Основные принципы расчета и конструирования плитных и свайных фундаментов высотных зданий

Обновлено: 18.05.2024

Конструктивные решения высотных зданий

Прочность, устойчивость и пространственная жесткость высот­ных зданий обеспечиваются совместной работой горизонтальных (пе­рекрытий) и вертикальных (стен и рам) конструкций. Через перекрытия вертикальные и горизонтальные нагрузки, действующие на здание, пе­редаются вертикальным несущим конструкциям, а от них на грунт. Ин­тенсивность, направление и характер передачи нагрузок зависят от геометрии вертикальных элементов и их расположения в плане.

В проектировании и строительстве высотных зданий приме­няются разнообразные конструктивные решения, принимаемые про­ектировщиками в зависимости от различных факторов:

  • функционального назначения;
  • высоты здания;
  • природно-климатических условий;
  • комплексной безопасности высотных зданий;
  • градостроительной ситуации;
  • архитектурно-планировочных решений;
  • архитектурно-композиционных требований;
  • инженерно-технических систем и оборудования.

Важное значение имеют четыре первых фактора, остальные во многом зависят от конкретных условий строительства.

В зависимости от принятой конструктивной схемы здания вертикальные несущие конструкции могут состоять либо из системы стоек и балок типа каркасов, либо из системы стен-диафрагм – сплошных или решетчатых, либо из тех и других вместе (комбини­рованные системы). Стены-диафрагмы могут быть из линейных элементов или объединяться в трехмерные конструкции – ядра (стволы) жесткости. Плоские стены, в свою очередь, могут быть не­прерывными в плане, пересекающими все здание или иметь произ­вольное расположение.

Так как решающее значение при проектировании высотных зданий имеют горизонтальные нагрузки, например ветровые и сейс­мические, вертикальные несущие конструкции должны состоять из достаточно жестких конструктивных элементов, чтобы исключить нежелательные деформации здания. С целью увеличения жесткости в продольном и поперечном направлениях здания устраивается система горизонтальных связей. Горизонтальные нагрузки через перекрытия передаются вертикальным связевым конструкциям. Передача горизонтальных нагрузок происходит с помощью соединении, воспринимаемых сдвигающие усилия и устраиваемых между верти­кальными несущими конструкциями и перекрытиями.

Выбор вертикальных несущих конструкций, их комбинаций и связей является выбором конструктивной системы здания, жест­кость которой определяется расчетом и зависит от многих факторов. Наиболее важным фактором с точки зрения обеспечения устойчиво­сти высотного здания является оказание им сопротивления ветро­вым нагрузкам, увеличивающимся с повышением высоты здания.

По функциям конструктивные элементы, из которых состоит высотное здание, в зависимости от их назначения подразделяется на две группы: несущие и ограждающие. Несущие конструкции здания состоят из взаимосвязанных горизонтальных и вертикальных эле­ментов. В совокупности они образуют конструктивную систему, которую называют несущим остовом здания.

Критерием выбора конструктивной системы высотного здания является удовлетворение условиям жесткости и устойчивости, а также комфортности пребывания людей на верхних этажах, зависящим от величины и характера ветровых нагрузок:

  • горизонтальные перемещения здания от действия суммы полных нормативных вертикальных нагрузок и средней составляю­щей (статической) ветровой нагрузки с учетом поворота фундамента должны составлять не более 1/500 его высоты;
  • ускорение колебаний перекрытий верхних этажей при дей­ствии нормативной пульсационной составляющей ветровой нагрузки не должно превышать 0,08 м/с 2 .

В случае невыполнения этих условий требуется увеличить же­сткость высотного здания, что достигается либо заменой конструк­тивной системы на более жесткую, либо включением в работу дополнительных вертикальных несущих конструкций, к которым от­носятся стены, рамы, стволы (ядра жесткости) и их комбинации. Для увеличения жесткости зданий вертикальные несущие конструкции, в свою очередь, дополнительно могут усиливаться связями, в качестве которых применяются связевые системы как в виде отдельных пло­ских или решетчатых диафрагм, устраиваемых в плане, так и в виде связевых поясов – ферм, предусматриваемых в одном или несколь­ких уровнях по высоте здания.

Горизонтальные несущие конструкции – перекрытия и покрытия здания воспринимают приходящиеся на них вертикальные и горизонтальные нагрузки и воздействия, передавая их поэтажно на вертикальные несущие конструкции, последние, в свою очередь, передают эти нагрузки и воздействия через фундаменты основанию. Горизонтальные несущие конструкции высотных зданий, как прави­ло, однотипны и обычно представляют собой железобетонный диск (сборный, монолитный или сборно-монолитный) или (в последнее время) сталежелезобетонный, они воспринимают приходящиеся на них вертикальные и горизонтальные нагрузки и воздействия, пере­давая их поэтажно на вертикальные несущие конструкции – колон­ны, стены, пилоны и через фундамент на основание (грунт).

Вертикальные несущие конструкции классифицированы на четыре основные конструктивные системы высотных зданий – кар­касную (рамную), стеновую (бескаркасную, диафрагмовую), ствольную и оболочковую:

каркасная – с пространственным рамным каркасом, применя­ется преимущественно в строительстве многоэтажных сейсмостойких зданий. В свою очередь, каркасные системы подразделяются на рамно­каркасные, каркасные с диафрагмами жесткости, каркасно-ствольные;

  • стеновая (бескаркасная) – самая распространенная в жи­лищном строительстве, ее используют в зданиях различных плани­ровочных типов высотой от одного до 30 этажей;
  • ствольная система применяется в зданиях выше 16 этажей. Наиболее целесообразно применение ствольной системы для ком­пактных в плане многоэтажных зданий, особенно в сейсмостойком строительстве, а также в условиях неравномерных деформаций ос­нования (на просадочных грунтах, над горными выработками и др.);
  • оболочковая (коробчатая) система присуща уникальным высотным зданиям жилого, административного или многофункцио­нального назначения;
  • комбинированные (смешанные) системы сочетают в себе от­дельные признаки двух других систем, к ним относят каркасно­стеновые, каркасно-ствольные и коробчато-ствольные и др.

Основные конструктивные системы ориентированы на вос­приятие всех силовых воздействий одним типом несущих элемен­тов. Так, например, при стержневых конструкциях узлы сопряжения колонн с ригелями должны быть жесткими (рамными) в обоих на­правлениях, чтобы обеспечить восприятие вертикальных и горизон­тальных воздействий.

Наряду с основными системами широко применяют и комбинированные конструктивные системы. В этих системах вертикальные несущие конструкции компонуются их различных видов элементов. К их числу относятся системы: каркасно-диафрагмовая со связями в виде стен – диафрагм жесткости, с неполным каркасом (несущие на­ружные стены и внутренний каркас), каркасно-ствольная, ствольно­стеновая, ствольно-оболочковая и др. (рисунок ниже).

Применяемые конструктивные системы высотных зданий

115

а – бескаркасная (стеновая); б – рамная; в – каркасная с диафрагмами жесткости; г – ствольная; д – каркасно-ствольная; е – коробчатая (оболочковая); ж – коробчато-ствольная (оболочково-ствольная)

Высотные здания состоят из различных конструктивных эле­ментов, располагаемых как в подземной, так и в надземной частях высотного здания.

Подземные конструкции. В системе «высотное здание – фун­даменты – основание» наиболее нагруженными конструкциями яв­ляются конструкции подземной части, на которые передаются все действующие на здание вертикальные, ветровые (или сейсмические] нагрузки. Промежуточным звеном в этой системе являются фунда­менты, от выбора типа которых зависит как надежное функциониро­вание остальных несущих конструкций высотного здания, так и комфортное пребывание в них людей.

Футдаментом называется подземная часть здания или соору­жения, воспринимающая все нагрузки, как постоянные, так и временные, возникающие в надземных частях, и передающая давление от этих нагрузок на основание.

Одним из основных факторов, влияющих на выбор типа фундаментов, являются инженерно-геологические условия площадки строительства. Результаты этих изысканий обеспечивают предварительную оценку несущей способности основания, его возможность осадок и их неравномерности, общей устойчивости основания. Не­благоприятные результаты могут служить основанием для отказа от выбранной площадки строительства по требованиям безопасности или из-за высокой стоимости мероприятий по понижению интен­сивности влияния этих процессов. Кроме того, изыскания позволяют выявить возможное влияние строительства высотного здания на ок­ружающую застройку.

Глубина заложения фундаментов принимается такой, чтобы обеспечить жесткость подземной части здания, заделку здания в ос­нование и уменьшение осадок и кренов сооружения.

С учетом изложенного выше для высотных зданий наиболее эф­фективными решениями фундаментов могут быть следующие варианты:

  • плитные фундаменты повышенной жесткости, плитные переменной толщины, а также коробчатого типа с развитой подземной частью, на естественном или укрепленном основании;
  • свайные фундаменты, в том числе в виде глу­боких опор с заделкой нижних концов в коренные породы грунтов – известняки;
  • комбинированные свайно-плитные (КСП) фундаменты (рисунки ниже).

Конструктивные типы фундаментов высотных зданий

116

а – плитный; б – плитный переменной толщины; в – плитный коробчатого типа; г – свайный со сплошным плитным ростверком; д – комбинированный свайно-плитный

Выбор конструкции фундамента осуществляется на основании технико-экономического сравнения вариантов и зависит от конст­руктивно-планировочной схемы здания, характера напластований грунтов, их физико-механических характеристик и взаимодействия строящегося здания с массивом грунта и окружающей застройкой.

Плитный фундамент представляет собой сплошную железо­бетонную плиту повышенной жесткости (толщиной 1,5 и более мет­ров), расположенную под всей площадью возводимого здания. Нагрузки от здания распределяются по всей по­верхности фундаментной плиты и передаются на грунты основания главным образом через подошву.

Применяются фундаментные плиты переменной толщины с утоньшением в области краев плиты.

Плитные фундаменты традиционно являются наиболее простым конструктивным решением. Однако условия взаимодействия таких фундаментов с основанием при применении их для высотных зданий требуют тщательного расчетного обоснования из-за возмож­ного возникновения кренов, выпоров грунта из-под края фундамен­та, значительных изгибающих усилий в конструкции фундамента, потенциальной возможности потери общей устойчивости здания. При достаточно прочных и малодеформируемых грунтах плитные фундаменты могут применяться при больших (более 500 кПа) удельных нагрузках на основание, если расчетами доказано отсутст­вие сколько-нибудь значительного локального выпора грунта из-под фундамента и прогнозируются допустимые для нормальной экс­плуатации величины осадок. Для обеспечения перечисленных усло­вий могут применяться следующие мероприятия:

  • усиление грунтов в основании;
  • устройство консольных выпусков из фундаментной плиты за пределы контура здания;
  • устройство отсечных стенок, препятствующих выпору грун­та из-под фундаментной плиты;
  • организация деформационных швов;
  • разработка оптимальных схем передачи нагрузок на основа­ние, учитывающих очередность возведения зданий, входящих в комплекс строящегося объекта.

Плитные (сплошные) фундаменты проектируют в виде балочных или безбалочных, бетонных или железобетонных плит. Ребра балочных плит могут быть обращены вверх и вниз. Места пересечения ребер слу­жат для установки колонн каркаса. При большом заглублении сплошных фундаментов и необходимости обеспечить большую их жесткость фун­даментные плиты можно проектировать коробчатого сечения с разме­щением между ребрами и перекрытиями коробок помещений подвалов.

Фундаменты в виде коробчатого сечения применяются при возведении высотных зданий с большими нагрузками. Ребра такой плиты выполняются на полную высоту подземной части здания и жёстко соединяются с перекрытиями, образуя, таким образом, замк­нутые различной конфигурации сечения. Этот тип фундамента фор­мирует под зданием развитое подземное пространство, представляя собой нижнюю фундаментную плиту, наружные и внутренние вер­тикальные несущие конструкции (стены, колонны, стволы) и пере­крытия одного или нескольких подземных этажей. Количество уча­ствующих в работе перекрытий определяется по расчету.

Вместе с подземной частью такой плитный фундамент еще называется «плавающим». Применение его может оказаться эффективным при строительстве высотных зданий на основаниях, сложенных не столь прочными грунтами, которые рекомендуются для сплошных фундаментных плит. В то же время повышение этажно­сти подземной части высотного здания потребует как геотехниче­ского обоснования проектов, так и решения ограждающих конст­рукций котлованов.

Примером плитного фундамента под высотным зданием мо­жет служить фундамент Дрезднер банка во Франкфурте-на-Майне (1978 г.). Это офисное здание высотой 166 м (32 надземных этажа) в качестве фундамента имеет железобетонную плиту толщиной 4,0 м и общей площадью 3400 м 2 .

Плитный фундамент коробчатого типа был реализован при возведении высотного здания «Эдельвейс» (высота 175 м) на Да­выдковской улице в Москве.

Свайные фундаменты устраивают при строительстве зданий на слабых сильносжимаемых водонасыщенных грунтах, а также при пе­редаче на основание больших нагрузок от колонн и стен. Этот тип фундамента обеспечивает передачу нагрузки на более плотные грун­ты, расположенные на некоторой глубине. Свайный фундамент под высотным зданием предполагает устройство свайного поля чаще все­го из буронабивных или буроинъекционных свай различной конфигу­рации, объединенных сплошным массивным жестким ростверком, занимающим всю площадь пятна застройки возводимого здания. Ра­бота этого типа фундамента заключается в следующем: нагрузки от здания воспринимаются ростверком, распределяются на сваи и пере­даются на грунты основания за счет трения по боковой поверхности и сопротивления под нижним концом сваи (рисунок ниже). Классическим вариантом свайного фундамента для высотного здания является фун­дамент здания Коммерцбанка во Франкфурте-на-Майне: 111 свай длиной 45 м передают нагрузку от надфундаментной конструкции на слой прочного франкфуртского известняка.

При недостаточной несущей способности плита фундамента может быть эффективно дополнена мощными буронабивными опо­рами и превратиться в комбинированный свайно-плитный фундамент, повышающий взаимодействие здания с основанием. Однако применение такого конструктивного варианта допустимо лишь при отсутствии в основании высоко расположенных водоносных пластов или при осуществлении водопонижения.

Схемы работы свайного и комбинированного свайно-плитного (КСП) фундамента:

117

а – свайный фундамент; б – комбинированный свайно-плитный фундамент (КСП)

Комбинированный свайно-плитный фундамент (КСП) состоит из свай и железобетонной плиты, располагаемой при наличии подземных этажей у пола нижнего этажа. В отличие от свайного фундамента нагрузка в КСП-фундаменте воспринимается и плитой, и сваями одновременно (рисунок выше), причем доля нагрузки, воспри­нимаемая плитой или сваями, зависит от расстояния между сваями, которое обычно принимается равным 5-6 диаметрам. Примером применения комбинированного свайно-плитного фундамента явля­ется высотный жилой комплекс с подземной автостоянкой, проекти­руемый по ул. Краснобогатырская, вл. 28 в г. Москве, где приняты буронабивные сваи диаметром 1,2 м, длиной 17 м и фундаментная плита толщиной 1,8 м.

В зависимости от несущей способности и конструктивной схемы здания сваи размещают в один или несколько рядов или кус­тами, верхним концам последних укладывают монолитные или сборные железобетонные ростверки, а на кусты свай – оголовки.

Мировой опыт показывает, что случайный учет приведенных выше условий приводит к негативным явлениям. Так, в частности, в Шанхае, в центре города, где размещено значительное количество небоскребов, подстилающая порода начинает проседать под их тяжестью.

Надземные конструкции высотных зданий представляют собой наружные и внутренние стены, каркас, стволы и оболочки. Конструкции внутренних стен и колонн высотных зданий по существу технического решения мало отличаются от применяемых в зданиях высотой до 75 м. Наиболее существенное отличие заключается в увеличении их сечений как по требованиям увеличения несущей способности, так и по резко возросшим требованиям к пределу огнестойкости.

Для наиболее нагруженных элементов используются сталежелезобетонные конструкции с жесткой арматурой из прокатных или сварных элементов, дополненной гибкой арматурой по контуру.

Радикальное увеличение несущей способности колонн дает переход к колоннам из трубобетона. В таких колоннах стальная оболочка из круглой стальной трубы, заполненной бетоном высокой прочности, создает обжатие бетонного ядра, служа одновременно вертикальной и горизонтальной арматурой колонн. За счет вертикального и горизонтального обжатия бетонного ядра несущая способность колонны увеличивается вдвое (по сравнению с железобетонной колонны из бетона того же класса) с соответствующим уменьшением размеров поперечного сечения.

Колонны из трубобетона широко внедрены в строительство высотных зданий преимущественно в Юго-Восточной и Восточной Азии. Процент армирования трубобетонных колонн составляет 4-5%, не превышая, таким образом, процента армирования железобетонных колонн с жесткой арматурой.

Еще одним важным несущим элементом высотного здания являются междуэтажные перекрытия, отличающиеся большим разнообразием и зависящие от конструктивной системы несущего остова, этажности гадания, его габаритных размеров в плане и действующих на перекрытия вертикальных и, что особенно важно, горизонтальных нагрузок.

Конструктивные решения перекрытий подчинены требованиям пожарной безопасности, обеспечения их прочности и минимальной деформативности в плоскости (на горизонтальные), из плоскости (на вертикальные нагрузки и воздействия).

Первое требование ограничило вариантность конструкций перекрытий по их материалу: они должны быть несгораемыми и соответственно железобетонными. Основные варианты железобетонных перекрытий – монолитная плоская или ребристая плита, монолитная с оставляемой сборной железобетонной опалубкой, сборная из мно­гопустотных, сплошных или ребристых настилов. В зарубежной практике основным вариантом перекрытия является сталежелезобе­тонная конструкция из стальных балок и монолитной железобетон­ной плиты по профилированному стальному настилу, который слу­жит одновременно несъемной опалубкой и отчасти армированием плиты. Этот вариант конструкции перекрытия, как правило, проек­тируют с подвесным потолком, который скрывает в интерьере стальные балки и создает пространство для разводки многочислен­ных коммуникаций - электрических, вентиляционных и др.

В зависимости от конструктивной системы здания применяют те или иные виды наружных стен, которые проектируют несущими и ненесущими (навесными).

Несущие стены участвуют в работе конструктивной системы здания на все виды силовых воздействий и воспринимают перемен­ные по высоте здания ветровые нагрузки, включая их пульсационную составляющую.

Следует отметить, что наружные стены подвергаются в про­цессе строительства и эксплуатации значительным силовым и тем­пературно-климатическим воздействиям, поэтому их проектируют с учетом конструктивных систем высотных зданий. В каркасных сис­темах и их разновидностях с колоннами, расположенными по пери­метру, применяют навесные конструкции. Как правило, это легкие элементы с листовыми обшивками из стали или алюминия и сред­ним теплоизоляционным слоем.

В последнее время получили распространение навесные сте­новые панели с применением закаленного и армированного стекла. Такие конструкции при требуемой по условиям эксплуатации прочности и жесткости имеют малый вес, что весьма актуально для вы­сотных зданий, высота которых может достигать нескольких сотен метров, с точки зрения максимально возможного снижения нагрузок на несущие элементы каркаса, фундаменты и грунты основания.

Конструктивные решения высотных зданий – важнейший эле­мент проектирования. От выбора конструктивного решения зависит прежде всего безопасность пребывания в высотном здании, а также объемно-пространственные, архитектурно-планировочные и инженерно-технические решения. Правильный выбор конструкций позволит создавать современные безопасные и высокохудожественные высотные здания.

Основные принципы расчёта и конструирования плитных и свайных фундаментов высотных зданий

Портал НЭБ предлагает вам читать онлайн диссертацию (автореферат) на тему «Основные принципы расчёта и конструирования плитных и свайных фундаментов высотных зданий» , автора Шулятьев Олег Александрович Документ был издан в 2019 году.

Выражаем благодарность библиотеке «Российская государственная библиотека (РГБ)» за предоставленный материал.

Пожалуйста, авторизуйтесь
Вы можете добавить книгу в избранное после того, как авторизуетесь на портале. Если у вас еще нет учетной записи, то зарегистрируйтесь.
Ссылка скопирована в буфер обмена
Вы так же можете поделиться напрямую в социальных сетях
Вы запросили доступ к охраняемому произведению.

Это издание охраняется авторским правом. Доступ к нему может быть предоставлен в помещении библиотек — участников НЭБ, имеющих электронный читальный зал НЭБ (ЭЧЗ).

В связи с тем что сейчас посещение читальных залов библиотек ограничено, документ доступен онлайн. Для чтения необходима авторизация через «Госуслуги».

Для получения доступа нажмите кнопку «Читать (ЕСИА)».

Если вы являетесь правообладателем этого документа, сообщите нам об этом. Заполните форму.

Основные принципы расчёта и конструирования плитных и свайных фундаментов высотных зданий

Портал НЭБ предлагает вам скачать или читать онлайн диссертацию (автореферат) на тему «Основные принципы расчёта и конструирования плитных и свайных фундаментов высотных зданий» , автора Шулятьев Олег Александрович Документ был издан в 2020 году.

Выражаем благодарность библиотеке «Российская государственная библиотека (РГБ)» за предоставленный материал.

Пожалуйста, авторизуйтесь
Вы можете добавить книгу в избранное после того, как авторизуетесь на портале. Если у вас еще нет учетной записи, то зарегистрируйтесь.
Ссылка скопирована в буфер обмена
Вы так же можете поделиться напрямую в социальных сетях
Вы запросили доступ к охраняемому произведению.

Это издание охраняется авторским правом. Доступ к нему может быть предоставлен в помещении библиотек — участников НЭБ, имеющих электронный читальный зал НЭБ (ЭЧЗ).

В связи с тем что сейчас посещение читальных залов библиотек ограничено, документ доступен онлайн. Для чтения необходима авторизация через «Госуслуги».

Для получения доступа нажмите кнопку «Читать (ЕСИА)».

Если вы являетесь правообладателем этого документа, сообщите нам об этом. Заполните форму.

Основные принципы расчета и конструирования плитных и свайных фундаментов высотных зданий

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова - институт АО "НИЦ "Строительство" (НИИОСП им.Н.М.Герсеванова)

2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет

ВНЕСЕНЫ опечатки, опубликованные в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.

Опечатки внесены изготовителем базы данных

Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017 год; М.: Стандартинформ, 2019

Введение

Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

Разработан НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство": д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн. наук И.В.Колыбин - руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.

Изменение N 2 разработано институтом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский; исполнители - д-р техн. наук Н.З.Готман, д-р техн. наук Л.Р.Ставницер, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук О.А.Шулятьев, канд.техн. наук П.И.Ястребов) при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева.

Изменение N 3 к своду правил подготовлено АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский, д-р техн. наук Н.З.Готман, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.В.Сёмкин, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов, при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева).

1 Область применения

Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее - сооружений).

Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.

2 Нормативные ссылки

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент

ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент

ГОСТ 9463-2016 Лесоматериалы круглые хвойных пород. Технические условия

ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 19804-2012 Сваи железобетонные заводского изготовления. Общие технические условия

ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"

СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (с изменением N 1)

СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)

СП 38.13330.2018 "СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)"

СП 40.13330.2012 "СНиП 2.06.06-85 Плотины бетонные и железобетонные"

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 58.13330.2012 "СНиП 33-01-2003 Гидротехнические сооружения. Основные положения" (с изменением N 1)

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, 2, 3)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия"

СП 126.13330.2017 "СНиП 3.01.03-84 Геодезические работы в строительстве"

СП 131.13330.2012 "СНиП 23-01-99* Строительная климатология" (с изменениями N 1, 2)

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины и определения

Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 Общие положения

4.1 Основное назначение свай - это прорезка залегающих с поверхности слабых слоев грунта и передача действующей нагрузки на нижележащие слои грунта, обладающие более высокими механическими показателями. Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;

г) действующих на фундаменты нагрузок;

д) условий существующей застройки и влияния на нее нового строительства;

е) экологических требований;

ж) технико-экономического сравнения возможных вариантов проектных решений;

Основные принципы расчета и конструирования плитных и свайных фундаментов высотных зданий

КОНСТРУКЦИИ ФУНДАМЕНТОВ ВЫСОТНЫХ ЗДАНИЙ И СООРУЖЕНИЙ

Правила производства работ

Design of foundations of high-rise buildings and structures. Work rules

ОКС 93020, 91.040.01

Дата введения 2019-03-14

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Введение

Настоящий документ разработан в развитие СП 45.13330.2017 в соответствии с требованиями СП 22.13330.2016, СП 24.13330.2011, СП 267.1325800.2016 и содержит указания по производству работ при устройстве плитных, свайно-плитных и свайных фундаментов из буронабивных свай и баретт при возведении высотных зданий и сооружений.

Свод правил разработан коллективом АО "НИЦ "Строительство" (канд.техн. наук И.В.Колыбин, канд.техн. наук О.А.Шулятьев, д-р техн. наук С.С.Каприелов - руководители темы; д-р техн. наук Б.В.Бахолдин, д-р техн. наук В.И.Шейнин; канд.техн. наук А.М.Дзагов, канд. техн. наук Г.С.Кардумян, канд.техн. наук А.В.Шапошников, канд. техн. наук С.О.Шулятьев, П.И.Ястребов, О.А.Мозгачева).

1 Область применения

1.1 Настоящий свод правил устанавливает основные требования к производству работ при устройстве плитных, свайно-плитных и свайных фундаментов из буронабивных свай и баретт при возведении высотных зданий и сооружений.

1.2 Настоящий свод правил не распространяется на устройство фундаментов в районах со сложными инженерно-геологическими условиями, районах с вечной мерзлотой, на подрабатываемых территориях, на предприятиях с систематическим воздействием повышенных температур (более 50°С) и в других аналогичных условиях.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 310.2-76 Цементы. Методы определения тонкости помола

ГОСТ 3282-74 Проволока стальная низкоуглеродистая общего назначения. Технические условия

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 23616-79 Система обеспечения точности геометрических параметров в строительстве. Контроль точности

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические требования

ГОСТ 24316-80 Бетоны. Метод определения тепловыделения при твердении

ГОСТ 24379.0-2012 Болты фундаментные. Общие технические условия

ГОСТ 24379.1-2012 Болты фундаментные. Конструкция и размеры

ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 31384-2017 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

ГОСТ 31914-2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества

ГОСТ 33672-2016* Материалы и системы для защиты и ремонта бетонных конструкций. Требования к инъекционно-уплотняющим составам и уплотнениям трещин, полостей и расщелин

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 33762-2016, здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 33697-2015 (ISO 10414-2:2011) Растворы буровые на углеводородной основе. Контроль параметров в промысловых условиях

ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А500С и В500С для армирования железобетонных конструкций. Технические условия

ГОСТ Р 56592-2015 Добавки минеральные для бетонов и строительных растворов. Общие технические условия

ГОСТ Р 57345-2016 Бетон. Общие технические условия

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)

СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты" (с изменением N 1)

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, N 2, N 3)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3)

СП 126.13330.2017 "СНиП 3.01.03-84 Геодезические работы в строительстве"

СП 130.13330.2011 "СНиП 3.09.01-85 Производство сборных железобетонных конструкций и изделий"

СП 246.1325800.2016 Положение об авторском надзоре за строительством зданий и сооружений

СП 250.1325800.2016 Здания и сооружения. Защита от подземных вод

СП 267.1325800.2016 Здания и комплексы высотные. Правила проектирования

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены термины по СП 45.13330, а также следующие термины с соответствующими определениями:

3.1 контроль акустическим методом (соник): Акустический метод неразрушающего контроля изготовления (сплошности) буронабивных свай, баретт или иных фундаментных конструкций в условиях строительной площадки, а также для определения длины свай.

3.2 массивный монолитный фундамент: Фундамент здания, сооружаемый в виде жесткого компактного железобетонного массива сплошного сечения под небольшие в плане тяжелые сооружения (башни, мачты, дымовые трубы, доменные печи, устои мостов и т.п.) с модулем поверхности () менее 2 м.

3.3 сплошной (плитный) монолитный фундамент: Фундамент здания, сооружаемый под всей его площадью, представляющий собой сплошную плиту, выполненную из монолитного железобетона.

3.4 буронабивная свая: Свая, устраиваемая методом бурения, в которой проводится бетонирование методом вертикально перемещаемой трубы (ВПТ).

3.5 экзотермия бетона: Выделение тепла при твердении бетона вследствие гидратации цемента.

4 Общие указания

4.1 Общие положения

4.1.1 При устройстве фундаментов высотных зданий и сооружений следует выполнять:

- подготовительные работы (см. 4.1.3);

- возведение фундаментов (см. разделы 7, 8, 9);

- контроль качества выполнения работ (см. раздел 10);

- оценку соответствия выполненных работ проектной документации и техническим регламентам (разделы 10, 11).

4.1.2 Устройство фундаментов следует проводить в соответствии с проектной и рабочей документацией, проектом организации строительства (ПОС), проектом производства работ (ППР), в том числе технологическими картами (ТК) и технологическими регламентами (ТР), действующими нормативными документами.

4.1.3 Подготовительные работы следует выполнять в соответствии с требованиями СП 45.13330.2017 (пункт 4.12). Подготовительные работы должны включать:

Читайте также: