Основания и фундаменты часть 3

Обновлено: 17.05.2024

Основания и фундаменты часть 3

ЗЕМЛЯНЫЕ СООРУЖЕНИЯ, ОСНОВАНИЯ И ФУНДАМЕНТЫ

Earthworks, Grounds and Footings

Предисловие

1 ИСПОЛНИТЕЛИ - АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Изменения N 1, 2 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2019

Введение

Настоящий свод правил содержит указания по производству и оценке соответствия земляных работ, устройству оснований и фундаментов при строительстве новых, реконструкции зданий и сооружений. Настоящий свод правил разработан в развитие СП 22.13330 и СП 24.13330.

Пересмотр настоящего свода правил выполнен НИИОСП им.Н.М.Герсеванова - институтом АО "НИЦ "Строительство" (канд. техн. наук И.В.Колыбин, канд. техн. наук О.А.Шулятьев - руководители темы; доктора техн. наук: Б.В.Бахолдин, В.И.Крутов, В.И.Шейнин; канд. техн. наук: A.M.Дзагов, Ф.Ф.Зехниев, М.Н.Ибрагимов, В.К.Когай, В.Н.Корольков, А.Г.Алексеев, С.А.Рытов, А.В.Шапошников, П.И.Ястребов; инженеры: А.Б.Мещанский, О.А.Мозгачева).

Изменение N 2 к настоящему своду правил разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - канд. техн. наук И.В.Колыбин, канд. техн. наук О.А.Шулятьев; д-р техн. наук Б.В.Бахолдин, д-р техн. наук В.И.Крутов, д-р техн. наук В.И.Шейнин; канд. техн. наук А.М.Дзагов, канд. техн. наук Ф.Ф.Зехниев, канд. техн. наук М.Н.Ибрагимов, канд. техн. наук В.К.Когай, канд. техн. наук В.Н.Корольков, канд. техн. наук А.Г.Алексеев, канд. техн. наук С.А.Рытов, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов; А.Б.Мещанский, О.А.Мозгачева).

1 Область применения

Настоящий свод правил распространяется на производство и приемку: земляных работ, устройство оснований и фундаментов при строительстве новых, реконструкции зданий и сооружений.

Примечание - Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения.

Настоящий свод правил следует соблюдать при устройстве земляных сооружений, оснований и фундаментов, составлении проектов производства работ (ППР) и организации строительства (ПОС).

При производстве земляных работ, устройстве оснований и фундаментов гидротехнических сооружений, сооружений водного транспорта, мелиоративных систем, магистральных трубопроводов, автомобильных и железных дорог и аэродромов, линий связи и электропередачи, а также кабельных линий другого назначения, кроме требований настоящего свода правил, следует выполнять требования соответствующих сводов правил, учитывающих специфику возведения этих сооружений.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

ГОСТ 12071-2014 Грунты. Отбор, упаковка, транспортирование и хранение образцов

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 12730.5-2018 Бетоны. Методы определения водонепроницаемости

ГОСТ 16504-81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 18105-2018 Бетоны. Правила контроля и оценки прочности

ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 22733-2016 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-2012 Грунты. Методы радиоизотопных измерений плотности и влажности

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 25584-2016 Грунты. Методы лабораторного определения коэффициента фильтрации

ГОСТ 30416-2012 Грунты. Лабораторные испытания. Общие положения

ГОСТ 31384-2017 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

ГОСТ 32804-2014 (EN 13251:2000) Материалы геосинтетические для фундаментов, опор и земляных работ. Общие технические требования

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений" (с изменениями N 1, N 2)

СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты" (с изменениями N 1, N 2, N 3)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)

СП 34.13330.2012 "СНиП 2.05.02-85* Автомобильные дороги" (с изменениями N 1, N 2)

СП 39.13330.2012 "СНиП 2.06.05-84* Плотины из грунтовых материалов" (с изменениями N 1, N 2, N 3)

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 63.13330.2018 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения"

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия" (с изменением N 1)

СП 75.13330.2011 "СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы"

СП 81.13330.2017 "СНиП 3.07.03-85* Мелиоративные системы и сооружения"

СП 86.13330.2014 "СНиП III-42-80* Магистральные трубопроводы" (с изменениями N 1, N 2)

СП 129.13330.2011 "СНиП 3.05.04-85* Наружные сети и сооружения водоснабжения и канализации"

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 баретта: Несущий элемент железобетонного фундамента глубокого заложения, выполняемого способом "стена в грунте".

3.2 бурение с продувкой: Способ бурения скважины, при котором разрушенная порода из забоя выносится на поверхность сжатым воздухом.

3.3 бурение с промывкой: Способ бурения скважины, при котором разрушенная порода из забоя вымывается на поверхность гидравлическим способом.

3.4 буросмеситель: Конструкция бурового инструмента, состоящая из режущих лопастей для разрыхления грунта и его смешивания с цементным раствором, поступающим через отверстия в лопастях.

3.5 временный анкер: Грунтовый анкер с расчетным сроком эксплуатации не более двух лет.

3.6 выход глинистого раствора: Объем раствора с заданной эффективной вязкостью, получаемый из 1 т глинистого порошка.

ОСНОВАНИЯ И ФУНДАМЕНТЫ (методические указания) - часть 2

геологических условий - 8. Из геологических разрезов принимаем номера грунтов в скобках, т. е. по табл. 2: песок пылеватый -16, глина - 3 и суглинок - 5.

Состав и объем проекта

Проект должен содержать:

1) оценку инженерно-геологических условий и свойств грунтов, включая определение расчетного сопротивления грунта основания;

2) разработку вариантов (не менее 3) для наиболее нагруженного и характерного фундамента. По каждому варианту необходимо:

а) выбрать и обосновать глубину заложения фундамента, тип фундамента, тип основания;

б) определить размеры фундамента и рассчитать его по прочности материала

в) сделать дополнительные расчеты основания, если они требуются (например, расчет песчаной подушки, глубинного уплотнения и т. д.);

г) рассчитать конечную осадку фундамента;

д) определить стоимость каждого варианта, сравнить рассмотренные варианты по технико-экономическим показателям и выбрать основной вариант.

Размеры фундаментов в стадии разработки вариантов следует определять по максимальным вертикальным нагрузкам, считая их центрально

приложенными;

3) расчет и конструирование всех намеченных на плане здания фундаментов, а при необходимости и искусственных оснований по принятому

(основному) варианту с учетом их внецентренного загружения;

4) расчет осадок двух близко расположенных фундаментов для принятого варианта:

а) абсолютных осадок;

б) относительной осадки;

в) сравнение полученных расчетом осадок с предельными, приведенными в СНиП, и решение вопроса о необходимости устройства осадочных швов;

защиту подвальных помещений от подземных вод, разработку конструкции гидроизоляции (при наличии подвала и высоком уровне грунтовых вод). В

случае устройства внутренней гидроизоляции следует учесть влияние неравномерных осадок на гидроизоляцию и предусмотреть необходимые

мероприятия по ее сохранению;

5) рекомендации по производству работ, а также меры, исключа-ющие возможность нарушения структуры грунтов основания.

Все необходимые обоснования решений и расчеты должны при-водиться в пояснительной записке в соответствии с заданием, в ука-занной

последовательности, с обязательным изображением эскизов, расчетных схем с указанием размеров и привязок.

Чертеж выполняется в карандаше, туши или с использованием программы «Autocad» на листе формата А1 или нескольких листах формата A3. На

чертеже приводятся:

а) схематический поперечный разрез сооружения с прорисовкой фундаментов и основания (масштаб 1:200);

б) конструкции рассмотренных вариантов фундамента, совмещенные с геологическим разрезом (масштаб 1:100);

в) план фундаментов всего здания (или план ростверков, если в качестве основного варианта выбран свайный) с размерами и привязкой к осям

(масштаб 1:100); свайное поле (масштаб 1:200);

г) сечения фундаментов с отметками, размерами и привязкой к осям (масштаб 1:50);

д) детали устройства осадочных швов, гидроизоляции, фундаментных балок и др.;

е) вариант свайного фундамента (или фундамента на естественном основании, если в качестве основного варианта принят свайный) - план и сечение

(масштаб 1:50).

Пояснения о принятых материалах и их марках, о подготовке под фундамент, особенностях производства работ и прочем приводятся на листе ватмана

в виде перечня технических требований.

Последовательность выполнения курсового проекта

1. Оценка инженерно-геологических условий строительной площадки

Этот раздел должен содержать оценку инженерно-геологических условий и свойств грунтов, слагающих строительную площадку. При оценке

инженерно-геологических условий на основе полученных исходных материалов (по заданию) необходимо осветить следующие вопросы:

1. Географическое положение площадки.

2. Геологическая характеристика площадки.

3. Гидрогеологические условия.

4. Основные и дополнительные показатели физических свойств грунтов.

5. Характеристики физического состояния и сжимаемости грунтов.

6. Расчетное сопротивление каждого вида грунта (по глубине слоев).

7. Расчетная глубина промерзания грунтов и их пучинистые свойства.

Вначале на плане строительной площадки в масштабе намечают пятно застройки, располагая здание так, чтобы оно в меньшей степени испытывало

возможные неравномерные осадки. Устанавливают планировочную отметку

(DL). В пределах пятна застройки намечают геологический разрез,

применительно к которому осуществляют оценку инженерно-геологических условий и на котором схематично наносят подземную часть здания или

сооружения с указанием отметок.

Для каждого пласта, имеющего номер, по заданным характеристикам грунта вычисляют дополнительные, необходимые для дальнейших расчетов;

классифицируют грунты и устанавливают их свойства в соответствии с ГОСТами (1.4 [3]).

Вычисление дополнительных характеристик рекомендуется выполнять в такой последовательности: плотность скелета

(сухого) фунта

коэффициент пористости (е), пористость (n), полная влагопроницаемость (w sat ), степень влажности (S r ), удельный вес грунта с учетом взвешивающего

действия воды (y sb ); число

пластичности (1 р ), показатель текучести (I L ), коэффициент относительной сжимаемости (m  ).

После вычисления каждого из указанных показателей следует дать соответствующую характеристику грунта (плотность сложения песчаных грунтов,

консистенция пылевато-глинистых, их наименование, водонасыщенность, сжимаемость). Расчетную глубину промерзания (d f ) определяют по формуле (З)

СНиП 2.02.01-83, а нормативную ( d n ) по формуле (2) СНиП 2.02.01-83 или ориентировочно по карте нормативных глубин промерзания (рис. 3.4 [3]).

Для всех грунтов основания определяют их расчетные сопротивления по формуле (7) СНиП 2.02.01-83 при ширине подошвы b = 1 м.

При определении R для первого слоя глубина заложения фундамента d выбирается исходя из конструктивных особенностей здания или глубины

промерзания. Для последующих слоев глубину заложения принимают равной расстоянию от поверхности планировки площадки строительства (DL) до

отметки на 0,3 м ниже кровли этого слоя.

Оценка инженерно-геологических условий завершается заключением, в котором делаются выводы о возможности строительства проектируемого

сооружения на рассмотренной площадке, выборе несущего слоя грунта фундамента на естественном основании или свайного, а также даются

рекомендации о целесообразности рассмотрения других вариантов фундаментов. В заключении оценивается сжимаемость грунтов основания

фундаментов, возможные его неравномерные деформации; определяется наличие или отсутствие слабого подстилающего слоя; даются предварительные

рекомендации по устройству гидроизоляции подземных частей сооружения, учету пучинистых свойств грунтов при подготовке оснований и устройстве

фундаментов; приводятся соображения по проектированию водоотлива или водопонижения при разработке котлована исходя из гидрологических условий

и фильтрационных свойств грунта.

2. Разработка вариантов фундаментов

Разработку вариантов (не менее 3) следует производить для наиболее нагруженного и характерного фундамента заданного

здания или сооружения. Так, например, для силосного корпуса (см.

рис. 9) - это фундамент 1. Размеры фундаментов в стадии выбора вариантов определяют по максимальным вертикальным нагрузкам.

В числе трех вариантов обязательно должны быть рассмотрены вариант устройства фундамента на естественном основании и свайный. Если в

качестве третьего варианта рассматривается фундамент на искусственном основании (песчаной подушке, закрепленном грунте и т. п.), то такое основание

нужно рассчитывать, чтобы получить все необходимые размеры для экономического сравнения с другими вариантами.

Экономическое сравнение вариантов выполняется по укрупненным единичным расценкам (прил. 3).

Разработка вариантов - важнейший этап курсового проекта, к которому необходимо относиться с особым вниманием. Прежде чем приступить к

расчету и конструированию фундаментов, необходимо четко представить себе возможное архитектурное решение (особенно в местах перехода надземной

части здания в подземную), т. е. установить абсолютные и относительные отметки планировки, пола первого этажа, обреза фундамента, а также

применяемых конструкций. При этом необходимо стремиться при минимальном расходе материалов для устройства оснований и фундаментов получить

наиболее рациональное и экономичное решение.

За относительную отметку ± 0,0 обычно принимают пол первого этажа. Обрез фундаментов большинства зданий устраивают на относительной

отметке - 0,15 м, а для металлических колонн промышленных зданий - на отметке, находящейся в пределах - 0,6-1,2 м (в зависимости от поперечного

размера колонны и высоты траверсы).

Вариант 1. Фундамент на естественном основании

Порядок расчетов может быть следующим:

1. Устанавливают глубину заложения подошвы фундамента d исходя из конструктивных особенностей подземной части сооружения, положения

уровня подземных вод, глубины промерзания, характера напластования и состояния грунтов (гл.3 [3]).

2. Определяют площадь подошвы фундамента (гл.5 [3]).

3. Устанавливают размеры подошвы фундамента (ширину b и длину l), размеры ступеней и высоту фундамента h f исходя из

принятых правил конструирования, конструируют фундамент с учетом размера и типа надфундаментных конструкций (гл.5,8 [3]).

Рекомендуется проектировать отдельные фундаменты под колонны монолитными, а под стены - ленточными (сборными или монолитными). Размеры

подошвы (bхl) в плане, ступеней (b 1 и l 1 ) и подколонника (b n и l n ) принимают кратными 300 мм, высоту ступеней (h 1 ,h 2 , h 3 ) - 300, 450 и 600 мм, а общую

высоту фундамента (h  ) - кратной 300. Форма фундамента в плане при центральной нагрузке квадратная, а при внецентренной - прямоугольная. При этом

соотношение b/l назначают в пределах 0,5-0,85. Виды и марки бетона фундамента назначают в результате расчета на прочность и трещиностойкость.

Минимальные марки бетона определяются видом и состоянием грунта, а также классом сооружения.

4. Вычисляют собственный вес фундамента N fII и вес грунта на его обрезах N g II по их объемам V f . и V g .

Для внецентреннно загруженного фундамента определяют среднее давление по подошве фундамента и краевые давления р, р min , р тaх и сопоставляют с

расчетным сопротивлением грунта основания R в соответствии с формулой (5.6) [3]. Допускается недогрузка фундамента 5-10 %. В противном случае

необходимо изменить размеры фундамента.

Усилия М а и F a по подошве фундамента от горизонтального давле-ния грунта на стену подвала суммируются с заданными усилиями на фундамент. М а

и F a определяются в предположении, что на поверхности грунта действует сплошная нагрузка интенсивностью q = 10 кН/м 2 , а сам грунт находится в

состоянии предельного равновесия и оказывает активное давление на стену подвала (разд. 5.6 [3]).

5. Выполняют расчет прочности фундамента, который включает:

а) расчет на продавливание;

б) расчет ступеней на поперечную силу Q max , который необходим для сильно вытянутых фундаментов при соотношении размеров подошвы b/l < 0,5.

6. Проверяют прочность слабого подстилающего слоя, если это требуется по результатам оценки инженерно-геологических условий (разд. 5.4) [3].

7. Рассчитывают величину конечной осадки s фундамента и срав-нивают ее с предельно допустимой величиной абсолютной осадки s max U (разд. 6 и

Для этого выбирают расчетную схему основания исходя из ха-рактера напластования грунтов, конструктивных особенностей сооружения и размеров

фундамента:

в виде линейно деформируемого полупространства с условным ограничением глубины сжимаемой толщи H с (пп. 1-6 прил. 2 [4]);

линейно деформируемого слоя конечной толщины, в следующих случаях:

а) если в пределах сжимаемой толщины H с , определенной как для линейно деформируемого полупространства, залегает слой грунта с модулем

деформации Е 1 ≥ 100 МПа и толщиной h 1 ≥ Н с

), где Е 2 - модуль деформации подстилающего слоя грунта с модулем Е 1 (пп. 7, 8 [4]);

б) ширина (диаметр) фундамента b ≥ 10 м и модуль деформации грунтов основания Е 1 ≥ 10 МПа.

По схеме линейно деформируемого пространства осадка фундамента может быть определена и методом эквивалентного слоя по Н. А. Цытовичу (п.

Вариант 2. Свайный фундамент

1. Как и в варианте 1, следует эскизно проработать конструкции подземной части сооружения на схеме геологического разреза, указав их отметки и

увязав их с планировочными отметками площадки строительства, положением слоев грунта ниже подошвы ростверка проектируемого фундамента. Это

позволит правильно назначить длину свай с учетом заделки их голов в ростверк, прорезки слабых слоев грунта и необходимого заглубления острия в

более плотный грунт (несущий слой).

Обычно сваи заглубляют в несущий слой не менее чем на 1-2м. Если несущим слоем являются твердые глинистые грунты, гравелистые, крупные и

средней крупности пески, то достаточно заглубление от 0,5 м. Минимальная длина свай должна не менее чем в 2-3 раза превышать ширину ростверка,

размеры подошвы которого предварительно могут быть оценены исходя из заданной на фундамент нагрузки, оптимального количества свай в фундаменте

и приближенно (без расчета) назначенной несущей способности свай по ее размерам и характеристикам слоев грунта в пределах длины сваи и ниже ее

Такая приближенная оценка необходима для уточнения типа и длины свай, установления несущего слоя грунта до определения несущей способности

одиночной сваи расчетом по формулам СНиП 2.02.03-85.

Типовые конструкции забивных свай приводятся в табл. 9.1 [3]. Типоразмеры буронабивных свай принимаются исходя из технических характеристик

установок для устройства буровых свай (табл. 9.2 [3]).

2. Определяют несущую способность одиночной сваи из условий: а) сопротивления грунта, окружающего сваю («по грунту»); б) сопротивления

материала свай («по материалу»). Для дальнейших расчетов принимают минимальное из двух значений сопротивления.

Несущую способность сваи по грунту определяют расчетом по формулам (5) и (8) СНиП 2.02.03-85 [5], предварительно выбрав способ погружения ее

3. Целесообразно определить расчетную нагрузку F R , допустимую на одну сваю, установив значение коэффициента надежности γ к по СНиП в

зависимости от способа определения несущей способности сваи F d (п. 3.10 [5]). Для забивных свай γ к = 1,4.

4. Рассчитывают необходимое количество свай с учетом нагрузки от веса ростверка и грунта на его обрезах, предварительно вычислив

ориентировочную площадь ростверка (п. 9.4.2 [3]).

5. Размещают сваи в кусте исходя из минимального расстояния между висячими сваями 3d, сваями-стойками - l,5d. Рекомендации по размещению свай

в плане приведены в п. 9.4.3 [3].

6. Ростверк конструируют минимального объема исходя из подобранных размеров площади подошвы ростверка и глубины его заложения.

7. Определяют нагрузку от собственного веса ростверка N f I и грунта на его обрезах N gI и приводят всю нагрузку на фундамент к подошве ростверка N I

= N 0I + N gI + N fI :

8. Устанавливают максимальную фактическую нагрузку на одну сваю и проверяют условие ее допустимости (п. 9.4.4 [3]).

9.Рассчитывают железобетонный ростверк на прочность (п.9.4.5 [3]).

10. Рассчитывают осадку свайного фундамента, как осадку условного фундамента на естественном основании, в соответствии с п. 9.4.6 [3]. Порядок

расчета осадки свайного фундамента такой же, как при расчете осадки фундамента на естественном основании.

Вариант 3. Фундамент на искусственном основании

Расчет искусственного основания сводится к определению размеров закрепленной (искусственной) зоны основания и осадки возводимого на ней

фундамента. Для примера приведем последовательность проектирования фундамента на искусственном основании в виде песчаной подушки:

1. Задаются видом песка (крупный, средней крупности или гравелистый) для устройства подушки и назначают плотность сложения его в теле

подушки (как правило, среднюю плотность сложения).

2. Устанавливают глубину заложения подошвы фундамента, как для фундамента на естественном основании.

3. В соответствии с выбранным видом песка средней плотности по таблицам прил.

[4] устанавливают расчетное сопротивление грунта

искусственного основания (песчаной подушки) R 0 .

4. Определяют предварительную площадь подошвы фундамента А и его размеры в плане (b и l) исходя из принятого значения R 0 .

5. Далее проектирование осуществляется в последовательности, изложенной для расчета фундаментов на естественном основании. При этом значение

расчетного сопротивления R 0 для окончательного назначения размеров фундамента должно быть уточнено по формулам (1) и (2) прил. 3 [4].

6. Определив давление по подошве фундамента р и сравнив его с реальным значением R 0 для выбранных размеров фундамента, проверяют прочность

материала фундамента (разд. 8.2 [3]) и рассчитывают размеры песчаной подушки.

7. Для этого задаются толщиной подушки h n и проверяют условие п. 2.48 [4] (прочность подстилающего слоя). Этот расчет ведется аналогично

проверке подстилающего слоя слабого грунта (разд. 5.4 [3], формула (5.8)).

Расчетное сопротивление грунта R z , подстилающего песчаную подушку на глубине z, вычисляют по формуле (7) [3] для условного фундамента,

ширина которого b z определяется по формуле (10) [4].

Если условие формулы (5.8) [3] не соблюдается, то необходимо изменить толщину подушки и произвести расчет заново.

8. Ширину песчаной подушки b п на отметке ее подошвы можно

9. определить конструктивно по формуле (11.1) [3]. Угол распределения давления в теле подушки α составляет 30-40°. Чем больше различие в

деформационных и прочностных свойствах материала подушки и подстилающего ее грунта, тем больше должен быть угол α (разд. 11.2 [3]).

9. Абсолютную осадку фундамента на песчаной подушке определяют по одному из методов механики грунтов в зависимости от принятой расчетной

схемы основания (разд. 6.5-6.10 [3]). Модуль деформации песка подушки принимают по табл. 1 прил. 1 [4].

3. Определение стоимости и выбор основного варианта фундамента

Стоимость каждого варианта фундамента в курсовом проекте определяют по укрупненным расценкам стоимости работ по устройству фундаментов

(табл. 3 приложения). В смету затрат не включаются элементы, одинаковые во всех вариантах. В состав работ помимо работ по возведению собственно

фундамента включают отрывку котлована, устройство креплений его стенок, подготовку под фундамент, водоотлив или водопонижение, устройство

искусственного основания; выполнение мероприятий, снижающих чувствительность зданий к неравномерным деформациям оснований, ит. д.

Эффективность варианта фундамента оценивают на основе показателя полных приведенных затрат в соответствии с нормативными документами. В

курсовом проекте допускается проводить техникой экономическое сравнение вариантов по укрупненной сметной стоимости работ по устройству

фундамента (табл. 3 приложения). Результаты расчетов представляются на листе в табличной форме.

4. Расчет и проектирование выбранного варианта фундамента

Определение деформаций основания. Использование в расчетах ЭВМ

После выбора основного

(наиболее целесообразного) фундамента из рассмотренных вариантов необходимо рассчитать все фундаменты,

обозначенные в задании цифрами (на плане здания или сооружения). Если расчет фундамента на продавливание выполнен на стадии выбора

варианта, то для остальных фундаментов эти расчеты можно не проводить, ограничиваясь конструированием их по уже изложенной методике.

Абсолютную осадку следует определять только для одного фундамента, менее нагруженного и расположенного рядом с фундаментом, рассчитанным

при выборе варианта, с тем, чтобы вычислить относительную разность осадок и сравнить ее с предельно допустимой для проектируемого сооружения

(таблица прил. 4 [4]).

Осадки остальных фундаментов с учетом загружения соседних (по выбранной схеме их расположения) можно определить с использованием

компьютерной программы "SOSED" (разд. 10.3 [3]). Полученные значения абсолютных осадок позволяют вычислить величины различных видов

деформаций оснований (среднюю осадку, относительную разность осадок, относительный прогиб, выгиб, крен фундамента или сооружения) и

сопоставить их с предельно допустимыми (см. таблицу прил. 4 [4]).

Расчет основания по несущей способности

Расчет оснований по I группе предельных состояний (прочности и устойчивости) производят, если на основание передаются значительные

горизонтальные нагрузки, сооружение расположено на откосе, основание сложено слабыми водонасыщенными пылевато-глинистыми грунтами,

основание скальное.

В курсовом проекте по несущей способности (устойчивости) рассчитывают наиболее нагруженный фундамент на естественном основании. Методика

определения несущей способности основания изложена в гл. 7 [3] и выполняется в соответствии с пп. 2.57-2.64 [4].

Расчет по несущей способности производят исходя из условия (11) [4]. При этом несущая способность основания, сложенного грунтами в

стабилизированном состоянии, при вертикальной нагрузке определяется по формуле (16) [4].

Другие случаи расчета оснований по несущей способности изложены в гл. 7 [3] и гл. 4 [2].

Меры по предотвращению деформаций зданий и сооружений при промерзании и пучении грунтов

Промерзание пучинистых грунтов основания при отрывке котлованов недопустимо, так как при промерзании и поднятии дна котлована вследствие

морозного пучения нарушается их естественная структура, а при оттаивании вследствие переувлажнения, обусловленного миграцией влаги, резко

ухудшаются прочностные и деформационные свойства грунтов.

При отрывке котлованов в зимних условиях в проектах предусматривают меры по предохранению грунтов основания от промораживания.

Фундаменты зданий и сооружений в пучинистых грунтах при промерзании последних могут испытывать воздействие касательных сил морозного

пучения. Расчет фундаментов на воздействие касательных сил морозного пучения ведут по методике, изложенной в [3]. Величина касательных сил

морозного пучения может достигнуть 0,15 МПа, а нормальных - 1,5 МПа, поэтому при проектировании на пучинистых грунтах зданий и сооружений,

возводимых в зимних условиях, строительство которых длится 2-3 года, следует предусматривать мероприятия по предохранению грунтов от увлажнения

и промерзания.

В курсовом проектировании необходимо определить меры, исключающие выпучивание заглубленных в грунт конструкций, под которыми возможно

промораживание фунта в строительный или эксплуатационный период. Особое внимание нужно уделить фундаментным балкам (рандбалкам). Их

устойчивость может быть обеспечена обсыпкой на определенную глубину непучинистым материалом или устройством под ними воздушного зазора,

величина которого должна быть не менее возможной величины морозного пучения.

Необходимо также предусмотреть меры, предотвращающие или уменьшающие влияние морозного пучения грунта на свайный ростверк. Для

исключения или уменьшения сил морозного пучения и деформаций конструкций под действием этих сил следует в проектах предусматривать

мероприятия различного характера: инженерно-мелиоративные; строительно-конструктивные; теплоизоляционные и др. Выбор тех или иных мероприятий

зависит от конкретных условий строительства.

Защита подвальных помещений от подземных вод и сырости

В случае, когда уровень подземных вод может подниматься выше пола подземных сооружений (подвалов, приямков, убежищ и т. п.), необходимо

предусмотреть их защиту от возможного затопления. Кроме того, необходимо изолировать фундаменты и полы для исключения капиллярного подсоса

влаги из грунта, если уровень грунтовых вод WL располагается ниже отметки пола подвала.

Выбор мероприятий осуществляют в зависимости от гидрогео-логических условий строительной площадки, сезонного колебания и возможного

изменения уровня подземных вод, их агрессивности, конструктивных и функциональных особенностей подземных помещений и фундаментов.

Защита помещений и стен от сырости вследствие капиллярного увлажнения осуществляется горизонтальной гидроизоляцией стен, обмазкой

вертикальных поверхностей стен подвалов за два раза горячим битумом или мастикой. Во влажных грунтах обмазку стен делают по оштукатуренной

поверхности цементным раствором. В сильно увлажненных грунтах к цементному раствору добавляют церезит.

Для защиты подвалов или подземных помещений можно применять пристенный или пластовый дренажи. Последний используется в

слабопроницаемых грунтах и при наличии в них маломощных хорошо проницаемых прослоек и линз. Оклеечную гидроизоляцию проектируют из

рулонных материалов с негниющей основой - гидроизола, металлоизола, стеклорубероида и др.

Гидроизоляционный ковер ниже расчетного уровня подземных вод должен быть непрерывен по всей заглубленной в грунт поверхности (стен, обрезов

фундаментов, пола подвала и т. д.). Гидростатический напор (в вертикальном и горизонтальном направлениях) должен быть уравновешен пригрузочным

слоем бетона или воспринят специальной несущей конструкцией, расположенной выше гидроизоляции (п. 3.1.5 [2]).

Для предупреждения разрыва гидроизоляционного ковра при неравномерных осадках фундамента и пола подвала между ними устраивают

компенсатор в виде петли в шве из ковра и металлической закладной части, залитой битумной мастикой.

Компенсаторы устраивают и около осадочных швов. Для защиты оклеечной изоляции от механических повреждений устраивают защитную стенку (рис.

Гидроизоляция в виде непрерывного ковра может быть выполнена из мастик различного типа (битумных или полимерных) окрасочным способом или

оштукатуриванием. Штукатурная гидроизоляция выполняется слоем 5-50 мм из растворов и мастик, наносимых в несколько слоев или наметов

штукатурным способом. Она бывает также в виде цементной штукатурки с добавками торкрета или асфальтовой штукатурки (из мастик - горячих или

Некоторые виды конструкций и методы устройства гидроизоляции приведены в разделе 12.5 [3], работах [11] и [13].

5. Рекомендации по производству работ при подготовке основания и устройству фундаментов в котлованах

В курсовом проекте необходимо предусмотреть меры, направленные на сохранение естественной структуры грунтов в основании в процессе отрывки

котлована, возведения фундаментов и надземной части сооружения, а также в период эксплуатации.

В проекте указывают способ отрывки котлована, зачистки его дна, методы водоотлива или водопонижения, конструкции крепления стенок котлована

и в случае необходимости проводят их расчет. Следует оценить возможность использования местных грунтов для обратных засыпок фундаментов и

подсыпок под полы. При этом нужно указать приближенное значение оптимальной влажности и проектной плотности грунта в засыпках и подсыпках,

определить способы их уплотнения.

При устройстве свайных фундаментов решается вопрос о способе погружения сваи и выборе оборудования для погружения.

Указанные вопросы изложены в соответствующих разделах [2-3; 9-12] и другой литературы.

Пособие по производству работ при устройстве оснований и фундаментов (к СНиП 3.02.01-83)


Пособие по производству работ при устройстве оснований и фундаментов (к СНиП 3.02.01-83) части 1 и 2.

Часть 1
Раздел 1 Общая часть
Раздел 2 Естественные основания
Раздел 3 Уплотнение грунтов
Раздел 4 Строительное водопонижение
Раздел 5 Закрепление грунтов
Раздел 6 Искусственное замораживание грунтов

Часть 2
Раздел 7 Сооружения, устраиваемые способом "стена в грунте"
Раздел 8 Свайные фундаменты, шпунтовые ограждения и анкеры
Раздел 9 Опускные колодцы и кессоны
Приложения

Основания и фундаменты


Основания и фундаменты

М.: Агропромиздат, 1987, - 284с., ил.; 2-е изд., перераб. и доп.

Изложены сведения о физических, физико-механических и физико-химических свойствах грунтов как оснований фундаментов и сооружений. Приведены основные положения и методы проектирования естественных и искусственных оснований, различного вида фундаментов и способы их устройства. Второе издание (1-е - в 1981 г.) доработано с учетом новых СНиП, ГОСТов, Стандартов СЭВ и других материалов. Для студентов высших сельскохозяйственных учебных заведений по специальности "Гидромелиорация".

Оглавление

Основания и фундаменты1

Основания и фундаменты2

Основания и фундаменты3

Часть I. ОСНОВЫ ГРУНТОВЕДЕНИЯ И МЕХАНИКИ ГРУНТОВ

Глава 1. Состав и строение грунтов . 7
1. Природа и составные компоненты грунтов . 7
2. Твердые частицы грунтов . 8
3. Вода в грунтах, ее виды и свойства . 13
4. Газы в грунтах . 16
5. Структура и текстура грунтов . 17

Глава 2. Физические свойства грунтов и их показатели . 23
6. Основные показатели физических свойств грунтов . 24
7. Производные показатели физических свойств грунтов . 26

Глава 3. Физико-химические свойства грунтов и их показатели . 29
8. Консистентностъ грунтов . 29
9. Просадочность грунтов . 30
10. Набухаемость и усадочность грунтов . 33
11. Плывунность и тиксотропность грунтов . 36
12. Размягчаемость, размокаемость и растворимость грунтов . 37
13. Пучинистость грунтов . 38

Глава 4. Физико-механические свойства грунтов и их показатели . 39
14. Водопроницаемость грунтов . 40
15. Деформируемость грунтов . 43
16. Прочность грунтов . 68
17. Классификационные показатели и классификация грунтов . 80

Глава 5. Характеристика различных видов грунтов . 84
18. Скальные грунты . 85
19. Нескальные грунты . 87

Глава 6. Напряжения в грунтовом массиве . 108
20. Природные напряжения . 109
21. Напряжения от внешних нагрузок в однородном полупространстве . 111
22. Напряжения от внешних нагрузок в неоднородном полупространстве . 128
23. Напряжения в грунте по подошве нагруженных площадок — контактные напряжения . 131
24. Критические нагрузки на грунт основания . 134

Часть II. ОСНОВАНИЯ И ФУНДАМЕНТЫ

Глава 7. Основные положения проектирования оснований и фундаментов . 139
25. Виды оснований и фундаментов . 139
26. Совместные деформации сооружений и оснований . 142
27. Выбор основания, фундаментов и методов их устройства . 143
28. Основные положения проектирования оснований и фундаментов по предельным состояниям . 149

Глава 8. Фундаменты неглубокого наложения . 16З
29. Конструкции фундаментов неглубокого наложения . 163
30. Проектирование фундаментов . 167
31. Проектирование гибких железобетонных фундаментов . 165

Глава 9. Расчет естественных оснований . 166
32. Определение конечных осадок . 166
33. Расчет осадок во времени . 173
34. Определение неравномерных осадок . 175
35. Проектирование оснований по первой группе предельных состояний . 177
36. Расчет нескальных оснований гидротехнических сооружений . 183

Глава 10. Искусственные основания . 188
37. Принципы расчета искусственных оснований . 188
38. Поверхностное к глубинное уплотнение грунтов механическими способами . 190
39. Замена слабых грунтов (грунтовые подушки) . 196
40. Физико-химические методы укрепления и улучшения грунтов . 197
41. Улучшение свойств лёссовых просадочных грунтов . 202
42. Искусственные основания при строительстве на заторфованных грунтах и торфах . 207

Глава 11. Свайные фундаменты . 209
43. Виды свайных фундаментов, типы и конструкции свай . 209
44. Принципы проектирования свайных фундаментов . 216
45. Расчет свай и ростверков по первому предельному состоянию . 220
46. Определение несущей способности свай испытанием статической и динамической нагрузками . 222
47. Расчет свайных фундаментов и их оснований по второму предельному состоянию . 224
48. Особенности расчета свайных фундаментов в просадочных лёссовых грунтах . 226

Глава 12. Фундаменты глубокого заложения . 228
49. Принципы проектирования фундаментов глубокого заложения . 228
50. Опускные колодцы . 229
51. Колодцы-оболочки и буровые опоры-столбы . 232
52. Кессонные фундаменты . 236

Глава 13. Устройство котлованов под фундаменты и сооружения . 238
53. Назначение размеров котлованов и разбивка их на местности . 238
54. Крепление стенок траншей и котлованов . 240
55. Осушение котлованов . 247
56. Устройство котлованов и фундаментов на местности, покрытой водой . 249

Глава 14. Проектирование и устройство оснований и фундаментов на лёссовых просадочных грунтах . 250
57. Проектирование оснований в фундаментов зданий в промышленных сооружений на просадочных грунтах . 251
58. Методы устройства оснований в гидросооружений оросительных систем на просадочных грунтах . 257
59. Проектирование оснований гидросооружений на лёссовых просадочных грунтах . 260

Глава 15. Устройство фундаментов в особых условиях . 263
60. Основные принципы устройства фундаментов и сооружений в особых грунтовых условиях . 263
61. Устройство фундаментов зданий и гидромелиоративных сооружений на водонасыщенных биогенных грунтах . 264
62. Устройство фундаментов на вечномерзлых и набухающих грунтах . 265
63. Устройство фундаментов в других сложных грунтовых условиях . 270
64. Фундаменты при динамических нагрузках . 273

Приложение . 278
Указатель литературы . 280
Предметный указатель . 281

Корбут Е.Е., Шутов Р.З. (сост.) Механика грунтов, основания и фундаменты Часть 3 Свайные фундаменты

Корбут Е.Е., Шутов Р.З. (сост.) Механика грунтов, основания и фундаменты Часть 3 Свайные фундаменты

В методических указаниях изложены основные положения проектирования свайных фундаментов. Приведены примеры расчета свайного фундамента в разрезе курсового проекта, части дипломного проекта и практических занятий. Методические указания дополнены таблицами и справочными данными, необходимыми для выполнения курсового проекта и проведения практических занятий.

Содержание.
Введение.
Общие положения.
Конструирование свайного фундамента.
Конструирование железобетонной сваи.
Определение глубины заложения и назначения размеров.
ростверка.
Предварительное определение размеров свай.
Расчёт свайного фундамента.
Определение несущей способности свай.
Определение количества свай и размещение их в ростверке.
Проверка прочности основания куста свай.
Технологические особенности по устройству свайного фундамента.
Выбор молота для погружения свай.
Определение проектного отказа свай.
Список литературы.
Приложение А.

Читайте также: