Предельной нагрузкой на грунт является нагрузка при которой под подошвой нагруженного фундамента

Обновлено: 02.05.2024

Предельной нагрузкой на грунт является нагрузка при которой под подошвой нагруженного фундамента

Вопрос теста:

Предельной нагрузкой на грунт является нагрузка, при которой под подошвой нагруженного фундамента .

  • формируются сплошные поверхности пластических деформаций
  • по краям подошвы появляются зоны местных пластических сдвигов грунта
  • заканчивается фаза уплотнения грунта
  • прекращается сдвиг частиц грунта

Внимание!
Зелёным цветом выделен правильный ответ
Если выделено несколько вариантов, значит все они являются верными.

  • формируются сплошные поверхности пластических деформаций
  • по краям подошвы появляются зоны местных пластических сдвигов грунта
  • заканчивается фаза уплотнения грунта
  • прекращается сдвиг частиц грунта

Если у вас в тесте остались нерешённые вопросы, то обязательно воспользуйтесь поиском по нашей базе тестов. С большой долей вероятности они там есть.

Предельная критическая нагрузка для сыпучего грунта под подошвой фундамента зависит от

Ранее, в § 1 настоящей главы, были рассмотрены механические явления, возникающие в грунтах при возрастании на них местной нагрузки, причем установлены (при давлениях на грунт, больших структурной прочности) две критические нагрузки: 1 — нагрузка,

соответствующая нача-1 лу возникновения в

грунте зон сдвигов и окончанию фазы уплот­нения, когда под краем нагрузки возникают между касательными и нормальными напряже­ниями соотношения, приводящие грунт (сна­чала у ребер подошвы фундаментов) в пре­дельное напряженное состояние, и 2 ■— на­грузка, при которой под нагруженной поверх­ностью сформировываются сплошные области предельного равно­весия, грунт приходит в неустойчивое состояние и полностью исчер­пывается его несущая способность.

Величину первой нагрузки назовем начальной критической на­грузкой, еще совершенно безопасной в основаниях сооружений, так как до ее достижения грунт всегда будет находиться в фазе уплот­нения, а вторую, при которой исчерпывается полностью несущая способность грунта, — предельной критической нагрузкой на грунт в данных условиях загружения.

Начальная критическая нагрузка на грунт. Рассмотрим действие равномерно распределенной нагрузки р на полосе шириной Ь при наличии боковой пригрузки д = уп (где у — объемный вес грунта и /г — глубина заложения нагруженной поверхности, рис. 66).

Вертикальное сжимающее напряжение (давление) от собствен­ного веса грунта при горизонтальной ограничивающей поверхности равно

где г — глубина расположения рассматриваемой точки ниже плос­кости приложения нагрузки.

Задача будет заключаться в определении такой величины на­грузки начуОкр, при которой зоны сдвига (зоны предельного равнове­сия) только зарождаются под нагруженной поверхностью. Так как при полосообразной нагрузке (плоская задача) касательные напря­жения будут наибольшими у краев нагрузки, то естественно ожи­дать в этих местах при возрастании нагрузки зарождения зон пре­дельного равновесия.

Примем дополнительное допущение о гидростатическом распре­делении давлений от собственного веса грунта, а именно

При сделанном допущении задача впервые решена проф. Н. П. Пузыревским (1929 г.), затем Н. М. Герсевановым (1930 г.) и позднее О. К. Фрелихом (1934 г).

Для произвольной точки М (см. рис. 66), расположенной на глу­бине г и характеризуемой углом видимости а, найдем главные на­пряжения [по формулам (111.12)] с учетом действия собственного веса грунта как сплошной нагрузки:

(сх + зт а) + у(Л + л);

р — у/г I р — у/г ■ \ ч

Решая уравнение (в4) относительно г, получим

Найдем 2Шах по известным правилам высшей математики:

йг р — у/г / соз а йа лу

соз а = 31П ф или а=Д —ф; 81п 1-^-— ф ) = созф. (в?)

Подставляя полученные значения в выражение (В5) и решая его относительно величины р = ркр, получим

Отметим, что СНиП П-Б.1—62 принимает за нормативное давле­ние на грунт Яв такое давление, при котором под краями фундамен­та зоны предельного равновесия не распространяются на глубину, большую 2тах = Ь/4 (где Ь — ширина фундамента), а проф. Н. Н. Маслов допускает гтах = Ы§(р, т. е. когда гтах будет нахо­диться еще вне вертикальных плоскостей, проведенных через края полосообразной нагрузки. При меньшем давлении допускается при­нимать зависимость между деформациями и напряжениями линей­ной и считать, что грунт будет находиться в фазе уплотнения.

Если совершенно не допускать ни в одной точке развития зон предельного равновесия под подошвой фундаментов, то следует по­ложить в уравнении (IV. 1)

Называя наибольшее давление, при котором ни в одной точке грунта не будет зон предельного равновесия (гтах = 0), начальным критическим давлением на грунт Нач/?кр из уравнения (1У.1) по­лучим

Это и есть формула проф. Н. П. Пузыревского для начальной кри­тической нагрузки на грунт. Определяемое по ней давление можно рассматривать как совершенно безопасное в основаниях сооруже­ний, и никаких добавочных коэффициентов запаса вводить не сле­дует.

Путем простейших преобразований ей можно придать иной вид, выделив множители, зависящие только от угла внутреннего трения грунта, для их табулирования (см. СНиП 11-Б. 1—62). Однако вы­числение нач рКр и по формуле (IV.2) не составит затруднений.

Для идеально связных грунтов (для которых ф

0, сфО) выра­жение для нач Ркр получается еще проще.

Условием предельного равновесия для такого вида грунтов бу­дет

Подставив выражения для главных напряжений [по формулам (в3) при 2 = 0], получим

Это выражение будет иметь максимум при зт а=1, когда состо­яние предельного равновесия начнет зарождаться под краем фунда­мента. Тогда

нач Ркр = лс + у/г. (1у.З)

Последнее выражение используется часто для определения нор­мативного (безопасного) давления для глинистых грунтов с малым углом внутреннего трения (практически при ф^5-г-7°), а также для грунтов вечномерзлых (при сохранении их отрицательной тем­пературы) с учетом релаксации сил сцепления, подставляя сдл вместо с.

Предельная нагрузка для сыпучих и связных грунтов. Второй критической нагрузкой на грунт, как было рассмотрено ранее, сле­дует считать предельную нагрузку, соответствующую полному ис­черпанию несущей способности грунта и сплошному развитию зон предельного равновесия, что достигается для оснований фундамен­тов при окончании формирования жесткого ядра, деформирующего основание и распирающего грунт в стороны.

Решение дифференциальных уравнений равновесия совместно с условиями предельного равновесия позволяет найти математически точные очертания поверхностей скольжения, используя которые можно достаточно строго оценить величину предельной нагрузки (давления) на грунт, соответствующей достижению максимальной несущей способности основания.

Впервые эта задача для невесомого грунта, нагруженного сплошной и полосообразной нагрузкой (предельная величина кото­рой определяется), была решена Прандтлем и Рейснером (1920—■ 1921 гг.), причем для предельной нагрузки на грунт получено сле­дующее выражение:

где ц — боковая пригрузка;

ц = уп (Н — глубина приложения полосообразной нагрузки, рис. 67).

Для рассматриваемого случая (полосообразная гибкая нагрузка с боковой пригрузкой без учета объемных сил собственного веса) получено следующее точное очертание линий скольжения (рис. 67): в треугольнике Оси — два семейства параллельных прямых, накло-

ненных к горизонтали под углом + / —— • в пределах угла


Рис. 68. Схема действия наклонной нагрузки на грунт

Значения коэффициентов несущей способности Мт, Ыд, Ыс для рассматриваемого случая приведены в табл. 17, составленной Вы­числительным центром АН СССР.

Горизонтальная составляющая предельного давления на грунт в случае действия полосообразной наклонной нагрузки определится по формуле

где б — угол наклона полосообразной нагрузки к вертикали (см. рис. 68).

Значения коэффициентов несущей способности приближенно были вычислены проф. Терцаги (1943 г.), принявшим очертание ли­ний скольжения как для невесомого грунта с наличием уплот­ненного треугольного ядра, грани которого наклонены под углом ф к подошве фундамента, и полагавшим далее, что при оседании ядро преодолевает пассивное сопротивление грунта по прямолинейным поверхностям скольжения (см. ниже § 6).

В этом случае формула (1У.7) принимает следующий вид:

пред /7кр да NууЪ^ + Л^

Критические нагрузки на грунты основания


Критические нагрузки на грунты основания

1 КРИТИЧЕСКИЕ НАГРУЗКИ НА ГРУНТЫ ОСНОВАНИЯ…………………. 3

2 НАЧАЛЬНАЯ КРИТИЧЕСКАЯ НАГРУЗКА НА ГРУНТ……………………. 5

3 ПРЕДЕЛЬНАЯ НАГРУЗКА ДЛЯ СЫПУЧИХ И СВЯЗНЫХ ГРУНТОВ……. 7

1 КРИТИЧЕСКИЕ НАГРУЗКИ НА ГРУНТЫ ОСНОВАНИЯ

По мере загружения фундамента наблюдаются две критические нагрузки:

· нагрузка, соответствующая началу возникновения в грунте зон сдвига и окончания фазы уплотнения;

· нагрузка, при которой под нагруженным фундаментом сформировываются сплошные области предельного равновесия, происходит потеря устойчивости грунтов основания и исчерпывается его несущая способность.

Величина первой нагрузки называется начальной критической нагрузкой, а вторая, при которой исчерпывается полностью несущая способность грунта, — предельная критическая нагрузка на грунт.

Начальная критическая нагрузка соответствует случаю, когда в основании под подошвой фундамента возникает предельное состояние. Эта нагрузка еще безопасна в основаниях сооружения, так как до ее достижения грунт всегда находится в фазе уплотнения. При нагрузках, меньших начальной критической, во всех точках основания напряженные состояния допредельные и деформируемость грунта подчиняется закону Гука. Следовательно, для определения начальной критической нагрузки могут быть использованы решения задач теории упругости.

Определение ркр дано в решении В.В.Пузыревского (рис. 1).


Рис.1. Схема к задаче В.В.Пузыревского

Грунт рассматривается как однородное, изотропное тело. Нагрузка принята полосовой с интенсивностью р. Поскольку фундамент заглублен на глубину h , то давление будет р – γ h . Для произвольной точки М, расположенной на глубине z и характеризуемой углом видимости 2β, главные напряжения с учетом напряжений от собственного веса грунта будут равны

;


;Формулы (1,2).

Подставив и в уравнение предельного равновесия (1), учтем, что давление связности , решив его относительно р = , при z = 0 получим формулуВ.В.Пузыревского


; Формула (3).

где – начальная критическая нагрузка; – удельный вес грунта; h – глубина заложения фундамента; – угол внутреннего трения грунта; с – сцепление грунта.

Следует иметь в виду, что начальная критическая нагрузка соответствует пределу пропорциональности между напряжениями и деформациями грунта, а давление, равное начальному критическому давлению или меньше его, рассматривается как безопасное.


; Формула (4).

Для практического использования в расчетах формулу (4) представляют в виде


; Формула (5).

где , , – коэффициенты несущей способности, зависящие от угла внутреннего трения и вычисляемые по формулам



;


;


; Формулы (6,7,8).

2 НАЧАЛЬНАЯ КРИТИЧЕСКАЯ НАГРУЗКА НА ГРУНТ

Рассмотрим действие равномерно распре­деленной нагрузки р на полосе шириной b (рис. 2) при наличии боковой пригрузки qh(где γ — плотность грунта; h — глубина залегания нагруженной поверхности).


Рис. 2 Схема действия полосообразной нагрузки

Вертикальное сжимающее напряжение (давление) от собственного веса грунта при горизонтальной ограничивающей поверхности


; Формула (9).

где z — глубина расположения рассматриваемой точки ниже плоскости приложения нагрузки.

Задача будет заключаться в определении такой нагрузки, при которой зоны сдвига (зоны предельного равновесия) только зарождаются под нагруженной поверхностью.

Примем дополнительное допущение о гидростатическом распределении давлений от собственного веса грунта, а именно


; Формула (10).

При сделанном допущении задача впервые решена проф. Н. П. Пузыревским (1929), затем Н. М. Герсевановым (1930) и позднее О. К. Фрелихом (1934).

Примем условие предельного равновесия:


; Формула (11).

Для произвольной точки М (рис. 2), найдем главные напряжения с учетом действий собственного веса грунта как сплошной нагрузки:

;


; Формулы (12,13).


Подставим значения σ1 и σ2 в условие предельного равновесия, и принимая во внимание, что =c·ctgφ, получим


; Формула (14).

Решая уравнение относительно z, получим


; Формула (15).

Выполнив соответствующие математические преобразования и решая уравнение относительно величины р=ркр, получим


; Формула (16).


Проф. Н. Н. Маслов допускает =btgφ.

Называя наибольшее давление, при котором ни в одной точке грунта не будет зон предельного равновесия ( =0), начальным критическим давлением на грунт нач , получим


; Формула (17).

Это и есть формула проф. Н. П. Пузыревского для начальной критической нагрузки на грунт. Определяемое по ней давление можно рассматривать как совершенно безопасное в основаниях сооружений; никаких добавочных коэффициентов запаса в этом случае вводить не следует.

Для идеально связных грунтов (для которых φ≈0) условие предельного равновесия будет:


; Формула (18).


Тогда ; Формула (19).

Данную формулу часто используют при определении расчетного (безопасного) давления для глинистых грунтов с малым углом внутреннего трения (до 7°), а также для грунтов вечномерзлых (при сохранении их отрицательной темпе­ратуры) с учетом релаксации сил сцепления, подставляясдл вместо с.

3 ПРЕДЕЛЬНАЯ НАГРУЗКА ДЛЯ СЫПУЧИХ И СВЯЗНЫХ ГРУНТОВ

Второй критической нагрузкой на грунт следует считать предельную нагрузку, соответствующую полному исчерпанию несущей способности грунта Решение дифференциальных уравнений равновесия совместно с условиями предельного равновесия позволяет найти математически точные очертания поверхностей скольжения, используя которые, можно достаточно строго оценить значение предельной нагрузки (давления) на грунт, соответствующее максимальной несущей способности основания.

Впервые эта задача для невесомого грунта, нагруженного полосообразной нагрузкой (предельная величина которой определяется), была решена Прандтлем и Рейснером (1920—1921), причем для предельной нагрузки на грунт получено следующее выражение:


; Формула (20).

где q — боковая пригрузка, равная γh (h — глубина приложения полосообразной нагрузки, рис. 3).


Рис. 3 Сеть линий скольжения в грунте при полосообразной нагрузке и боковой пригрузке без учета собственного веса грунта

В частном случае для идеально связных грунтов (φ=0 и c≠0) предельная нагрузка для условий плоской задачи (при полосообразномзагружении), по Прандтлю, будет равна:


; Формула (21).

Для осесимметричной пространственной задачи (круг, квадрат) предельная нагрузка в случае идеально связных грунтов (по А. Ю. Ишлинскому, 1947)


; Формула (22).

В случае водонасыщенных глинистых грунтов и нестабилизированного их состояния (когда внутреннее трение не реализуется) предельная нагрузка на грунт под круглыми и равновеликими им квадратными фундаментами, по А. С. Строганову


; Формула (23).

При действии наклонной нагрузки с боковой пригрузкой на грунт, обладающий трением и сцеплением (рис. 4), решение получено В. В. Соколовским (1952) как сумма предельной нагрузки для идеально сыпучего грунта с учетом действия его собственного веса и предельной нагрузки для связного грунта, но без учета его веса.


Рис. 4 Схема действия наклонной нагрузки на грунт

Вертикальная составляющая предельной нагрузки при этом определяется следующим выражением:


; Формула (24).

где Nγ, Nq, Nc — коэффициенты несущей способности грунта, определяемые путем вычисления по построенной сетке линий скольжения как функции угла внутреннего трения и наклона нагрузки.

Форма данного уравнения, впервые предложенная проф. Терцаги (1943), в настоящее время является канонической и к ней обычно приводятся все другие решения, полученные для предельной нагрузки на грунт при иных граничных условиях и ином загружении.

Горизонтальная составляющая предельного давления на грунт в случае действия полосообразной наклонной нагрузки определится по формуле:


; Формула (25).

где δ — угол наклона полосообразной нагрузки к вертикали (рис. 4).

Получаемые по приведённой формуле значения предpкр соответствуют достаточно строгому решению для наклонной полубесконечной нагрузки (рис. 4), что на практике соответствует лишь случаю очень широкой площади подошвы сооружения.

Для края наклонной нагрузки (полагая y=0) имеем:


; Формула (26).

а для ординаты, соответствующей ширине фундамента (т. е. при y=b), при условии отсутствия выпирания в противоположную сторону


; Формула (27).

Тогда средняя величина вертикальной составляющей предельного давления на грунт


; Формула (28).

Расчет нагрузки под подошвой фундамента

Приступая к выбору фундамента, следует определиться с терминами и параметрами, характеризующими сам фундамент и грунт-основание под ним (Рисунок 13, а).

Фундамент – это подземная часть здания, которая предназначена для передачи нагрузки от здания на грунт, залегающий на определенной глубине и являющийся основанием фундамента.


Рисунок 13. Схема фундамента и основания:
А – без подсыпки грунта; Б – с подсыпкой грунта;
1 – фундамент; 2 – граница промерзания грунта; 3 – уровень грунтовых вод; 4 – сжимаемая толща грунта; 5 – насыпной грунт

Глубина заложения фундамента (Hf) – расстояние от подошвы фундамента до поверхности земли.

Подстилающий слой грунта (основание – слой грунта, на который опирается подошва фундамента.

Расчетная глубина промерзания (hi) – положение границы промерзания относительно уровня грунта, принятое в качестве расчетной величины, узаконенной нормативными документами (нормами СНиП).

Если вокруг дома сделана подсыпка, то из чего следует исходить при назначении глубины заложения фундамента?

Разумеется, грунт будет промерзать с учетом подсыпанного грунта. Поэтому и глубину заложения фундамента в этом случае следует определять дт поверхности подсыпки (Рисунок 13, б).

Глубина промерзания в большей степени определяется климатическими условиями данного региона и соответствует наибольшей величине промерзания влажного глинистого грунта без снегового покрова в период наиболее низких возможных температур. В пределах Европейской и Сибирской части России граница промерзания меняется в широком диапазоне (Рисунок 14).

Глубина промерзания по городам России и ближнего зарубежья:



Рисунок 14. Карта расчетной глубины промерзания глинистых и суглинистых грунтов части Российской Федерации.

70 см – Краснодар, Калининград, Львов.
90 см – Ростов-на-Дону, Астрахань, Киев, Минск, Рига.
100 см – Таллинн, Харьков, Вильнюс.
120 см – Великие Луки, Волгоград, Курск, Псков, Смоленск.
140 см – Воронеж, Тверь, Санкт-Петербург, Москва, Новгород.
150 см – Вологда, Нижний Новгород, Кострома, Пенза, Саратов.
170 см – Ижевск, Казань, Котлас, Самара, Вятка, Ульяновск, Ярославль, Иваново.
180 см – Уфа, Караганда, Актюбинск.
190 см – Екатеринбург, Челябинск, Сыктывкар, Пермь.
210 см – Тобольск, Кустанай, Барнаул.
220 см – Омск, Новосибирск.

Это следует учитывать

– при постоянном проживании грунт под домом зимой прогревается и расчетную глубину промерзания можно уменьшить на 15…20%;

– для мелких и пылеватых песков и супесей значение глубины промерзания следует увеличить в 1,2 раза.

Разумеется, реальная глубина промерзания несколько меньше, чем расчетная. Но на то она и расчетная, чтобы избежать возможных разрушений дома при самых неудачных стечениях обстоятельств, предложенных погодой.

Всемирное потепление и глубина промерзания

Застройщики, решившие учесть общее потепление климата и на этом основании смягчить требования к заглублению фундамента и к утеплению стен, не совсем правы.

Крещенские морозы, накрывшие всю территорию России в январе 2006 г., держали температуру на 15…20°С ниже среднестатистической отметки, напрягая энергетиков и владельцев частных домов.

Уровень грунтовых вод (hw) – положение зеркала грунтовых вод относительно уровня грунта в условно отрытом котловане (скважине).

Сжимаемая толща грунта – деформируемая часть грунта, воспринимающая нагрузку от фундамента.

Очевидно, что чем меньше глубина заложения фундамента, тем меньше стоимость строительства. Желание снизить затраты на возведение фундамента ведет к стремлению поднять подошву фундамента к поверхности грунта. Вместе с тем верхние слои грунта не всегда могут удовлетворять требованиям, предъявляемым к основанию сооружения: они имеют Недостаточную и неравномерную прочность, подвержены пучинистым явлениям, чем способны вызвать разрушение фундамента и самого строения.

Определиться с требуемой площадью подошвы фундамента можно через проведение проектировочных расчетов. В строительной практике предусмотрено выполнение расчетов фундамента по двум группам предельных состояний: по несущей способности основания и по допустимым деформациям сооружений. Если первый расчет позволяет определить площадь подошвы фундамента, то второй даст возможность избежать разрушения самого дома от неравномерности в осадке фундамента.

Расчет фундамента по несущей способности основания (информация для любознательных застройщиков)

Целью расчета оснований по несущей способности является оценка прочности и устойчивости грунта-основания под подошвой фундамента от воздействия эксплуатационных нагрузок.

Восприятие нагрузки фундаментом сопровождается его осадкой, которая обусловлена уплотнением грунта и потерей его устойчивости, характеризуемой деформационными сдвигами слоев. Величина осадки (δ) зависит не только от прочностных характеристик грунта, но и от значения прилагаемого усилия (F) Рисунок 15), как у пружины, величина сжатия которой зависит от её жесткости и от приложенной силы.



График зависимости осадки фундамента от нагрузки

На графике можно выделить типичные участки, характеризующие деформационно-напряженные процессы, проходящие в основании и сопровождающиеся перемещением и уплотнением грунта (Рисунок 16):

ОА – фаза упругих деформаций (Рисунок 16, а);

АБ – фаза уплотнения и местных сдвигов (Рисунок 16, б);

БВ – фаза сдвигов и начало бокового уплотнения (Рисунок 16, в);

ВГ – фаза выпора (Рисунок 16, г);

ГД – фаза преобладающего бокового уплотнения (Рисунок 16, д).


Рисунок 16. Схема развития деформаций и перемещений грунта:
А – фаза упругих деформаций; Б – фаза уплотнения и местных сдвигов; В – фаза развития сдвигов и начало бокового уплотнения; Г – фаза выпора; Д – фаза преобладающего бокового уплотнения;
1 – нагрузка; 2 – фундамент; 3 – зона упругих деформаций; 4 – зона сдвиговых деформаций; 5 – выпор грунта; 6 – ядро уплотненного грунта; 7 – зона бокового уплотнения

Наиболее востребованные фазы работы основания, которые используются в условиях строительства – ОА, АБ и начальная часть фазы БВ, где преобладающими являются упругие деформации основания. Каждому типу фундамента соответствует своя фаза деформаций:

ОА – для фундамента в виде плит, где давление на грунт невелико;
АБ – ленточный мелкозаглубленный фундамент;
АБ (конец) и БВ – столбчатый фундамент.

Остальные фазы работы основания (ГД) реализуются в основном при создании свайных фундаментов, применяемых в индустриальном строительстве (забивные сваи).

Расчет оснований по несущей способности (для фаз ОА, АБ, начало БВ) выполняют через определение требуемой площади подошвы фундамента по следующей формуле:

Таблица 4. Расчетные сопротивления Ro крупнообломочных грунтов
Таблица 5. Расчетные сопротивления Ro непросадочных глинистых грунтов
Таблица 6. Расчетные сопротивления Ro песчаных грунтов

Расчетное сопротивление глинистых грунтов и его влажность существенно зависят от пористости грунта ε (отношение объема пор к объему твердых частиц). Для новичка в строительстве этот показатель оценить в реальных условиях достаточно сложно, т.к. извлеченный грунт в свободном состоянии уже не обладает теми показателями, какие он имел на глубине, находясь под давлением.

Автором предложено связать пористость, а следовательно, и несущую способность грунта с глубиной его заложения в зависимости от того, по какую сторону границы промерзания находится подошва фундамента.

Просадочные глинистые грунты в сухом состоянии имеют повышенную пористость и вместе с тем обладают высокой механической прочностью, обусловленной сильными структурными связями (табл. 7).

Таблица 7. Расчетные сопротивления Ro просадочных глинистых грунтов природного сложения
Таблица 8. Расчетные сопротивления Ro насыпных грунтов

После механического уплотнения просадочных грунтов природного сложения (трамбование) происходит разрушение жесткого каркаса и потеря прочности:

– прочность сухой супеси – 2,0…2,5 кг/см²;

– прочность сухого суглинка – 2,5…3,0 кг/см².

Большему значению расчетного сопротивления насыпных грунтов соответствуют крупные, средние и мелкие пески, шлаки…

Меньшему значению – пески пылеватые, супеси, суглинки, глины и золы.

Пример расчета фундамента по несущей способности грунта

Площадь подошвы фундамента определяется по формуле:

При общей длине фундамента – около 35 м ширина подошвы фундамента должна быть не менее 6,18 / 35 = 0,18 м.

Влияние сейсмичности на несущую способность грунта

Задаваясь той или иной величиной расчетного сопротивления грунта, следует учитывать, что при одновременном воздействии статической нагрузки и вибраций прочность грунта снижается. Грунт, как говорят специалисты, приобретает свойства псевдожидкого состояния.

Индивидуальные застройщики, решившие возводить сейсмостойкий фундамент своими силами, должны учитывать уменьшение несущей способности грунта при сейсмических вибрациях. Ориентировочно табличную величину расчетного сопротивления грунта необходимо уменьшить в 1,5 раза, т.е увеличить площадь подошвы фундамента тоже в 1,5 раза.

Расчетное сопротивление грунта на разной глубине

Величины расчетного сопротивления грунтов ( Ro), приведенные в таблицах 4…8, даны для глубины заложения фундамента 1,5…2 м.

Если глубина заложения фундамента меньше чем 1.5 м, то расчетное сопротивление грунта ( Rh) определяется по формуле:

Rh = 0,005 · Ro · (100 + h/3), где
h – глубина заложения фундамента в см.

Глинистый грунт на глубине 0,5 м при Ro = 4 кг/см² будет иметь расчетное сопротивление грунта Rh = 2,33 кг/см².

Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта ( Rh) определяется по формуле:

Rh = Ro + k · g · (h – 200), где

h – глубина заложения фундамента в см,

g – вес столба грунта, расположенного выше глубины заложения фундамента (кг/см²);

k – коэффициент грунта (для песка – 0,25; для супеси и суглинка – 0,20; для глины – 0,15).

Глинистый грунт на глубине 3 м при Ro = 4 кг/см² будет иметь расчетное сопротивление Rh = 10,3 кг/см². Удельный вес глины – 1,4 кг/см², а вес столба глины высотой 300 см – 0,42 кг/см².

Максимальные величины расчетного сопротивления грунтов

Для того чтобы глубже понять работу оснований, полезно было бы узнать максимальные величины расчетного сопротивления грунтов, которые встречаются в реальной жизни. Такие экстремальные параметры грунта могут возникнуть только при максимальном его уплотнении, например, под нижним концом забивных свай.

Значения расчетного сопротивления сильно уплотненных грунтов Ro (пески гравелистые, крупные, средние, мелкие и пылеватые, пылевато-глинистые грунты) зависят от глубины погружения нижнего конца свай [3]:
– на глубине 3 м увеличение – в 10 раз;
– на глубине 20 м увеличение – в 15 раз;
– на глубине 35 м увеличение – в 20 раз.

Такое внушительное увеличение несущей способности грунта связано с уплотнение грунта не только непосредственно под сваей, но и вокруг неё (Рисунок 16, д).

Эти данные приведены не для того, чтобы их напрямую использовать при расчете фундамента, т.к. такое значительное увеличение расчетного сопротивления грунтов связано с их сильным уплотнением и значительными деформациями основания. Но вместе с тем, это дает застройщику определенную уверенность в том, что созданный им фундамент выдержит вес задуманного сооружения: грунт не подведет. Главное в этом – сделать грамотно все остальное: фундамент и стены.

На заметку застройщику

Фундамент, возводимый по технологии ТИСЭ, дает возможность просесть дому на 8…10 см. В реальной жизни просадка фундамента – не более 1 см. Если это учитывать, то величину расчетного сопротивления грунта можно несколько увеличить (предположительно в 1,5 раза) или использовать этот довод для создания определенного запаса по несущей способности основания.

Расчет фундамента по допустимым деформациям сооружения

Целью расчета фундамента по этой методике является оценка соответствия действующего и допустимого уровней деформаций сооружения от воздействия эксплуатационных нагрузок.

В гибких и жестких конструкциях неравномерность осадки вызывает деформации строений или ведет к изменению их положения (Рисунок 17), что может вызвать ухудшение условий эксплуатации здания или его оборудования. Кроме этого, при больших деформациях конструкция сооружения может испытывать закритические напряжения, ведущие к его разрушению.

Правильно спроектированный фундамент предполагает осадки и деформации строения, но величина их не должна превышать строительные нормы, гарантирующие полноценную эксплуатацию здания.


Рисунок 17. Формы деформации сооружений
А – прогиб; Б – выгиб; В – сдвиг; Г – крен; Д – перекос; Е – горизонтальное смещение

Виды деформаций сооружений.

Прогиб и выгиб (Рисунок 17, а, б) зданий возникает из-за неравномерной осадки основания. Наиболее опасная растянутая зона строений при прогибе находится у фундамента, при выгибе – у кровли.

Сдвиг (Рисунок 17, в) зданий возникает при увеличенной просадке основания с одной из сторон. Наиболее опасная зона строения – стена в средней зоне, где возникает большой сдвиг.

Крен (Рисунок 17, г) здания возникает при относительно большой его высоте (многоэтажный дом, башня, дымовая труба…), при высокой изгибной жесткости строения. Опасен дальнейший рост крена и последующее разрушение здания.

Перекос (Рисунок 17, д) возникает при неравномерных осадках, приходящихся на небольшой участок длинного сооружения.

Горизонтальное смещение (Рисунок 17, е) возникает в фундаментах, в стенах подвалов или в подпорных стенках, загруженных горизонтальными усилиями.

Допускаемая величина осадки и крена сооружений

Допускаемая величина осадки, неравномерности в осадке и крена зависят от типа здания, его силовой схемы и используемых материалов.

Величина допустимых деформаций приведена в таблице 9.

Таблица 9. Предельные деформации оснований

Относительная неравномерность осадки ( σ/L) – максимальное отношение разности в осадке двух участков фундамёнта к расстоянию между этими участками. По- другому: относительный прогиб (выгиб) характеризуется отношением стрелы прогиба к длине изгибаемого участка.

Из таблицы видно, что допустимые неравномерности в осадке дома тем больше, чем менее жесткий дом. Каркасные или деревянные дома допускают относительно большую неравномерность в осадке фундамента. Каменные, более жесткие дома – нет.

Кирпичный двухэтажный дом просел в середине на 1 см (Рисунок 17, а). Расстояние по длине фундамента между точками замера – 600 см (длина дома – 12 м). Относительная неравномерность осадки – 1/600=0,0017. Допустимая неравномерность осадки для такого дома – 0,002. Поэтому осадка в 1 см для такого дома допускается.

Причины неравномерных осадок:

– неоднородность основания, сложенного из пластов различной толщины или плотности;

– переувлажнение какой-либо части основания или сложение части основания из насыпного грунта;

– неравномерное давление на основание, вызванное несоответствием площади подошвы с действующей вертикальной нагрузкой (давление на фундамент в средней части здания больше, чем под внешними стенами, т.к. на внутреннюю стену опираются перекрытия с двух сторон);

– неодновременное возведение отдельных частей здания;

– механическая суффозия – перемещение водяными потоками частиц грунта – ведет к увеличению пористости и к уменьшению прочности грунта;

– наличие в толще грунта материалов, подверженных гниению (корни деревьев, отходы древесины…);

– воздействие механизмов – удаление лишнего грунта при рытье котлованов и траншей под фундамент – наиболее распространенная ошибка строителей, т.к. уложенная выравнивающая подсыпка под фундаментом не обладает прочностью нетронутого грунта;

– уплотнение грунта в процессе эксплуатации сооружения, связанное со значительным увеличением веса (складские помещения, элеваторы…);

– изменение уровня подземных вод (грунтовых или производственных);

– подземные выработки (рытье туннелей метро, канализационных коллекторов и др.);

– разрушение подземных магистралей систем водоснабжения, отопления, канализации и отвода дождевой воды часто приводит к вымыванию большого объема грунта из-под строений.

Из городской жизни

Прорывы трубы систем водоснабжения, центрального отопления или канализации, разрушенная отмостка вокруг зданий, под которую затекают ливневые осадки, могут привести строения в аварийное состояние и даже к разрушению. Происходит это не только из-за снижения несущей способности влажного грунта. Иногда возникает ситуация, когда под землей стихийно возникают большие и малые водяные потоки, уносящие грунт в магистральные ливнеотводящие коллекторы или в водоносные слои грунта. Подобные потоки при благоприятных условиях могут образовывать ручейки, способные создать в толще грунта полости достаточно внушительных размеров , способные поглотить не один грузовик или разрушить целое здание (Рисунок 18).

Из практики ТИСЭ

Фундамент и стены трехэтажного дома 9 х 12 м возводили по технологии ТИСЭ. В процессе возведения стен первого этажа в одном месте стены возникла трещина. Внизу у ростверка её ширина была около 1 мм. Полностью она исчезала на высоте около 1 м от ростверка. Сам ростверк, имеющий высоту около 20 см, не треснул (Рисунок 19). Стали разбираться, в чём причина.

Основная ошибка строителей заключалась в том, что песчаная подсыпка, играющая роль нижней части опалубки, из-под ленты своевременно не была удалена. Но сути стены возводили на ленточном незаглубленном фундаменте, которым являлся ростверк.

Перед тем, как возникла трещина, в этом месте стены был брошен шланг, из которого постоянно текла вода, используемая при возведении стен. От переизбытка влаги несущая способность верхних слоев грунта в этом месте снизилась. Тонкая лента проармированного ростверка просела, не треснув. Бетонный массив в нижней части стены, испытывающий растяжение, лопнул, отчего и появилась эта трещина.

Правильная последовательность удаления песчаной подсыпки из-под ростверка всего дома и горизонтальное армирование стен позволили решить эту проблему. После нанесения шпаклевки эта трещина больше не проявлялась.



Рисунок 19. Появление трещины при местном переувлажнении грунта:
1 – опора; 2 – песчаная подсыпка; 3 – ростверк; 4 – стена; 5 – трещина; 6 – переувлажнённый грунт

Причиной возникновения подобных трещин в стене часто становится разрушенная система ливнеотвода. Толстый слой снега на крыше и массивные сосульки становятся причиной поломки желобов и стояков системы. Если у хозяина руки не доходят до их восстановления, то после сильных дождей земля вокруг дома неравномерно увлажняется, как в предыдущем примере, что вызывает неравномерную осадку незаглубленного или мелкозаглубленного фундамента. В стенах возникают трещины, здание приходит в аварийное состояние, выйти из которого достаточно сложно.

Это было в Санкт-Петербурге

В Шипкинском пер. 17-этажный дом на плитном фундаменте накренился на 0,5%. Причина – ненормативное расположение траншеи ливневой канализации относительно фундаментной плиты (на расстоянии менее 2 м и ниже подошвы плиты на 1 м) и некачественное её выполнение. Это привело к замачиванию грунтов основания и к их утечке в ливнеотводящую систему. Осадка одной стороны здания приблизилась к предельно допустимой величине 24 см.

Восстановление вертикальности здания свелось к сознательному ухудшению несущей способности грунта под той частью плиты, которая не просела. Процесс возвращения дома в вертикальное положение занял почти три месяца. Когда дом начал приближаться к вертикальному положению, началось закрепление грунтов основания под всей плитой инъекцией твердеющих растворов под высоким давлением. После восстановительных работ дом оказался ниже исходной проектной отметки на 30 см.

Мероприятия по устранению неравномерных осадок

Устранение неравномерности осадки фундамента сводится к определенным конструктивным проработкам и к проведению некоторых профилактических мероприятий:

– выбор площади подошвы фундамента, отвечающей величине предполагаемых нагружений;

– рациональная компоновка зданий и сооружений, обеспечивающая более равномерную передачу нагрузки от веса здания на основание;

– уменьшение чувствительности здания через увеличение его изгибной жесткости, если оно короткое, и через уменьшение изгибной жесткости здания, если оно длинное;

– горизонтальное армирование стен и устройство сейсмопоясов;

– устройство деформационных или осадочных швов между секциями сооружения;

– устройство компенсирующего фундамента (столбчато-ленточный фундамент по технологии ТИСЭ);

– придание сооружению или отдельным его частям строительного подъема, соответствующего величине прогнозируемой осадки;

– проработка систем отвода ливневых осадков, систем водоснабжения и канализации с профилактическими мероприятиями по их обслуживанию, не допускающими неравномерного увлажнения грунта и возникновения подземных потоков.

Как можно уменьшить изгибную жесткость дома

У застройщика с большой семьей, но с ограниченными финансовыми возможностями было желание построить двухэтажный дом 11 х 8 м с мансардой. Грунт был слабый и внушал определенные опасения: могли появиться трещины в стенах каменного дома. Было предложено разбить возведение дома на несколько этапов и ввести компенсационную вставку. Для этого дом разделили на три секции: две внешние – каменные, фундамент и стены которых возводились по ТИСЭ; и среднюю деревянную секцию, которая объединяла их в целый дом. У застройщика появилась возможность растянуть строительство, возвести и обживать сначала одну секцию (жилую и гараж…), а затем – и все остальные (Рисунок 20). Одновременно с этим деревянная секция дома могла скомпенсировать неравномерности в просадке грунта без каких-либо разрушений.



Рисунок 20. Этапы возведения здания с уменьшенной изгибной жесткостью:
А – возведение первой каменной секции; Б – возведение второй каменной секции; В – соединение каменных секций балками и стропилами; Г – дом построен

Таблицы допустимого давления на грунт и несущей способности грунта.

При разработке проекта для фундамента дома учитываются все факторы, в том числе и особенности грунтов. Для расчета общей допустимой нагрузки дома на грунт фундамента вы можете использовать формулу: A = Vдома (кг) / Sфунд (см2).

Таблица допустимого давления на грунт, кг/см 2 .

Грунт

Глубина заложения фундамента

Щебень, галька с песчаным заполнением

Дресва, гравийный грунт из горных пород

Песок гравелистый и крупный

Щебень, галька с илистым заполнением

Песок средней крупности

Песок мелкий маловлажный

Песок мелкий очень влажный

Иногда влажность грунтов может изменяться в большую сторону, в таких случаях несущая способность почвы становится меньше. Рассчитать влажность грунта можно самостоятельно. Для этого необходимо выкопать скважину или яму, и в том случае если через какой либо промежуток времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой. Ниже мы рассмотрим плотность и несущей способности различных грунтов. Для расчета фундамента вы можете воспользоваться калькулятором фундамента.

Таблица плотности и несущей способности различных грунтов.

Грунт средней плотности

Песок среднего размера

Супесь влажная (пластичная)

Мелкий песок (маловлажный)

Мелкий песок (влажный)

Глина влажная (пластичная)

Суглинок влажный (пластичный)

При разработке проекта дома для примерного расчета фундамента, как правило, несущая способность принимается 2 кг/см 2 .

Следует отметить, что при разработке, грунт разрыхляется и увеличивается в объеме. Объем насыпи, как правило, больше объема выемки из которой грунт изымается. Грунт в насыпи будет постепенно уплотняться, это происходит под действием собственного веса или механического воздействия, поэтому значения первоначального коэффициента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки будет между собой различаться. Грунты в зависимости от трудности и способа их разработки делятся на категории.

Таблица категорий и способов разработки почвы.

Категория грунтов

Типы грунтов

Плотность, кг/м 3

Способ разработки

Песок, супесь, растительный грунт, торф

Ручной (лопаты), машинами

Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором

Ручной (лопаты, кирки), машинами

Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой

Ручной (лопаты, кирки, ломы), машинами

Тяжелая глина, жирная глина со щебнем, сланцевая глина

Ручной (лопаты, кирки, ломы, клинья и молоты), машинами

Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник

СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83* (с Изменениями N 1, 2, 3)

Максимальная или средняя осадка, см

1 Производственные и гражданские одноэтажные и многоэтажные здания с полным каркасом:

то же, с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

то же, с устройством железобетонных поясов или монолитных перекрытий

2 Здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок

3 Многоэтажные бескаркасные здания с несущими стенами из:

крупных блоков или кирпичной кладки без армирования

то же, с армированием, в том числе с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

4 Сооружения элеваторов из железобетонных конструкций:

рабочее здание и силосный корпус монолитной конструкции на одной фундаментной плите

то же, сборной конструкции

отдельно стоящий силосный корпус монолитной конструкции

то же, сборной конструкции

5 Дымовые трубы высотой Н, м:

6 Жесткие сооружения высотой до 100 м, кроме указанных в пунктах таблицы 4 и 5

7 Антенные сооружения связи:

стволы мачт заземленные

то же, электрически изолированные

башни коротковолновых радиостанций

башни (отдельные блоки)

8 Опоры воздушных линий электропередачи:

анкерные и анкерно-угловые,

промежуточные угловые, концевые, порталы открытых распределительных устройств специальные переходные

1 Значение предельной максимальной осадки основания фундаментов применяется к сооружениям, возводимым на отдельно стоящих фундаментах на естественном (искусственном) основании или на свайных фундаментах с отдельно стоящими ростверками (ленточные, столбчатые и т.п.).

2 Значение предельной средней осадки основания фундаментов применяются к сооружениям, возводимым на едином монолитном железобетонном фундаменте неразрезной конструкции (перекрестные ленточные и плитные фундаменты на естественном или искусственном основании, свайные фундаменты с плитным ростверком, плитно-свайные фундаменты и т.п.).

3 Предельные значения относительного прогиба зданий, указанных в пункте 3 таблицы, принимают равными 0,5, а относительного выгиба - 0,25.

5 Если основание сложено горизонтальными (с уклоном не более 0,1), выдержанными по толщине слоями грунтов, предельные значения максимальных и средних осадок допускается увеличивать на 20%.

7 На основе обобщения опыта проектирования, строительства и эксплуатации отдельных видов сооружений допускается принимать предельные значения деформаций основания фундаментов, отличающиеся от указанных в настоящем приложении.

Читайте также: