Основные методы восстановления и усиления фундаментов эксплуатируемых зданий

Обновлено: 14.05.2024

Методы реконструкции и усиления оснований и фундаментов

Повышение несущей способности оснований и фундаментов при реконструкции может быть обеспечено за счет:

усиления и изменения конструкции или размера фундамента;

закрепления грунтов основания инъктированием;

Укрепление и усиление фундаментов проводят в следующих случаях:

при снижении прочности материала фундамента в результате его разрушения, физического и химического выветривания или износа;

при реконструкции здания, вызывающей увеличение нагрузок или появление дополнительных воздействий, например, вибрации от оборудования;

при новом строительстве рядом расположенного здания, подземного сооружения, прокладке коммуникаций и т.д.

при появлении деформаций в конструкциях, общем крене здания.

2.3. Используют следующие методы усиления фундаментов:

укрепление тела фундамента путем инъекций, которое применяется при небольших разрушениях материала фундамента и незначительном повышении нагрузок на фундаменты;

устройство обойм без уширения или с уширением подошвы фундамента;

подведение конструктивных элементов под существующие фундаменты - плит, столбов, стен, осуществляемое при необходимости повышения несущей способности основания или углубления фундаментов;

подведение новых фундаментов с использованием, главным образом, свай различный видов - вдавливаемых, буронабивных, буроинъекционных, бурозавинчивающихся и др., которое осуществляется при значительном увеличении нагрузок и значительной глубине залегания несущего слоя грунта;

переустройство столбчатых фундаментов в ленточные и ленточных в плитные;

устройство щелевых (шлицевых) фундаментов.

Укрепление оснований зданий и подземных сооружений производится в следующих случаях:

при ослаблении оснований в период их эксплуатации, в результате чего происходят значительные общие и неравномерные осадки, а также крены зданий;

при реконструкции зданий и подземных сооружений, когда происходит увеличение нагрузок и (или) перераспределение их между несущими конструкциями.

Инъекционное закрепление грунтов различными растворами применяют для:

усиления оснований при углублении фундаментов;

устройства плиты под зданием из закрепленного грунта;

цементации зоны контакта подошвы фундамента с грунтом;

устройства противофильтрационных завес и пристенной наружной гидроизоляции подземных конструкций.

Примеры решений по усилению фундаментов:


Рис. 1. Усиление фундамента под наружную стену с использованием ж\б вставок и защита стены фундамента обмазочной гидроизоляцией.


Рис. 2. Усиление фундамента под внутреннюю стену с использованием ж\б вставок и защита стены фундамента обмазочной гидроизоляцией.


Рис. 3. Усиление фундамента под наружную стену с омоноличиванием уступа.


Рис. 4. Усиление фундамента под внутреннюю стену с омоноличиванием уступа.


Рис. 5.Фрагмент плана усиления фундамента с омоноличиванием уступа.

Рис. 6. Усиление фундамента под наружную стену с устройством сплошной ж/б обоймы.


Рис. 7. Усиление фундамента под наружную стену с устройством столбов и установки ст. балок.


Рис. 7. Усиление фундамента под стену с устройством ростверков, установки ст. балок и буронабивных свай. 1 – стальная прокатная балка; 2 – ж/б ростверк; 3 – буронабивные сваи.


Рис. 7. Усиление основания под подошву фундамента с нагнетанием составов усиления. 1 – полость нагнетания составов усиления; 2 – трубопровод; 3 –компрессорная установка.

Профессор Безбородов Л.В.

Ст. преп. Безбородов Е.Л.

Л. 6.Стены гражданских зданий, колонны и другие вертикальные несущие элементы. Методы усиления и капитального ремонта.

В процессе длительной эксплуатации, а также в результате внешних воздействий (силовых и не силовых) в стенах, колоннах и других вертикальных несущих элементах возникают трещины.

Повреждения в конструкции разделяются в зависимости от причин их возникновения на две группы: от силовых воздействий и от воздействия внешней среды. Последняя группа повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность

В зависимости от имеющейся поврежденности и надежности, техническое состояние конструкций разделяется на 5 категорий: нормальное, удовлетворительное, не совсем удовлетворительное, неудовлетворительное, аварийное.

Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) go=gm·gc·gf·gnконструкций в процессе эксплуатации, гдеgm- коэффициент надежности по материалу,gc- коэффициент условий работы,gf- коэффициент надежности по нагрузке,gn- коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации J=g/goи поврежденность конструкцииe= 1 -J, гдеg- фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения Jиe, а также приближенная стоимостьСремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в табл.1.

Оценка технического состояния стальных, железобетонных, каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 2-5. При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

Категории технического состояния

Категория технического состояния

Описание технического состояния

e = 1 - J

Нормальное состояние. Отсутствуют видимые повреждения, свидетельствующие о снижении несущей способности. Необходимости в ремонтных работах нет.

Удовлетворительное состояние. Незначительное снижение несущей способности и долговечности конструкций. Требуется устройство антикоррозионного покрытия, затирка трещин и т.п.

Не совсем удовлетворительное состояние. Существующие повреждения свидетельствуют о снижении несущей способности конструкции. Требуется текущий ремонт.

Неудовлетворительное состояние. Существующие повреждения свидетельствуют о непригодности к эксплуатации конструкции. Требуется капитальный ремонт с усилением конструкций. До проведения усиления необходимо ограничение нагрузок.

Аварийное состояние. Требуется немедленная разгрузка конструкции и устройство временных креплений, замена аварийных конструкций.

Оценка состояния стальных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

Местами разрушено антикоррозионное покрытие. На отдельных участках коррозия отдельными пятнами с поражением до 5 % сечения. Местные погнутости от ударов транспортных средств и другие повреждения, приводящие к ослаблению сечения до 5 %

Прогибы изгибаемых элементов превышают 1/150 пролета

Пластинчатая ржавчина с уменьшением площади сечения несущих элементов до 15 %. Местные погнутости от ударов транспортных средств и другие механические повреждения, приводящие к ослаблению сечения до 15 %. Погнутость узловых фасонок ферм.

Прогибы изгибаемых элементов более 1/75 пролета. Потеря местной устойчивости конструкций (выпучивание стенок и поясов балок и колонн). Срез отельных болтов или заклепок в многоболтовых соединениях.

Коррозия с уменьшением расчетного сечения несущих элементов до 25 %. Трещины в сварных швах или в околошовной зоне. Механические повреждения, приводящие к ослаблению сечения до 25 %. Отклонения ферм от вертикальной плоскости более 15 мм. Расстройство узловых соединений от проворачивания болтов или заклепок.

Прогибы изгибаемых элементов более 1/50 пролета. Потеря общей устойчивости балок или сжатых элементов. Разрыв отдельных растянутых элементов ферм. Наличие трещин в основном материале элементов.

Коррозия с уменьшением расчетного сечения и несущих элементов более 25 %.

Расстройство стыков со взаимным смещением опор.

Оценка состояния железобетонных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

Волосяные трещины (до 0,1 мм)

Имеются отдельные раковины, выбоины.

Трещины в растянутой зоне бетона не превышают 0,3 мм

На отдельных участках с малой величиной защитного слоя проступают следы коррозии распределительной арматуры или хомутов. Шелушение ребер конструкций. На поверхности бетона мокрые или масляные пятна

Трещины в растянутой зоне бетона до 0,5 мм.

Продольные трещины в бетоне вдоль арматурных стержней от коррозии арматуры. Коррозия арматуры до 10 % площади стержней. Бетон в растянутой зоне на глубине защитного слоя между стержнями арматуры легко крошится. Снижение прочности бетона до 20 %.

Ширина раскрытия нормальных трещин в балках не более 1 мм и протяженность трещин более 3/4 высоты балки. Сквозные нормальные трещины в колоннах не более 0,5 мм.

Прогибы изгибаемых элементов более 1/75 пролета.

Отслоение защитного слоя бетона и оголение арматуры. Коррозия арматуры до 15 %. Снижение прочности бетона до 30 %.

Ширина раскрытия нормальных трещин в балках более 1 мм при протяженности трещин более 3/4 их высоты. Косые трещины, пересекающие опорную зону и зону анкеровки растянутой арматуры балок. Сквозные наклонные трещины в сжатых элементах. Хлопающие трещины в конструкциях, испытывающих знакопеременные воздействия. Выпучивание арматуры в сжатой зоне колонн и балок. Разрыв отдельных стержней рабочей арматуры в растянутой зоне, разрыв хомутов в зоне наклонной трещины. Раздробление бетона в сжатой зоне. Прогибы изгибаемых элементов более 1/50 пролета при наличии трещин в растянутой зоне более 0,5 мм.

Оголение всего диаметра арматуры. Коррозия арматуры более 15 % сечения. Снижение прочности бетона более 30 %. Расстройство стыков.

Оценка состояния каменных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

Трещины в отдельных кирпичах, не пересекающие растворные швы.

Волосные трещины, пересекающие не более двух рядов кладки (длиной 15 - 18 см).

Волосные трещины, при пересечении не более четырех рядов кладки при числе трещин не более четырех на 1 м ширины (толщины) стены, столба или простенка.

Вертикальные и косые трещины (независимо от величины раскрытия), пересекающие не более двух рядов кладки.

Размораживание и выветривание кладки, отслоение облицовки на глубину до 15 % толщин.

Вертикальные и косые трещины в несущих стенах на высоту не более четырех рядов кладки. Образование вертикальных трещин между продольными и поперечными стенами, разрывы или выдергивания отдельных стальных связей и анкеров крепления стен к колоннам и перекрытиям. Местное (краевое) повреждение кладки на глубину до 2 см под опорами ферм, балок и перемычек в виде трещин и лещадок; вертикальные трещины по концам опор, пересекающие не более двух рядов кладки.

Размораживание и выветривание кладки, отслоение облицовки за глубину до 25 % толщины. Наклоны и выпучивание стен и фундаментов в пределах этажа не более чем на 1/6 их толщины. Смещение плит перекрытий на опорах не более 1/5 глубины заделки, но не более 2 см.

Вертикальные и косые трещины в несущих стенах и столбах на высоту более четырех рядов кладки. Отрыв продольных стен от поперечных в местах их пересечения, разрывы или выдергивания стальных связей и анкеров, крепящих стены к колоннам и перекрытиям. Повреждение кладки под опорами ферм, балок и перемычек в виде трещин, раздробления камня или смещения рядов кладки по горизонтальным швам на глубину более 2 см; образование вертикальных или косых трещин, пересекающих более двух рядов кладки.

Размораживание и выветривание кладки на глубину до 40 % толщины. Наклоны и выпучивание стен в пределах этажа на 1/3 их толщины и более смещение (сдвиг) стен, столбов и фундаментов по горизонтальным швам.

Смещение плит перекрытий на опорах более 1/5 глубины заделки в стене.

Оценка состояния деревянных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

Волосные усадочные трещины в конструкциях.

Ослабление креплений отдельных болтов, хомутов, скоб.

Большие щели между досками наката и балками перекрытия.

Продольные трещины в конструкциях. Сдвиги и отслоения в швах и в узлах конструкций заметные на глаз и частичные зазоры в сплоченных дощатых пакетах, между отдельными рабочими сдвигающимися поверхностями более 2 мм. Прогибы изгибаемых элементов превышают предельные значения СНиП II-26-76.

Следы протечек, мокрые пятна в конструкциях. Гниль в мауэрлате и в концах стропильных ног, снижающая прочность до 15 %.

Глубокие трещины в элементах. Трещины, в работающих на скалывание торцах по ширине более 25 % от толщины элемента.

Сильное обмятие и зазоры более 3 мм в рабочих поверхностях врубок. Смятие древесины вдоль волокон по линии болтов и нагелей на 1/2 их диаметра.

Потеря местной устойчивости элементов конструкций.

Прогибы изгибаемых элементов более 1/75 пролета.

Гниль в местах заделки балок в наружные стены. Гниль в мауэрлате, стропилах, обрешетке, накате, снижающая прочность до 25 %.

Прогибы изгибаемых элементов более 1/50 пролета. Быстроразвивающиеся деформации. Сквозные трещины в накладках стыков по линии болтов ферм.

Надломы и разрушения отдельных конструкций.

Потеря устойчивости конструкций (поясов ферм, арок, колонн).

Поражение гнилью и жучком строительных конструкций, приводящих к снижению их прочности более 25 %.

Примечание. Оценка повреждений стальных элементов металло-деревянных конструкций производится по табл.2.

Основные методы усиления конструкций


-

Рис. 1. Усиление простенков стальной обоймой: 1- кирпичный простенок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла.


Рис. 2. Сечение простенка: 1- кирпичный простенок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла.


Рис. 3. Усиление колонны (столба) стальной обоймой: 1- балка; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла; 4 – обрез фундамента.

Рис. 3. Опорный узел колонны (столба)при усилении стальной обоймой: 1- опорный уголок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла; 4 – обрез фундамента; 5 – опорная стальная пластина

Профессор Шарапенко В.Г.

Ассист. Чабар М.

Устройство дополнительных входных узлов при перепрофилировании помещений нижних этажей (жилые, нежилые помещения).

При реконструкции зданий производится тщательный анализ возможного сохранения или разборки имеющихся пристроек, которые в большинстве случаев усложняют конфигурацию плана здания (сооружения).

В большинстве случаев наиболее экономичное и удобное решение может быть достигнуто именно за счет упрощения очертаний плана. Следует стремиться к улучшению планировочной структуры перепрофилированного здания, наиболее полно отвечающей его новому назначению; по возможности надо избегать темных помещений случайного назначения, следует улучшать естественное освещение основного корпуса.

Одним из важнейших планировочных узлов в здании является комплекс входных помещений – входной узел. При реконструкции возникают различные варианты: реконструкция жилого здания с перепрофилированием назначения первого этажа, реконструкция здания общественного назначения. В первом случае целесообразность перепрофилирования жилых помещений 1 этажа диктуется существенным снижением потребительской ценности жилья, размещаемого на 1 этаже, недостаточной инсоляцией, отсутствием летних помещений (балконов, лоджий).

Лифты и мусоропроводы устраиваются в зданиях высотой более 5 этажей или в случаях, когда уровень пола последнего этажа превышает 13,5м расстояния до площадки перед входом в здание. Лифты устанавливают в соседних с лестницами помещениях квартир в глухих шахтах из кирпича или железобетона. Лифты размещают также в специальных пристройках либо снаружи здания (каркасно-подвесные лифты). При широких пролетах между лестничными маршами лифты располагают в шахтах, огражденных металлическими сетками. В пристраиваемых объемах целесообразно устройство лифтов, а также мусопроводов с мусорокамерой размером в плане 2х3м (на 1 этаже с организацией удобного подхода к ней). Такое решение целесообразно при ориентации на дворовой фасад.

При размещении на первых этажах помещений общественного назначения необходимо четкое разграничение входов в здание, ведущих на жилые этажи и

входов в нежилую часть (1 этаж). При этом входы в жилую часть следует устраивать со стороны двора, а входы в нежилую часть – со стороны улицы, с организацией удобных подходов и подъездов, автостоянки (дневной).

При входе в общественное здание (помещение) должен быть предусмотрен вестибюль. Пространство вестибюля может быть организовано демонтажем ряда перегородок (ненесущих!), имеющихся в бывших квартирах. Небольшие помещения могут быть основаны при входе (или вновь образованы) для размещения служб охраны. Площадь вестибюля принимается не менее 18м 2 .

Технологии восстановления и усиления фундаментов

Важными параметрами,определяющими несущую способность здания, являются состояние и степень износа фундаментов. Косвенным параметром может служить осадка фундаментов. Сама по себе однородная осадка фундаментов не приводит к дополнительным напряжениям в конструктивных элементах, в то время как неоднородная осадка приводит к возникновению концентраций напряжений, превышающих прочностные характеристики стен, перекрытий и других несущих элементов.

Величина возникновения неоднородных осадок является следствием неоднородной потери несущей способности грунта в результате размыва грунтовыми или техногенными водами оснований в локальных зонах, возведения зданий вблизи существующих, нарушения условий их эксплуатации и т.п.

При достаточно однородной структуре грунтов и нормальной эксплуатации зданий величина осадки носит экспоненциальный характер. Осадку в момент времени t определяют по зависимости где S К - конечная осадка; е- основание натурального логарифма; x - коэффициент, зависящий от свойств грунтов основания; t -время эксплуатации.

Зная значения осадок,накопившихся за время t НП , можно определить конечную осадку , где t НП- время от начала строительства до начала геодезических наблюдений.

На рис. 6.13 приведен график развития осадок фундамента во времени. S НП - осадка,накопившаяся до начала наблюдений; S ' H - осадки в момент наблюдения.


Рис. 6.13. График развития осадок фундамента во времени
1 -при нормальной эксплуатации здания; 2 - возникновение просадок при замачивании отдельных участков основания; 1*, 2*-нагрузки на фундамент при нормальной эксплуатации и замачивании; [ S]- допустимая осадка

На характер осадок существенное влияние оказывает пространственная жесткость коробки здания (стен). На жесткость стен влияют такие геометрические характеристики, как отношение длины L и высоты Н. Этот показатель принят нормами за исходный в определении коэффициента условий работы здания при расчете давления на основание фундаментов.

Показатель жесткости здания имеет определяющее значение при выборе метода реконструктивных работ. Так, при среднем значении для зданий массовой постройки при надстройке зданий старого фонда в процессе реконструкциипоказатель - снижается до 1,5 и менее, что позволяет увеличить давление на основание на 20 %. В то же время с увеличением этажности возрастает продольная жесткость стен.

В результате обследования более400 объектов было установлено, что для зданий старой постройки величина осадок фундаментов в 70,6 % случаев не превышает 0,7 R . Абсолютная величина осадок как до надстройки, так и после значительно меньше нормативных значений. Это обстоятельство позволяет априорно принимать решение по надстройке зданий при их реконструкции.

Повышение несущей способности фундаментов как одних из основных конструктивных элементов зданий возможно несколькими технологическими и конструктивными приемами. Проектирование усиления фундаментов эксплуатируемых, а также реконструируемых зданий значительно сложнее проектирования новых конструкций. Это объясняется тем, что в каждом конкретном случае следует учитывать условия эксплуатации здания,причины проявления различных деформаций, стесненные условия производства работ.

Методы усиления и реконструкции фундаментов предполагают восстановление несущей способности; усиление за счет увеличения площади опирания; подведение под существующие фундаменты таких сборных конструктивных элементов, как плиты, столбы, сваи; усиление буроинъекционными и корневидными сваями и другие приемы. Каждый вариант технического и технологического решения должен быть адаптирован к конкретным условиям реконструируемого здания на основании результатов натурных обследований.

Наиболее распространенные дефекты фундаментов, их устранение и усиление выполняются следующими приемами.

Усиление кладки фундаментов цементацией. Технология предусматривает при образовании пустот в швах кладки и разрушении материала фундаментов осуществить инъекцию цементного раствора. Для этой цели освобождается поверхность фундамента, устраиваются инъекционные каналы и с помощью инъектора закачиваются цементная суспензия или раствор в тело фундамента.

Способ широко апробирован и применяется при незначительных разрушениях конструкций фундаментов.

При средней степени разрушения материала фундамента используют частичную замену кладки. Это весьма трудоемкий процесс, требующий вскрытия поверхностей фундамента, удаления разрушенных элементов кладки и ее восстановления. Поданным практического опыта,трудозатраты на восстановление 1 м 3 кладки фундамента в 200-300 раз выше, чем при новом строительстве.

При значительных разрушениях материала фундамента последний забирается в обойму без уширения подошвы. В качестве обоймы выступают металлические каркасы в виде уголков или арматурной стали, которые в последующем обетонируются.

При увеличении нагрузки на фундамент и недостаточной его несущей способности производится устройство обойм с уширением подошвы фундамента. Варианты уширения и технология производства работ зависят от конкретных условий площадки.

Подведение свай под подошву фундамента осуществляется в случаях, когда при небольшой глубине заложения фундамента невозможно осуществить его уширение. Как правило, в этом случае используются составные сваи.

Усиление буронабивными сваями принимается при значительном увеличении нагрузок и большой толще слабых грунтов основания.

Устройство корневидных буроинъекционных свай производится при невозможности частичной разборки и усиления фундаментов в стесненных условиях строительства, при значительном увеличении нагрузок и наличии слабых грунтов основания.

Раздел 10. Реконструкция фундаментов и усиление оснований

При реконструкции предприятий, связанной с их техническим перевооружением, при капитальном ремонте зданий, прокладке подземных коммуникаций, возведении новых фундаментов около существующих сооружений, а также при развивающейся во времени недопустимой осадке возникает необходимость в оценке степени обеспечения фундаментами дальнейшей нормальной эксплуатации сооружений, а в соответствующих случаях – в усилении и переустройстве фундаментов. Основными причинами, приводящими к этому, являются: увеличение нагрузки на фундаменты, разрушение кладки фундамента или снижение его гидроизолирующих качеств, ухудшение условий устойчивости оснований и увеличение деформативности грунтов, непрерывное развитие недопустимых перемещений.

10.2. Обследование фундаментов и оснований.

Для принятия рационального решения по усилению и реконструкции фундаментов производится тщательное обследование оснований и фундаментов.

Весь комплекс работ по обследованию фундаментов и оснований разделяется на следующие этапы:

I этап – сбор и обобщение сведений по строительству и эксплуатации здания или сооружения и детальное изучение технической документации.

II этап – обследование окружающей местности и надземных конструкций здания или сооружения. Осмотр окружающей местности позволяет выяснить причину деформаций. Обследование надземных конструкций позволяет выявить характер деформаций. Обследование надземных конструкций позволяет выявить характер деформаций.

Обследования здания – внешний осмотр конструкций, выполнение необходимых замеров, отбор образцов для определения прочности, определение величины осадки деформированных зданий путём нивелирования.

III этап – обследование фундаментов и грунтов основания зданий и сооружений.

Обследование фундаментов производится из шурфов, число и размер которых определяются размерами и конфигурацией объекта, грунтовыми условиями и целями обследования.

Шурфы закладываются рядом с обследуемыми фундаментами. Если здание с подвалом, то шурфы закладывают, как правило, внутри здания с целью уменьшения объёма земляных работ. При обследовании фундаментов уточняют тип фундамента, форму, размеры в плане, глубину заложения; выявляют выполненные ранее подводки и усиления, дефекты кладки; определяют прочность тела фундамента. У свайных фундаментов замеряется диаметр или размеры поперечного сечения свай, шаг, количество свай на 1 м. длины.

Прочность материала фундаментов определяется механическими и неразрушающими способами.

Механический способ определения прочности материала фундаментов и стен подвалов основывается на измерении величины и определении характера следа, оставленного зубилом или молотком на поверхности конструкции. Прочность материала фундаментов может быть определена также с помощью шарикового молотка Физделя и эталонного молотка Кошкарова.

Более предпочтительными являются неразрушающие методы определения прочностных характеристик фундаментов. Наибольшее распространение получил акустический метод, основанный на определении времени прохождения акустического сигнала между датчиком и приёмником в испытуемом материале.

Для инженерно-геологической оценки грунтов основания назначаются разведочные скважины. В лабораторных и полевых условиях в соответствии с действующими ГОСТами определяют все физико-механические свойства грунтов.

10.3. Основные методы усиления фундаментов и оснований.

10.3.1. Методы усиления грунтов основания сводятся в основном к повышению их несущей способности путём искусственного упрочнения: силикатизации и электросиликатизации грунтов, термическим обжигом, устройством песчаных подушек под новые фундаменты.

10.3.2. Основными методами усиления фундаментов зданий и сооружений являются цементация, устройство бетонных и железобетонных обойм, укрепление фундаментов с расширением подошвы, усиление буроинъекционными сваями и призматическими сваями.

Цементация фундаментов выполняется при недостаточной прочности кладки. Для этого в теле фундамента шлямбуром или перфоратором пробивают отверстия диаметром 25 мм. и закладывают металлические трубки, через которые нагнетают цементный раствор состава 1:1 (цемент–вода) под давлением 0,3…0,5 МПа.





Укрепление фундамента бетонными и железобетонными обоймами применяется в том случае, когда цементацию произвести невозможно. Минимальная ширина бетонной обоймы должна составлять 15 см., чаще всего ее принимают равной 20…30 см. Железобетонная обойма применяется при неудовлетворительном состоянии фундаментов или стен на отдельных участках.


Укрепление фундамента с расширением подошвы осуществляют с помощью как односторонних, так и двусторонних банкет.

Подошву фундаментов уширяют в целях передачи давления на большую площадь. Если уширения делают без обжатия грунта основания, то они вступают в работу лишь при увеличении нагрузки, когда появляются дополнительные осадки. Уширенные части фундамента воспринимают только часть увеличивающейся нагрузки. Для уменьшения развития дополнительных осадок уширенного фундамента грунт под уширениями предварительно обжимают с помощью
домкратов.

Часто фундаменты усиливают путем пересадки их на сваи. Для этого либо делают буроинъекционные сваи – бурят через фундамент наклонные скважины диаметром 15…25 см, в которые под значительным давлением нагнетают бетонную смесь, либо вдавливают звенья железобетонных свай под фундамент домкратами.

10.4. Подводка новых фундаментов.

Подводку новых фундаментов производят при разработке грунта ниже подошвы существующих фундаментов, а также для прекращения недопустимых деформаций зданий и сооружений.

Свайные фундаменты усиливают в случае их недостаточной несущей способности путём задавливания свай с опиранием их на плотные грунты или наращиванием существующих свай дополнительными секциями. Чаще всего усиление свайных фундаментов производится путём погружения дополнительных свай вне контура фундамента (выносные сваи) с передачей на них нагрузки от реконструируемых фундаментов (рис. ).

Фундаменты мелкого заложения также можно пересаживать на набивные сваи.

10.5. Устройство фундаментов вблизи существующих сооружений.

10.5.1. Причины, приводящие к деформациям существующих сооружений.

Существующие здания при возведении около них фундаментов часто получают недопустимые деформации. Причин этому несколько:

1) выпор грунта в стороны котлована (рис.93, а);

2) вымывание грунта грунтовой водой из-под существующих фундаментов при открытом водоотливе из котлована (рис.93, б);

3) уплотнение несвязного грунта динамическими воздействиями при забивке шпунта, свай, раздробление шар – или клин – молотом мерзлого грунта или старых фундаментов;

4) промораживание грунта под фундаментом (рис.93, в);

5) смещение шпунта в сторону котлована (рис.93, г);

6) уплотнение грунтов под действием нагрузок, передаваемых новым сооружением на основание (рис.93, д);

7)
развитие отрицательного трения, действующего на сваи.

10.5.2. Меры по уменьшению влияния новых фундаментов на существующие.

Планировочные мероприятия направлены на то, чтобы новое здание было отнесено от существующих на безопасное расстояние – обычно на 10…20 м. Такое новое здание может рассматриваться как «отдельно стоящие» и специфических проблем с фундаментами не возникает.

Архитектурное решение может упростить задачу, если новое здание в зоне примыкания тем или иным способом облегчено, допустим, в зоне примыкания располагают блок, высота которого меньше соседнего, новое здание облегчено проездами и т.п.

Конструктивные мероприятия являются основными. Их следует разбить на три группы: 1) новое здание строится на фундаментах мелкого заложения, несмотря на то, что условие не удовлетворено ( дополнительная осадка; предельно допустимая величина дополнительной осадки); 2) новое здание возводится на свайных фундаментах; 3) под новым зданием предусмотрено строительство глубокого подземного объёма (гаража, склада и т.д.).

В случае использования фундаментов мелкого заложения рекомендуется применять следующие мероприятия: консольное примыкание, разъединительный шпунтовый ряд, превентивное усиление фундаментов соседних домов с пересадкой их на сваи усиления. Консольное примыкание частично снижает уплотнение грунта под фундаментами существующих зданий при возведении около них новых тяжёлых сооружений.

Практически полного исключения влияния загружения основания достигают разделением его шпунтом, погружаемым глубже активной зоны.

Методы усиления оснований и фундаментов

Усиление оснований и фундаментов осуществляется при реконструкции зданий и сооружений для предотвращении осадок ниже допустимых. Описаны основные способы усиления фундаментов.

Под реконструкцией фундаментов зданий и сооружений понимается выполнение работ, проводимых в связи с изменением геометрических размеров зданий, возрастанием постоянных или временных нагрузок, устройством подземных сооружений в пределах габаритов здания, а также восстановлением (усилением) несущей способности оснований и фундаментов, утраченной вследствие суффозии, колебания уровня подземных вод и др., а также возникшими деформациями конструкций и их износом.

Надежность работы реконструируемых зданий обеспечивается совместной работой системы «основание, фундамент - подземные конструкции». Дефекты в работе сооружений - следствие полного или частичного нарушения надежного взаимодействия элементов этой системы:

суффозионные процессы, а также колебания УПВ (уровня подземных вод), вызванные изменением гидрогеологических условий в районе расположения здания, атмосферными водами, аварийными и систематическими утечками из коммуникаций;

проявление карстовых деформаций;

Повреждения оснований и фундаментов возникают за счет природных и техногенных процессов, за счет нарушений требований нормативных документов, допускаемых при изысканиях, проектировании, строительстве и эксплуатации. Основными причинами повреждений являются:

снижение прочностных и деформационных свойств грунтов при увлажнении, а также проявление процесса набухания и пучения грунтов;

проведение земляных работ в пределах здания или вблизи него;

увеличение нагрузок на основание, сопровождаемое появлением эксцентриситета их приложения;

вибрационные или динамические воздействия как внутренние, так и внешние.

При реконструкции фундаментов отсутствует возможность применения типовых схем усиления. Схемы усиления должны применяться в каждом конкретном случае в зависимости от нагрузок на фундаменты, конструктивных особенностей здания (наличие подвала и других подземных сооружений), инженерно-геологических и гидрогеологических условий и др.

При этом применяемые методы усиления оснований и фундаментов должны обеспечивать их совместную работу с существующими фундаментами.

Следует учитывать, что работы по усилению оснований и изменению конструкций фундаментов могут вызвать при их осуществлении деформации оснований и осадки фундаментов.

Повышение несущей способности оснований и фундаментов при реконструкции может быть обеспечено за счет:

изменения конструкции или размера фундамента;

усиления физико-механических характеристик грунтов основания

предварительной передачи давления на основание (обжатия).

Усиление фундаментов мелкого заложения может быть осуществлено путем их уширения и углубления подведением дополнительных конструктивных элементов. Такими элементами могут быть плиты, столбы или сплошные стены.

На участках длиной 1-2 м грунт под фундаментом удаляют и на месте изготавливают железобетонную монолитную плиту или монтируют заранее заготовленные железобетонные элементы. После обжатия грунта в основании гидравлическими домкратами и подклинки плиты, промежуток между плитой и подошвой старого фундамента заполняют пластичным бетоном с тщательным уплотнением.

В ряде случаев ленточный фундамент усиливают отдельными столбами. В этих случаях старый фундамент может быть усилен рандбалками.

Для переустройства столбчатого фундамента в ленточный между существующими фундаментами устраивается железобетонная стенка в виде перемычки. При необходимости устройства подвала перемычка делается на всю высоту столбчатых фундаментов.

Переустройство ленточных или столбчатых фундаментов в плитные производится путем подведения концов плит под существующие фундаменты, произведя расчет на скалывание зоны опирания ленточного или столбчатого фундамента и конца плиты.

В практике реконструкции возможно переустройство столбчатых фундаментов в перекрестно-ленточные и плитные, а также перекрестно-ленточных в плитные.

Необходимость устройства подвала, подземного сооружения, переноса подошвы фундамента на менее сжимаемые слои грунта и пр. становится причиной проведения работ по заглублению фундаментов реконструируемого здания.

Применения свай для усиления фундаментов мелкого залегания

Для усиления фундаментов мелкого залегания могут быть использованы сваи различных конструкций: буронабивные, буровые, буроинъекционные, завинчиваемые, а также конструкции «стена в грунте».

Буронабивные и буровые сваи используются при увеличении нагрузок и большой толщине слабых грунтов в основании; в сложных условиях реконструкции.

Буроинъекционные сваи используются в тех же условиях, а также при невозможности частичной разборки существующих фундаментов и в стесненных условиях строительства.

Могут быть применены сваи из завинчиваемых стальных труб диаметром 200-400 мм с приваренной арматурной спиралью, а также вдавливаемые сваи. Эти два вида свай позволяют избежать вибрационных воздействий на фундаменты и грунты основания при проведении работ по усилению.

Иногда вместо монтажа тяжелых загрузочных устройств оказывается удобнее использовать стены самого реконструируемого сооружения. На этом принципе основано вдавливание составных железобетонных свай типа «Мега» отдельными элементами.

С помощью буроинъекционных свай можно проводить усиление фундаментов, не разрабатывая котлованы и не нарушая естественной структуры грунтов основания. Наличие малогабаритного оборудования позволяет вести работы изнутри здания.

При реконструкции действующих сооружений в стесненных условиях и особенно в условиях противопоказания динамических воздействий целесообразно применение щелевых фундаментов (барретов), устраиваемых методом «стена в грунте» в узких траншеях шириной 0,4-1,0 м под защитой раствора из бентонитовой глины.

Реконструкция и усиление свайных фундаментов

Усиление ствола свай при отсутствии ростверка или при высоком ростверке производится с помощью железобетонной обоймы с толщиной стенок не менее 100 мм и площадью вертикальной арматуры не менее 1% площади сечения обоймы. Обойма устраивается на свободной части сваи и заглубляется в грунт не менее чем на 1 м.

Усиление верхних концов свай и мест их сопряжения с ростверком устраивается с помощью железобетонной обоймы, устраиваемой по всем ростверкам с отрывкой мелкого котлована.

Усиление ростверков, разделка трещин и других повреждений производятся аналогично усилению фундаментов мелкого заложения.

Для усиления свайных фундаментов, имеющих недостаточную несущую способность, используются те же сваи, которые используются для усиления фундаментов мелкого заложения.

Разбивка осей новых свайных фундаментов должна производиться с надежным закреплением относительно осей существующих свай здания.

Читайте также: