнодействующей внешних нагрузок.

Такая ситуация влечет за собой определенную степень неустойчивости конструкции, которая должна быть учтена и скорректирована в ходе осуществления проектных работ: например, посредством использования такой технологии, как армирование.

ОТЛИЧИЕ ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА ОТ ДРУГИХ ТИПОВ

Основное отличие центрально нагруженного фундамента от внецентренно нагруженного в различных вариантах, включая использование такой технологии, как армирование, заключается в том, что в последнем случае максимальная нагрузка приходится на край несущей конструкции, что обусловливает дополнительные требования к ее несущей способности. В некоторых случаях такую способность необходимо усиливать для придания конструкции достаточной устойчивости, обеспечивающей возможность возведения на этом основании планирующегося к строительству здания.

Например, осуществить это усиление можно, прибегнув к армированию подошвы фундамента или установив колонну. Однако нужно понимать, что конструкции армируются в случае, если этого требует ситуация. Таким же образом складывается ситуация, если решено установить колонну: конкретный способ усиления несущей способности внецентренно нагруженного фундамента и необходимость его использования должна быть осуществлена непосредственно в ходе проектных работ после того, как произведен необходимый расчет.

РАСЧЕТ ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА: НАЧАЛО РАБОТ

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №2

Схема внецентренно нагруженного свайного фундамента.

В целом порядок осуществления таких расчетов можно описать в виде алгоритма, состоящего из нескольких ключевых шагов. При этом проектирование должно вестись с учетом, что проектировщику необходимо тщательно следить не только за тем, чтобы все перечисленные этапы были произведены в ходе расчетов, но и за соблюдением их последовательности, поскольку нарушение одного из этих условий может привести к существенным ошибкам в проектировании. Такие ошибки, в свою очередь, повлекут за собой несоответствие фактических параметров спроектированного здания запланированным. Это потребует использования дополнительных дорогостоящих технологий, включая например, армирование.

Расчет внецентренно нагруженного фундамента должен начинаться с определения сил, действующих по периметру фундамента. Для удобства осуществления таких расчетов их обыкновенно приводят к конечному числу результирующих, которые отражают характер и интенсивность внешнего воздействия нагрузок на фундамент. При этом необходимо найти точки приложения результирующих сил к плоскости подошвы несущей строительной конструкции.

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ФУНДАМЕНТА

Второй этап представляет собой расчет характеристик самого фундамента. В частности, расчет площади несущей конструкции должен стать первым шагом в рамках алгоритма, аналогичного расчету площади центрального нагруженного фундамента, которая впоследствии будет скорректирована с учетом фактического характера нагрузок на конструкцию.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №3

Схема не симметричного свайного фундамента с определением смещенного центра тяжести.

На этом этапе потребуется расчет эпюры давления грунта, которая представляют собой количественные характеристики степени интенсивности воздействия, оказываемого грунтом на фундаментальную конструкцию. На практике эпюра давления грунта может оказаться как однозначной, так и двузначной. Однако следует иметь в виду, что специалисты рекомендуют стремиться к тому, чтобы эпюра была однозначной, поскольку в этом случае вероятность отрыва подошвы несущей строительной конструкции от грунта оказывается более низкой.

Необходимо осуществить расчет характеристик давления на подошву рассчитываемого фундамента на предмет соотношения между максимальной и минимальной нагрузкой, предусмотренной в отношении указанной несущей строительной конструкции разработанным проектом. Так, одним из соотношений, которые надлежит принять во внимание, является частное от деления минимального и максимального значения напряжения, фиксируемого под подошвой внецентренно нагруженной фундаментальной конструкции.

Согласно действующим нормам, соотношение между указанными показателями зависит не только от характеристик здания, которое планируется к возведению на рассматриваемой строительной площадке, и воздействия природных факторов на рассчитываемую конструкцию, но и от наличия строительной техники на площадке.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №4

Эпюры давлений под подошвой фундамента при действии внецентренной нагрузки.

Так, если в процессе строительства планируется организация крановой нагрузки на внецентренно нагруженную фундаментальную конструкцию, частное от деления минимального и максимального значения напряжения, фиксируемого под ее подошвой, должно быть не менее 0,25. Допускается также расчет значения, равного указанной величине. Если же воздействия строительной техники на рассматриваемый фундамент в процессе строительства не предусмотрено, достаточно того, чтобы указанное соотношение было больше 0. По аналогии с предыдущей рассмотренной ситуацией, допускается расчет значения, равного указанной величине.

Отрыв подошвы фундамента от грунта, в котором она устроена, чреват самыми неблагоприятными последствиями. При этом их перечень не исчерпывается снижением устойчивости здания, связанного непосредственно с самим фактом отсутствия полного прилегания 2-х рассматриваемых плоскостей. Дело в том, что наличие зазора между поверхностью несущей строительной конструкции и прилегающим грунтом обеспечивает возможность попадания воды в имеющуюся полость, что, в свою очередь, может повлечь за собой общее нарушение первоначальных свойств фундамента.

ОПРЕДЕЛЕНИЕ СООТНОШЕНИЯ МЕЖДУ ХАРАКТЕРИСТИКАМИ ФУНДАМЕНТА И ИНТЕНСИВНОСТЬЮ ВОЗДЕЙСТВИЯ ВНЕШНИХ ФАКТОРОВ

Наконец, третьим этапом проектных работ, в ходе которых осуществляется расчет внецентренно нагруженного фундамента, является сопоставление характеристик разработанной несущей строительной конструкции с интенсивностью воздействия внешних сил на нее в процессе функционирования. Речь идет о том, чтобы осуществить расчет сопротивления грунта и сопоставить его с допустимым давлением на поверхность подошвы фундамента. Необходимо принимать во внимание следующие основные виды соотношений:

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №5

Схема центрально нагруженного фундамента.

  • расчет соотношения между максимальным значением напряжения, фиксируемого под подошвой несущей строительной конструкции, и расчетным значением сопротивления грунта на строительной площадке, где планируется возведение здания. Поскольку при использовании внецентренно нагруженного фундамента максимальное напряжение фиксируется лишь на отдельных участках поверхности конструкции, наибольшее допустимое сопротивление грунта принимается в пределах, на 20% превышающих стандартные расчетные показатели. Таким образом, необходимо следить за тем, чтобы максимальное значение напряжения, фиксируемого под подошвой несущей строительной конструкции, составляло не более 1,2 расчетного сопротивления грунта. Кроме того, допускается наличие значения, равного указанной величине;
  • расчет соотношения между средним значением напряжения, фиксируемого под подошвой внецентренно нагруженного фундамента, и расчетным значением сопротивления грунта, воздействующего на указанную несущую строительную конструкцию. Поскольку речь идет о среднем значении напряжения, которое испытывает строительная конструкция, то в ходе осуществления проектных работ необходимо обеспечить достаточную степень устойчивости фундамента по отношению к нагрузкам. По этой причине проектирование должно осуществляться с учетом того, чтобы среднее значение напряжения под подошвой рассматриваемой несущей строительной конструкции не превышало расчетного значения сопротивления грунта. При этом допускается наличие значения, равного указанной величине.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №6

Фундаменты зданий внецентренно нагруженные необходимо дополнительно армировать не только в том месте где будет основная нагрузка, но и рядом.

Таковы основные этапы проектных работ, которые должны быть реализованы в ходе расчета основных характеристик фундамента. Важно иметь в виду, что все перечисленные соотношения и ограничения должны быть тщательно проверены проектировщиком на предмет их соблюдения, поскольку нарушение этих норм может привести к самым неблагоприятным последствиям, включая полное или частичное разрушение здания. В этом случае потребуются дополнительные меры по усилению конструкции, например армирование. Кроме того, необходимо максимально тщательным образом учесть весь спектр факторов, которые будут оказывать влияние на рассматриваемую несущую строительную конструкцию как в процессе ее возведения, так и в ходе дальнейшей эксплуатации.

Лишь максимально полный учет всех факторов, оказывающих влияние на формирование и использование фундаментальной конструкции, позволит обеспечить ей нужный запас прочности, гарантирующий длительный срок службы возведенного строения, основанного на внецентренно нагруженном фундаменте. При этом в современных условиях высокой конкуренции на рынке недвижимости требование максимальной протяженности срока службы жилья или коммерческого здания является одним из основных при осуществлении строительных работ.

ФОРМУЛЫ, ИСПОЛЬЗУЕМЫЕ ПРИ РАСЧЕТЕ

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №7

Формула для расчета площади фундамента.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №8

Схема бурения скважины под фундамент.

Параметр d‚ отражает глубину заложения фундамента в случае, если рассматриваемое здание не имеет подвала, а d„ — глубину подвала в случае его наличия. Наконец, показатель с представляет собой один из параметров, характеризующих грунт: в частности, он отражает расчетное удельное сцепление грунта, который залегает непосредственно под подошвой фундамента.

Третья важная формула определяет величину давления под подошвой внецентренно нагруженного фундамента: pmax=N/Aф+M/W, pmin=N/Aф-M/W. В указанной формуле параметр N отражает вертикальную силу, воздействующую на фундамент, Aф представляет собой площадь поверхности указанной несущей строительной конструкции, М — момент, присутствующий на поверхности конструкции, а W — момент, отражающий величину сопротивления на поверхности фундамента.

Наконец, проектирование внецентренно нагруженного фундамента требует учитывать, что необходимо не просто осуществить расчет необходимых показателей, но и соблюсти требуемое соотношение между ними. В частности, такие соотношения устанавливаются формулами pmax<1,2R, pmin>0. Кроме того, допускается наличие соотношения, при котором pmax=1,2R.

ПРИМЕР РАСЧЕТА

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №9

Схема сплошного плитного фундамента.

Теперь необходимо определить соотношение сторон фундамента. Специалисты обыкновенно рекомендуют придавать внецентренно нагруженной несущей строительной конструкци прямоугольную форму, поэтому допустимое соотношение сторон этой фигуры может быть установлено на уровне 1:1,5. В этом случае длина короткой стороны может быть рассчитана как квадратный корень из частного 10,91/1,5, что составит 2,70 м. Соответственно, длинная сторона основания будет равна 2,7*1,5=4,05 м.

ПОРЯДОК РАСЧЕТА ХАРАКТЕРИСТИК ВНЕЦЕНТРЕННО НАГРУЖЕННОГО ФУНДАМЕНТА, изображение №10

Схема свайного монолитного фундамента.

Максимальное значение давления под подошвой рассчитаем по формуле pmax=N/Aф+M/W. Пусть момент, присутствующий на поверхности конструкции, равен 2,2 НМ, а момент, отражающий величину сопротивления на поверхности фундамента, — 50 НМ. Таким образом, значение максимального давления pmax=2,0/10,91+2,2/50=0,23 МПа. Минимальное давление под подошвой фундамента будет рассчитано следующим образом: pmin=2,0/10,91-2,2/50=0,14 МПа.

Осталось проверить соотношение между полученными показателями и расчетным давлением грунта. Так, pmax=0,23 МПа, R=0,2 МПа. Таким образом, pmax<1,2R, то есть условие соблюдается. pmin=0,14 МПа, то есть pmin>0, что свидетельствует о соблюдении второго необходимого условия.

Учет внецентренного нагружения свайного фундамента

Расчет центрально и внецентренно нагруженного свайного фундамента.

Расчет свайного фундамента по первой группе предельных состояний (по несущей способности) производится из условия

Количество свай в отдельно стоящем свайном фундаменте (под колонну) может быть определено следующим образом;

а) определим ориентировочные размеры ростверка. Для этого определим среднее давление под подошвой ростверка по выражению

Площадь подошвы ростверка в первом приближении может быть опре­делена по формуле

Вес ростверка с грунтом на его уступах можно определить по формуле

После определения количества свай в кусте или шага в ленточном рост­верке и порядка их размещения уточняют размеры ростверка и рассчитыва­ют его фактический вес с грунтом на уступах. Размеры ростверка уточняют­ся из следующих соображений:

-расстояние между сваями-стойками не регламентируется и зависит от возможности их погружения в грунт и от нагрузок;

Конструирование ростверка завершается определением веса ростверка и грунта на его уступах. Вес ростверка

-удельный вес ж/б.

Вес грунта на уступах ростверка

После этого выполняют проверку фактической нагрузки, передаваемой на сваю, по формулам:

5.2. Расчет внецентренно нагруженных свайных фундаментов с низким ростверком

Внецентренно нагруженным называют свайный фундамент, в котором точка приложения равнодействующей внешних нагрузок не совпадает с центром тяжести поперечных сечений свай в кусте.

При небольших эксцентриситетах в целях сокращения производства работ сваи допускается размещать равномерно. При больших эксцентриситетах у более нагруженного края фундамента устанавливают большее количество свай, смещая тем самым центр тяжести сечения свай в кусте относительно оси симметрии и уменьшая неблагоприятное воздействие момента.

Количество свай во внецентренно нагруженном фундаменте определяют по формуле (16) с увеличением его на 20-25%.

Расчетную нагрузку на одну сваю во внецентренно нагруженном фундаменте при эксцентриситете относительно двух главных осей инерции определяют по формуле:

Моменты от горизонтальных нагрузок, действующие в уровне обреза ростверка определяются по формуле Mx,y = Hx,yhp, (23)

Усилие, найденное по формуле (22) должно удовлетворять условию формулы (2), если оно не удовлетворяется, то увеличивают сечение, длину или количество свай и производят повторный расчет.

5.3. Проверка несущей способности по грунту фундамента из свай как условного фундамента мелкого заложения

Несущую способность основания под подошвой условного фундамента проверяют по формуле (21), при этом подлежащие проверке среднее P, кПа (тс/м 2 ), и максимальное Pmax, кПа (тс/м 2 ), давления на грунт в сечении 3-4 по подошве условного фундамента (см. рис. 6-10) определяют по формулам:

Текучепластичные глины и суглинки (0,75

Рис. 6. Условный свайный фундамент с ростверком, заг-лубленным в грунт при угле наклона свай менее m/4

Рис. 7. Условный свайный фундамент с ростверком, заглубленным в грунт при угле наклона свай более m/4

Рис. 8. Условный свайный фундамент с ростверком, рас-положенным над грунтом при угле наклона свай менее m/4


Рис. 9. Условный свайный фундамент с ростверком, расположенным над грун-том при угле наклона свай более m/4

Рис. 10. Условный фундамент из опускного колодца:

Работа группы свай и свайных фундаментов, определение фактической нагрузки на сваи от сооружения при центрально и внецентренно действии сил.

По характеру работы висячих свай под действием вертикальной нагрузки различают работу одиночной сваи и одной сваи в кусте. Висячие сваи передают усилия на грунты основания через боковую поверхность и нижний конец. В зависимости от соотношения этих усилий эпюры вертикальных напряжений, возникающих в горизонтальной плоскости, проходящей через нижний конец сваи, будут иметь различную форму. Приближенно такую объемную эпюру можно представит в виде конуса, который проецируется на вертикальную плоскость в виде треугольника (рис. 5.24, а). Под действием этих напряжений основание будет давать осадку.


При загрузке свайного куста эпюры нормальных вертикальных напряжений в основании свай накладываются друг на друга (при шаге свай менее 6d и суммарная эпюра напряжений в основании свайного куста (рис. 5.24. б) существенно превышает эпюру напряжений одиночной сваи как по интенсивности, так и по размерам площади. Это приводит к большей величине осадки свайного куста (sа 0,6 значение (а) недолжно быть больше 2d, где (d) диаметр или меньшая сторона поперечного сечения сваи.

Если при строительстве предусматривается планировка территории подсыпкой (намывом) высотой более 2 м или другой постоянной (долговременной) пригрузкой территории, эквивалентной подсыпке, а в пределах глубины погружения свай залегают слои слабых сильносжимаемых биогенных грунтов толщиной более 30 см, то значение осадки свайного фундамента из свай, защемленных в грунте, следует определять с учетом уменьшения габаритов условного фундамента, который в этом случае как при вертикальных, так и наклонных сваях принимается ограниченным с боков вертикальными плоско­стями, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии, определяемом по формуле (5.11), в которой значение (h) принимается равным расстоянию от нижней границы слоя слабого грунта до нижних концов свай.

Свайные фундаменты из свай-стоек допускается не рассчитывать по деформациям.

При проектировании свайных фундаментов необходимо: выбрать глубину заложения подошвы ростверка, тип, вид и размеры (длину и поперечное сечение) свай; найти несущую способность сваи; определить необходимое число свай в фундаменте; разместить сваи в плане и сконструировать ростверк; произвести проверку нагрузки, приходящейся на каждую сваю; определить осадку свайного фундамента. Глубину заложения подошвы ростверка выбирают, сообразуясь с особенностями сооружения (наличие подвальных этажей, приямков и т. п.).

Размеры свай также выбирают с учетом характера напластования грунтов. Поперечное сечение свай принимают в зависимости от их длины, так как очень большая гибкость свай может вызвать искривление их ствола по мере погружения его в грунт


Расчет ведут по первой группе предельных состояний. Ориентировочное число свай в центрально нагруженном кусте определяют по формуле

Зная число свай, их размещают в плане и конструируют ростверк. В центрально нагруженном свайном фундаменте сваи располагают рядами или в шахматном порядке. Как отмечалось ранее, минимальное расстояние а между осями цилиндрических и призматических свай принимают равным 3d (d размер поперечного сечения сваи). Расстояние от края ростверка до оси крайнего ряда свай зависит от точности погружения свай в грунт или от способа их изготовления, Для забивных свай это расстояние чаще всего принимают равным размеру поперечного сечения сваи. Ростверк (обычно железобетонный) рассчитывают на продавливание колонной или сваей и на изгиб в соответствии с расчетом фундаментов по нормам на железобетонные конструкции.



Сваи, работающие только на сжатие, заделывают в ростверке обычно на глубину 5. 10 см. Сваи, работающие на выдергивание или изгиб, следует прочно заделывать в ростверк. Для этого бетон головы свай разбивают и обнаженную арматуру заделывают в ростверке. Проверку расчетной нагрузки, приходящейся на каждую сваю, при центральном нагружении фундамента осуществляют по формуле N=*(N + Gf+Gs)/n,) где G/, Gg— расчетные нагрузки от веса фундамента и грунта и ростверка; в—принятое число свай в фундаменте. При этом должно удовлетворяться условие где ук — коэффициент надежности, принимаемый в зависимости от точности определения несущей способности сваи .Если это условие не удовлетворяется, изменяют число свай и проводят повторную проверку.

Проектирование внецентренно нагруженных свайных фундаментов. При внецентренном загружении фундамента различают два случая: I случай-—момент действует постоянно; II случай— момент непостоянен и может действовать то справа, то слева. В I случае стремятся совместить центр тяжести сечений свай в кусте с точкой приложения равнодействующей. Тогда свайный куст будет испытывать центральное загружение, и нагрузку на сваи проверяют.

Размещать сваи с большей частотой у наиболее загруженного края ростверка нежелательно из-за возможного крена ростверка. Во II случае при проектировании таких фундаментов удается несколько снизить влияние момента на -их работу частичным смещением центра тяжести сечений свай в кусте относительно оси конструкции. Число свай внецеитренно нагруженного фундамента обычно и увеличивают приблизительно на 20 %,

Расчетную нагрузку на сваю при эксцентриситете относительно двух осей инерции площади сечений свай в кусте находят по формуле внецентренного сжатия

Учитывая, что при применении свай одинакового поперечного сечения и момент инерции сечения сваи относительно собственной оси инерции / во много раз меньше а при отсутствии заделки свай в ростверке вообще равен нулю, поэтому При учете ветровых и крановых нагрузок разрешается принимать расчетную нагрузку на крайние ряды свай на 20 % больше.

Читайте также: