Нормы осадки фундаментов турбоагрегатов

Обновлено: 19.05.2024

СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками

РАЗРАБОТАНЫ ВНИИОСП им. Герсеванова Госстроя СССР (д-р техн. наук, проф. В.А. Ильичев - руководитель темы, д-р техн. наук, проф. Д.Д. Баркан, кандидаты техн. наук О.Я. Шехтер, М.Н. Голубцова), Ленинградским Промстройпроектом Госстроя СССР (кандидаты техн. наук В.М. Пятецкий, Б.К. Александров, С.К. Лапин; И.И. Файнберг), Фундаментпроектом Минмонтажспецстроя СССР (канд. техн. наук В.М. Шаевич), ВНИИГ им. Б.Е. Веденеева Минэнерго СССР (доктора техн. наук, профессора О.А. Савинов, И.С. Шейнин, канд. техн. наук Г.Г. Аграновский), Ленинградским отделением Атомэнергопроекта Минатомэнерго СССР (Е.Г. Бабский), Днепропетровским инженерно-строительным институтом Минвуза УССР (кандидаты техн. наук Н.С. Швец, В.Л. Седин), Харьковским Промстройниипроектом Госстроя СССР (канд. техн. наук И.М. Балкарей) с участием Донецкого Промстройниипроекта, НИИЖБ, ЦНИИСК им. Кучеренко и ЦНИИпромзданий Госстроя СССР, ЭНИМС Минстанкопрома СССР, Гипромеза Минчермета СССР.

ВНЕСЕНЫ ВНИИОСП им. Герсеванова Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (О.Н. Сильницкая).

УТВЕРЖДЕНЫ постановлением Государственного строительного комитета СССР от 16 октября 1987 г. № 242.

С введением в действие СНиП 2.02.05-87 "Фундаменты машин с динамическими нагрузками" с 1 июля 1988 г. утрачивает силу глава СНиП II-19-79 "Фундаменты машин с динамическими нагрузками".

Настоящие нормы распространяются на проектирование фундаментов машин с динамическими нагрузками, в том числе фундаментов: машин с вращающимися частями, машин с кривошипно-шатунными механизмами, кузнечных молотов, формовочных машин для литейного производства, формовочных машин для производства сборного железобетона, копрового оборудования бойных площадок, дробильного, прокатного, прессового оборудования, мельничных установок, металлорежущих станков и вращающихся печей.

Фундаменты машин с динамическими нагрузками, предназначенные для строительства в районах со сложными инженерно-геологическими условиями, в сейсмических районах, на подрабатываемых территориях, на предприятиях с систематическим воздействием повышенных (более 50°С) технологических температур, агрессивных сред и в других особых условиях, следует проектировать с учетом требований соответствующих нормативных документов.

1. ОБЩИЕ ПОЛОЖЕНИЯ

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ

1.1. В состав исходных данных для проектирования фундаментов машин с динамическими нагрузками должны входить:

техническая характеристика машины (наименование, тип, число оборотов в минуту, мощность, общая масса и масса движущихся частей, кинематическая схема оборудования с привязкой движущихся масс, скорость ударяющих частей и т.п.);

данные о значениях, местах приложения и направлениях действия статических нагрузок, а также об амплитудах, частотах, фазах, законе изменения во времени, местах приложения и направлениях действия динамических нагрузок в режиме нормальной эксплуатации, а также в аварийных режимах, в том числе нагрузок, действующих на фундаментные болты; размеры площадок передачи нагрузок; сведения о наличии заводской виброизоляции у машин с указанием динамических нагрузок, передаваемых на фундаменты с учетом этой виброизоляции;

данные о предельных значениях деформаций фундаментов и их оснований (осадка, крен, прогиб фундамента и его элементов, амплитуда колебаний и др.), если такие ограничения вызываются условиями технологии производства, работы машины или рядом расположенного высокоточного и чувствительного к вибрациям оборудования; требования по ограничению взаимных деформаций отдельных частей машины;

данные об условиях размещения машины (оборудования) на фундаментах: отдельные фундаменты под каждую машину (агрегат) или групповая их установка на общем фундаменте; данные о характеристиках опорных плит (рам) агрегированного оборудования, данные о типе их соединения с фундаментом;

чертежи габаритов фундамента в пределах расположения машины, элементов ее крепления, а также вспомогательного оборудования и коммуникаций с указанием расположения и размеров выемок, каналов и отверстий, размеров подливки и пр., чертежи расположения фундаментных болтов с указанием их типа и диаметра, закладных деталей, обортовок и т.п.;

данные о привязке проектируемого фундамента к конструкциям здания (сооружения), в частности, к его фундаментам, данные об особенностях здания (сооружения), в том числе о виде и расположении имеющегося в нем оборудования и коммуникаций;

данные об инженерно-геологических условиях участка строительства и физико-механических свойствах грунтов основания на глубину сжимаемой толщи, определяемой в соответствии с требованиями СНиП 2.02.01-83; данные о характеристиках виброползучести грунтов в случаях ограничения деформаций фундамента; данные о коэффициентах жесткости грунтов оснований и несущей способности свай при статических и динамических нагрузках;

специальные требования к защите фундамента и его приямков от подземных вод, воздействия агрессивных сред и промышленных стоков, температурных воздействий;

данные об использовании машин во времени для фундаментов, строящихся на вечномерзлых грунтах.

Кроме перечисленных выше данных, в соответствующих разделах приведены дополнительные исходные данные для проектирования, вытекающие из специфики каждого вида машин.

ОБЩИЕ ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ

1.2. Фундаменты машин с динамическими нагрузками должны удовлетворять требованиям расчета по прочности и по пригодности к нормальной эксплуатации, а для фундаментов с расположенными на них рабочими местами - также требованиям стандартов безопасности труда в части допустимых уровней вибраций.

1.3. Фундаменты машин с динамическими нагрузками могут быть бетонными или железобетонными монолитными, сборно-монолитными и сборными, а при соответствующем обосновании - металлическими.

Монолитные фундаменты следует проектировать под все виды машин с динамическими нагрузками, а сборно-монолитные и сборные, как правило, - под машины периодического действия (с вращающимися частями, с кривошипно-шатунными механизмами и др.).

1.4. Класс бетона по прочности на сжатие для монолитных и сборно-монолитных фундаментов должен быть не ниже В12,5, а для сборных - не ниже В15. Для неармированных фундаментов станков допускается применять бетон класса В7,5. В случае одновременного воздействия на фундамент динамической нагрузки и повышенных технологических температур класс бетона должен быть не ниже В15.

1.5. Фундаменты машин допускается проектировать отдельными под каждую машину (агрегат) или общими под несколько машин (агрегатов).

Фундаменты машин, как правило, должны быть отделены сквозным швом от смежных фундаментов здания, сооружения и оборудования, а также от пола.

Примечание. Соединение фундаментов машин с фундаментами здания или опирание на них конструкций здания допускается в отдельных случаях,

указанных в соответствующих разделах.

1.6. С целью уменьшения вибраций фундаментов машин с динамическими нагрузками при соответствующем обосновании рекомендуется предусматривать их виброизоляцию.

1.7. Устройство фундаментов машин с динамическими нагрузками, за исключением фундаментов турбоагрегатов мощностью 25 тыс. кВт и более, допускается на насыпных грунтах, если такие грунты не содержат органических примесей, вызывающих неравномерные осадки грунта при сжатии. При этом основание из насыпных грунтов должно быть уплотнено (тяжелыми трамбовками, вибрированием или другими способами) в соответствии с требованиями СНиП 2.02.01-83.


Примечание. Фундаменты машин неимпульсного (неударного) действия с двигателями мощностью менее 500 кВт со средним давлением под подошвой фундамента от расчетных статических нагрузок* менее 70 кПа (0,7 )

допускается возводить на насыпных грунтах без искусственного уплотнения, если возраст насыпи из песчаных грунтов не менее двух лет и из пылевато- глинистых грунтов не менее пяти лет.

*Далее вместо термина "среднее давление под подошвой фундамента от расчетных статических нагрузок" используется термин "среднее статическое давление под подошвой фундамента".

1.8. При проектировании фундаментов машин на естественном основании следует стремиться к совмещению на одной вертикали центра тяжести площади подошвы фундамента и линии действия равнодействующей статических нагрузок от веса машины, фундамента и грунта на обрезах и выступах фундамента, а для свайных фундаментов - центра тяжести плана свай и линии действия равнодействующей статических нагрузок от веса машины и ростверка. При этом эксцентриситет, как правило, не должен превышать (за исключением случаев, оговоренных в отдельных разделах) для грунтов с расчетным сопротивлением 150 кПа (1,5 ) 3%, а для грунтов с расчетным сопротивлением >150 кПа (1,5 ), а также свайных фундаментов из висячих свай - 5% размера стороны подошвы фундамента, в направлении которой смещен центр тяжести. Значение следует определять по табличным данным СНиП 2.02.01-83; для фундаментов турбоагрегатов эксцентриситет не должен превышать 3% указанного размера независимо от значения . Для оснований, сложенных скальными грунтами, а также свайных фундаментов из свай-стоек, значение эксцентриситета не нормируется

1.9. Фундаменты машин с динамическими нагрузками следует проектировать:

массивными в виде блока или плиты с необходимыми приямками, колодцами и отверстиями для размещения частей машины, вспомогательного оборудования, коммуникаций и т.д.;

стенчатыми, состоящими из нижней фундаментной плиты (или ростверка), системы стен и верхней плиты (или рамы), на которой располагается оборудование;

рамными, представляющими собой пространственную конструкцию, состоящую, как правило, из верхней плиты или системы балок, опирающихся через ряд стоек на нижнюю фундаментную плиту;

облегченными различных конструктивных типов, в том числе безростверковыми свайными.

1.10. Оборудование с вращающимися частями, кривошипно-шатунными механизмами и станочное оборудование, агрегируемое на железобетонных опорных плитах, допускается устанавливать без фундаментов на подстилающий слой полов промышленных зданий при обосновании расчетом, а также в случаях, указанных в соответствующих разделах.

1.11. Подошву фундаментов машин, как правило, следует предусматривать прямоугольной формы в плане и располагать на одной отметке.

Высоту фундаментов машин следует назначать минимальной из условий размещения технологического оборудования, выемок и шахт, а также глубины заделки фундаментных болтов.

1.12. При проектировании рамных фундаментов рекомендуется:

соблюдать симметрию фундамента как по общей геометрической схеме, так и по форме элементов;

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Фундамент является одним из элементов системы турбоагрегат - фундамент - основание (ТФО), определяющих се динамическую надежность.

1.2. В связи с тем, что в настоящее время статические и динамические характеристики как отдельных элементов, так и системы ТФО в целом расчетом не могут быть определены с точностью, необходимой для практических целей, динамическая надежность системы ТФО обеспечивается путем разработки и выполнения технических требований к отдельным элементам системы.

1.3. Для обеспечения эксплуатационной надежности системы ТФО фундамент должен удовлетворять требованиям, ограничивающим статические деформации его нижней плиты и поперечных ригелей, а также динамическую податливость верхнего строения.

1.4. Соответствие фундамента настоящим техническим требованиям определяется путем приемочных испытаний и контроля в ходе промышленной эксплуатации.

1.5. На основе накапливаемых экспериментальных данных технические требования к элементам системы ТФО должны периодически пересматриваться.

2. СТАДИИ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

2.1. Проектирование фундамента вновь разрабатываемого турбоагрегата следует вести одновременно с проектированием турбоагрегата на стадиях эскизного проекта, технического проекта и разработки рабочей документации.

2.2. На стадии эскизного проекта по предварительному заданию предприятия - изготовителя турбоагрегата разрабатывают предварительную конструктивную схему фундамента с указанием его основных размеров и ориентировочных размеров сечений элементов.

2.3. Технический проект фундамента разрабатывают на основании взаимно согласованного эскизного проекта и задания предприятия-изготовителя турбоагрегата, которое должно содержать данные, необходимые для расчетов статических деформаций, колебаний, прочности и сейсмостойкости.

На этой стадии на основании выполнения указанных расчетов должна быть разработана окончательная конструктивная схема фундамента и зафиксированы сечения тех его элементов, которые влияют на компоновку и размеры элементов турбоагрегата и вспомогательного оборудования.

2.4. Рабочую документацию фундамента разрабатывают на основании технического проекта, согласованного предприятием-изготовителем турбоагрегата и утвержденного Министерством энергетики и электрификации СССР.

На этой стадии должны быть выполнены расчеты фундамента по обеспечению его несущей способности и пригодности к нормальной эксплуатации при действии статических, динамических и сейсмических нагрузок.

3. ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

3.1. Предприятия-изготовители турбоагрегатов при разработке машин, начиная с эскизных проектов, должны учитывать следующие конструктивные особенности и условия работы железобетонных рамных фундаментов.

Железобетонные рамные фундаменты проектируют в виде пространственной рамной системы, состоящей из поперечных рам, опирающихся на нижнюю плиту и связанных между собой в узлах продольными балками. Допускается установка в пролете поперечных рам средних колонн, не связанных между собой продольными балками. Установка колонн, не связанных ригелями поперечных рам, не рекомендуется.

Общую геометрическую схему и форму элементов фундамента выполняют симметричными относительно оси валопровода.

Ригели поперечных рам и продольные балки опирают на колонны, как правило, соосно; в сборных фундаментах примыкание продольной балки к ригелю поперечной рамы в его пролете допускается только в отдельных случаях при ограниченных нагрузках на балке.

Колонны проектируют прямоугольными, балки и ригели - прямоугольными или тавровыми.

Отметки верха балок, ригелей и плит верхнего строения фундамента по возможности выдерживают на одном уровне.

Избегают, по возможности, эксцентричного загружения ригелей и балок, сводя до минимума величину крутящих моментов.

Стремятся уменьшить количество выемок, гнезд и скосов.

В проекте турбоустановки предусматривают мероприятия, исключающие возможность недопустимого нагрева элементов фундамента, предотвращающие их неравномерный нагрев и уменьшающие угловые и вертикальные перемещения поверхностей верхнего строения фундамента.

Температура поверхности теплоизоляции горячих элементов турбоустановки не должна превышать 45 °С.

Между поверхностью теплоизоляции горячих элементов турбоустановки и элементами фундамента должен быть оставлен зазор не менее 50 мм.

Не допускают жесткой связи элементов верхнего строения и колонн фундамента с конструкциями здания машзала и вспомогательного оборудования. Между верхним строением фундамента и полом машзала на отметке обслуживания по всему периметру оставляют зазор.

4. СОДЕРЖАНИЕ ЗАДАНИЯ ПРЕДПРИЯТИЯ-ИЗГОТОВИТЕЛЯ ТУРБОАГРЕГАТА НА ФУНДАМЕНТ

техническую характеристику турбоагрегата (тип, мощность, рабочая частота вращения, масса валопровода, критические частоты вращения валопровода в диапазоне от 7 до 57 Гц);

технические требования к фундаменту в соответствии с указаниями раздела 5 настоящего РТМ;

схему, координаты приложения и величины вертикальных статических нагрузок, передаваемых на фундамент от неподвижных и вращающихся частей агрегата (с указанием нагрузок от массы оборудования, изоляции и заполняющей жидкости), с указанием размеров площадок передачи нагрузок; при этом следует принимать коэффициенты перегрузки:

на нагрузки от оборудования . 1,05

на нагрузки от изоляции . 1,2

на нагрузки от заполняющей жидкости . 1,0

схему, координаты приложения и величины горизонтальных статических нагрузок и крутящих моментов, передаваемых на фундамент при термических перемещениях турбины и деформациях трубопроводов, с указанием размеров площадок передачи нагрузок; направление этих нагрузок при пуске, работе и останове агрегата, а также места фикспунктов; при этом коэффициент трения следует принимать не более 0,3, а коэффициент перегрузки равным 1,05;

схему, координаты приложения, направления и частоты вынуждающих сил, передаваемых на фундамент, с указанием размеров площадок передачи сил; величину амплитуды каждой из вынуждающих сил, учитываемых при расчете колебаний фундамента и условиях нормальной эксплуатации турбоагрегата, следует принимать равной 15 % статической нагрузки от массы ротора, приходящейся на рассматриваемую площадку; при определении динамических усилий в элементах фундамента при расчете на прочность коэффициент перегрузки следует принимать 5,0;

схему, координаты приложения, направления, частоту, продолжительность и величины амплитуд одновременно действующих нагрузок, передаваемых на фундамент в аварийных условиях, с указанием размеров площадок передачи; нагрузки задаются как вынуждающие центробежные силы и учитываются в расчете прочности элементов фундамента с коэффициентом перегрузки 1,0;

схему, координаты приложения, величины амплитуд и частоты нагрузок, передаваемых на фундамент при коротком замыкании генератора, с указанием размеров площадок передачи нагрузок; при этом коэффициент перегрузки следует принимать равным 1,0 (эти данные передаются разработчику рабочей документации фундамента предприятием-изготовителем генератора);

схему, координаты приложения и величины нагрузок, передаваемых на фундамент при гидравлическом испытании вакуумной системы турбины; коэффициент перегрузки от заполняющей жидкости при гидроиспытаний следует принимать 1,0.

1. Величины перечисленных нагрузок должны быть заданы с погрешностью не более ± 10 % на стадии технического проекта и не более ± 5 % на стадии рабочей документации.

2 В случаях когда заказчик предъявляет требования к сейсмостойкости турбоагрегата, в состав задания следует включать схему, координаты приложения и величины нагрузок, передаваемых на фундамент от турбоагрегата при сейсмическом воздействии, с указанием размеров площадок передачи.

4.2. В случае значительных изменений нагрузок на фундамент па стадии разработки рабочей документации по сравнению с нагрузками, указанными в задании на разработку технического проекта, при необходимости вносят изменения в размеры элементов фундамента и элементов турбоагрегата, а также в компоновку турбоустановки.

5. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ФУНДАМЕНТАМ ТУРБОАГРЕГАТОВ

5.1. Относительный прогиб нижней плиты фундамента (отношение стрелы прогиба к длине плиты) за межремонтный период, указанный в нормативно-технических документах (НТД) на турбоагрегаты, не должен превышать:

0,0001 - при длине турбоагрегата в осях крайних подшипников не более 40 м,

0,00015 - при длине турбоагрегата в осях крайних подшипников 70 м и более.

При промежуточных длинах турбоагрегата допустимая величина относительного прогиба нижней плиты находится интерполированием.

Кривая прогиба нижней плиты фундамента должна быть плавной и иметь кривизну одного знака.

Эти требования относятся к остывшему фундаменту и не учитывают колебаний температуры внешней среды. За линию, от которой ведется отсчет отметок, принимается линия фундамента перед пуском турбоагрегата в эксплуатацию после монтажа или капитального ремонта.

5.2. Допустимые статические деформации кручения (изменение уклона верхней плоскости) ригелей поперечных рам под корпусами выносных подшипников турбины от указанных в задании на проектирование фундамента горизонтальных статических нагрузок и крутящих моментов, передаваемых на фундамент при тепловых перемещениях турбины и деформациях трубопроводов, задаются машиностроительными предприятиями в зависимости от количества подшипников на ригеле и особенностей конструкции турбины дифференцированно, но не менее 0,2 мм/м.

Статическая нагрузка на площадку фундамента от массы ротора, кН

Модуль главного коэффициента динамической податливости фундамента, мкм/кН

1. В случаях, когда статические нагрузки на площадки фундамента от масс роторов отличаются от указанных в таблице, допустимые значения главных коэффициентов динамической податливости находятся интерполированием.

2 Модули главных коэффициентов динамической податливости элементов фундамента в местах передачи на фундамент динамических нагрузок от ротора возбудителя генератора в указанном выше диапазоне частот не должны превышать 0,4 мкм/кН.

5.7. Фундаменты турбоагрегатов, предназначенные для возведения в сейсмических районах, должны выполняться в соответствии с НТД, регламентирующими требованиями к проектированию и строительству тепловых и атомных электростанций, а также их оборудования.

6. ПРАВИЛА ПРИЕМКИ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

6.1. Фундамент турбоагрегата до начала монтажа турбины и генератора подлежит приемке специальной комиссией.

6.2. Комиссия по приемке фундамента назначается приказом директора электростанции, на которой возводится фундамент.

6.3. Комиссия по приемке фундамента серийного турбоагрегата (серийного фундамента) назначается в составе представителей электростанции, управления строительства, монтажной организации, авторского надзора проектной организации, шефперсонала предприятий-изготовителей турбоагрегата.

В состав комиссии по приемке фундамента головного турбоагрегата (головного фундамента), кроме представителей организаций по приемке серийного фундамента, должны входить представители проектных организаций-разработчиков фундамента и турбоагрегата, организаций-исполнителей приемочных испытаний, головных научных организаций министерств разработчиков фундамента и турбоагрегата.

Руководители перечисленных организаций обязаны выделить своих представителей в приемочную комиссию по запросу директора электростанции.

6.4. При приемке головного фундамента приемочная комиссия определяет соответствие фундамента требованиям технического задания, НТД и технической документации и, в случае необходимости, дает рекомендации о дальнейших работах по совершенствованию конструкции фундамента и о проведении дополнительных приемочных испытаний.

6.5. Приемка головных фундаментов производится в соответствии с требованиями СНиП III-15-76 и СНиП III-16-80 , «Руководства по сооружению железобетонных фундаментов под турбоагрегаты и по выполнению подливок опорных плит и рам турбин и генераторов. ОС 9411-79», утвержденного Минэнерго СССР, на основании результатов приемочных испытаний, которые в обязательном порядке должны включать:

выполнение начальных измерений для последующего контроля осадок и статических деформаций нижней плиты при нагружении фундамента оборудованием и при дальнейшей эксплуатации турбоагрегата;

определение модуля упругости бетона колонн и элементов верхнего строения возведенного фундамента непосредственно перед статическими и динамическими испытаниями;

определение соответствия статических деформаций кручения поперечных ригелей (как правило, в зоне цилиндров высокого и среднего давлений) и динамических характеристик фундамента пп. 5.3, 5.4, 5.5 и 5.6 настоящего РТМ.

6.6. Приемочные испытания головных фундаментов должны проводиться специализированными подразделениями организации Минэнерго СССР и Минэнергомаша совместно или параллельно с участием представителей организаций разработчиков фундамента и турбоагрегата.

Примечание . Допускается проведение приемочных динамических испытаний организацией одного или указанных министерств.

6.7. Приемочные испытания головного фундамента должны включаться в сетевой график монтажа головного турбоагрегата.

Организационные вопросы проведения испытаний должны быть своевременно согласованы организациями-исполнителями с дирекцией электростанции, на которой возводится фундамент.

6.8. Приемочные испытания головного фундамента следует проводить по типовым методикам и программам, которые должны быть разработаны головными организациями Минэнерго СССР и Минэнергомаша по согласованию с институтом «Атомтеплоэлектропроект» и предприятием-изготовителем электрического генератора.

6.9. Проведение приемочных испытаний головных фундаментов до тех пор, пока бетон верхнего строения не достиг проектной прочности, не допускается.

6.11. Результаты приемочных испытаний головного фундамента, включая рекомендации приемочной комиссии, при необходимости рассматривают на научно-технических советах Минэнерго СССР и Минэнергомаша до утверждения акта приемки.

6.12. Акт приемки головного фундамента подлежит утверждению Минэнерго СССР по согласованию с Минэнергомашем и Минэлектротехпромом.

После утверждения акт приемки регистрируют и направляют заинтересованным организациям.

6.14. Акт приемки серийного фундамента утверждается руководством (директором или главным инженером) электростанции, на которой возведен фундамент.

6.15. В случае внесения в конструкцию фундамента для серийного турбоагрегата существенных изменений необходимо проведение приемочных испытаний нового фундамента по типовым программам и методикам.

7. МЕТОДЫ КОНТРОЛЯ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

7.1. Для обеспечения возможности выполнения начальных и последующих контрольных измерений статических деформаций элементов фундамента в рабочей документации должны предусматриваться осадочные марки.

7.3. Контрольные измерения осадок и статических деформаций нижних плит фундаментов следует производить гидравлическими или оптическими нивелирами.

Относительное положение соседних по длине агрегата марок должно определяться с погрешностью не более ± 0,1 мм.

Примечание . Допускается применение других средств измерений, которые обеспечивают получение результатов с погрешностью, не превосходящей указанную.

7.4. Результаты измерений осадок и статических деформаций нижних плит фундаментов следует заносить в паспорты фундаментов и хранить в дирекции электростанции.

7.5. Непосредственно перед приемочными статическими и динамическими испытаниями возведенного головного фундамента необходимо определить динамический модуль упругости бетона всех колонн и элементов верхнего строения.

Места контроля динамического модуля упругости бетона и методика проведения контроля должны быть согласованы с организацией-разработчиком фундамента и организациями, проводящими приемочные статические и динамические испытания.

Результаты контроля динамического модуля упругости бетона элементов фундамента оформляют и прилагают к протоколу приемочных испытаний.

7.6. При приемочных испытаниях головного фундамента статические деформации кручения ригелей следует определять путем измерения либо углов закручивания ригелей в нескольких сечениях по их длине, либо уклона площадок опирания корпусов, выносных подшипников при воздействии на ригели горизонтальных нагрузок.

Испытательное оборудование, используемое при определении углов закручивания, должно обеспечить возможность:

нагружения ригелей силами, равными указанным в задании на проектирование фундамента в соответствии с п. 4.1 или возможно более близкими к ним;

приложения к ригелю нагрузок в местах, возможно более близких к указанным в задании на проектирование фундамента в соответствии с п. 4.1.

7.7. Средства и методика измерений должны обеспечить определение углов закручивания ригелей с погрешностью не более ± 10 %.

7.8. При приемочных испытаниях головного фундамента главные и побочные коэффициенты динамической податливости следует определять с помощью вибровозбудителя, поочередно устанавливаемого на площадках передачи динамических нагрузок от роторов на элементы фундамента.

Вибровозбудитель должен обеспечить возбуждение колебаний фундамента усилиями, равными указанным в задании на проектирование фундамента в соответствии с п. 4.1 или возможно более близкими к ним.

7.9. При испытаниях частоту вынуждающей силы следует изменять таким образом, чтобы обеспечить уверенное определение положения и интенсивности резонансов фундамента в диапазоне частот от 10 до 58 Гц (шаг не более 1 Гц).

Измерения параметров колебаний при каждом значении частоты следует проводить при установившемся режиме вынужденных колебаний (отклонения по частоте не более ± 0,05 Гц).

Погрешность измерения частоты вынуждающей силы не должна превышать ± 0,017 Гц.

Примечание . Коэффициенты динамической податливости элементов фундамента в местах передачи на фундамент динамических нагрузок от ротора генератора рекомендуется определять в диапазоне частот от 10 до 110 Гц.

7.10. Виброизмерительная аппаратура и методика измерений должны обеспечить определение модулей главных и побочных коэффициентов динамической податливости фундамента в диапазоне частот от 47 до 55 Гц с погрешностью не более ±10 %.

7.11. Подсчет величин модулей главных и побочных коэффициентов динамической податливости следует производить по формулам, приведенным в обязательном приложении 2.

7.12. При оценке результатов приемочных динамических испытаний головного фундамента допускается превышение в 30 % точек измерений значений модулей главных и побочных коэффициентов динамической податливости, указанных в пп. 5.4, 5.5 и 5.3, до 50 %. Допустимость отклонений, превышающих 50 %, определяется решением приемочной комиссии, утверждаемым Минэнерго СССР по согласованию с Минэнергомашем и Минэлектротехпромом.

7.13. Колебания балок и плит фундамента на отметке обслуживания в вертикальном, поперечном и осевом направлениях в местах, согласованных с соответствующим турбостроительным предприятием и указанных в паспорте фундамента, следует контролировать:

при вводе турбоагрегата в эксплуатацию после монтажа;

не реже одного раза в три месяца в процессе непрерывной эксплуатации;

перед остановом турбоагрегата в ремонт;

после пуска турбоагрегата из ремонта.

Приборы, применяемые при контроле колебаний элементов фундамента, должны обеспечить измерение средних квадратических значений виброскоростей и размахов колебаний с погрешностью не более ±10 %.

Результаты контрольных измерений колебаний элементов фундамента следует заносить в паспорт фундамента и хранить в дирекции электростанции.

7.14. При эксплуатации турбоагрегата с целью своевременного предотвращения недопустимого нагрева элементов фундамента и исправления дефектов теплоизоляции элементов турбоустановки необходимо систематически, не реже одного раза в три месяца, контролировать температуру элементом фундамента и местах, согласованных с соответствующим турбостроительным предприятием и указанных в паспорте фундамента.

Контроль следует производить приборами, обеспечивающими определение температуры бетона с погрешностью не более ±3 °С.

Результаты контрольных измерений температур бетона следует заносить в паспорт фундамента и хранить в дирекции электростанции.

ПРИЛОЖЕНИЕ 1
Справочное

Опорный или опорно-упорный подшипник ротора, установленный в корпусе, который расположен на ригеле поперечной рамы фундамента

Опорный или опорно-упорный подшипник ротора, установленный в корпусе, который встроен в цилиндр турбины или торцевой щит статора генератора

Статические испытания фундамента

Испытания, проводимые с целью определения статических деформаций кручения поперечных ригелей и установления соответствия их техническим требованиям

Динамические испытания фундамента

Испытания, проводимые с целью определения модулей главных и побочных коэффициентов динамической податливости фундамента и установления соответствия их техническим требованиям

ПРИЛОЖЕНИЕ 2
Обязательное


(1)


(2)


(3)


где - модуль главного коэффициента динамической податливости фундамента в k -й точке в вертикальном направлении при приложении вертикальной вынуждающей силы с частотой f и этой же точке;

Bk в k ( f ) - амплитуда вертикальных вынужденных колебании k -й точки фундамента при приложении вертикальной вынуждающей силы с частотой f в этой же точке;

Q вk ( f ) - амплитудное значение вертикальной вынуждающей силы, приложенной в k -й точке фундамента с частотой f ;


- побочный коэффициент динамической податливости фундамента в k -й точке в осевом направлении при приложении вертикальной вынуждающей силы с частотой f в этой же точке;

Ok вk ( f ) - амплитуда осевых вынужденных колебаний k -й точки фундамента при приложении вертикальной вынуждающей силы с частотой f в этой же точке;


- главный коэффициент динамической податливости фундамента в k -й точке в поперечном (горизонтальном) направлении при приложении поперечной вынуждающей силы с частотой f в этой же точке;

П k п k ( f ) - амплитуда поперечных (горизонтальных) колебаний k -й точки фундамента при приложении поперечной вынуждающей силы с частотой f в этой же точке;

Q п k ( f ) - амплитудное значение поперечной (горизонтальной) вынуждающей силы, приложенной в k -й точке фундамента с частотой f .

Нормы осадки фундаментов турбоагрегатов

РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

АГРЕГАТЫ ПАРОТУРБИННЫЕ ЭНЕРГЕТИЧЕСКИЕ

ТРЕБОВАНИЯ К ФУНДАМЕНТАМ

Дата введения 1987-01-01

Указанием Министерства энергетического машиностроения от 29.10.85 N ВЛ-002/8579 срок введения установлен с 01.01.87

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ указанием Министерства энергетического машиностроения от 29.10.85 N ВЛ-002/8579

ИСПОЛНИТЕЛИ: И.И.ОРЛОВ, канд. техн. наук; В.В.КОСТАРЕВ, канд. техн. наук; И.А.КОВАЛЕВ, канд. техн. наук; Е.Д.КОНСОН, канд. техн. наук; В.Я.КАЛЬМЕНС, канд. техн. наук; Г.С.ВИТАХОВА; А.И.СМИРНЫЙ; Е.Г.БАБСКИЙ; Р.И.ФИНКЕЛЬШТЕЙН; С.Н.РЫБАКОВ; Г.Г.АГРАНОВСКИЙ, канд. техн. наук; В.В.ПЕРМЯКОВА, канд. техн. наук; А.Б.КОЗЛОВ, канд. техн. наук

СОГЛАСОВАН с Министерством энергетики и электрификации СССР

Главный инженер ГлавНИИнроекта Г.И.КУТЮРИН

Взамен РТМ 108.021.102-76

Настоящий руководящий технический материал (РТМ) распространяется на вновь проектируемые железобетонные монолитные и сборные рамные фундаменты паротурбинных энергетических агрегатов (турбоагрегатов) мощностью 100 МВт и более при частоте вращения 50 с для ТЭС и АЭС.

РТМ не распространяется на фундаменты турбоагрегатов с виброизоляцией, а также на стальные фундаменты.

РТМ устанавливает требования к проектированию, приемке и контролю фундаментов, обязательные для организации и предприятий Минэнергомаша и Минэнерго СССР.

Основные термины и определения - по ГОСТ 23269-78, ГОСТ 23346-80.

Определения других терминов, использованных в РТМ, приведены в справочном приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Фундамент является одним из элементов системы турбоагрегат-фундамент-основание (ТФО), определяющих ее динамическую надежность.

1.2. В связи с тем, что в настоящее время статические и динамические характеристики как отдельных элементов, так и системы ТФО в целом расчетом не могут быть определены с точностью, необходимой для практических целей, динамическая надежность системы ТФО обеспечивается путем разработки и выполнения технических требовании к отдельным элементам системы.

1.3. Для обеспечении эксплуатационной надежности системы ТФО фундамент должен удовлетворять требованиям, ограничивающим статические деформации его нижней плиты и поперечных ригелей, а также динамическую податливость верхнего строении.

1.4. Соответствие фундамента настоящим техническим требованиям определяется путем приемочных испытаний и контроля в ходе промышленной эксплуатации.

1.5. На основе накапливаемых экспериментальных данных технические требования к элементам системы ТФО должны периодически пересматриваться.

1.6. Выполнение требований настоящего РТМ является неотъемлемым условием обеспечения соответствия вибрационного состояния турбоагрегатов нормам ГОСТ 25364-82.

2. СТАДИИ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

2.1. Проектирование фундамента вновь разрабатываемого турбоагрегата следует вести одновременно с проектированием турбоагрегата на стадиях эскизного проекта, технического проекта и разработки рабочей документации.

2.2. На стадии эскизного проекта по предварительному заданию предприятия-изготовителя турбоагрегата разрабатывают предварительную конструктивную схему фундамента с указанием его основных размеров и ориентировочных размеров сечений элементов.

2.3. Технический проект фундамента разрабатывают на основании взаимно согласованного эскизного проекта и задания предприятия-изготовителя турбоагрегата, которое должно содержать данные, необходимые для расчетов статических деформаций, колебаний, прочности и сейсмостойкости.

На этой стадии на основании выполнения указанных расчетов должна быть разработана окончательная конструктивная схема фундамента и зафиксированы сечения тех его элементов, которые влияют на компоновку в размеры элементов турбоагрегата и вспомогательного оборудовании.

2.4. Рабочую документацию фундамента разрабатывают па основании технического проекта, согласованного предприятием-изготовителем турбоагрегата и утвержденного Министерством энергетики и электрификации СССР.

На этой стадии должны быть выполнены расчеты фундамента по обеспечению его несущей способности и пригодности к нормальной эксплуатации при действии статических, динамических и сейсмических нагрузок.

3. ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ФУНДАМЕНТОВ ТУРБОАГРЕГАТОВ

3.1. Предприятии-изготовители турбоагрегатов при разработке машин, начиная с эскизных проектов, должны учитывать следующие конструктивные особенности и условия работы железобетонных рамных фундаментов.

Железобетонные рамные фундаменты проектируют в виде пространственной рамной системы, состоящей из поперечных рам, опирающихся на нижнюю плиту и связанных между собой в узлах продольными балками. Допускается установка в пролете поперечных рам средних колонн, не связанных между собой продольными балками. Установка колонн, не связанных ригелями поперечных рам, не рекомендуется.

Общую геометрическую схему и форму элементов фундамента выполняют симметричными относительно оси валопровода.

Ригели поперечных рам и продольные балки опирают на колонны, как правило, соосно; в сборных фундаментах примыкание продольной балки к ригелю поперечной рамы в его пролете допускается только в отдельных случаях при ограниченных нагрузках на балке.

Колонны проектируют прямоугольными, балки и ригели - прямоугольными или тавровыми.

Отметки верха балок, ригелей и плит верхнего строения фундамента по возможности выдерживают на одном уровне.

Избегают, по возможности, эксцентричного загружения ригелей и балок, сводя до минимума величину крутящих моментов.

Стремятся уменьшить количество выемок, гнезд и скосов.

В проекте турбоустановки предусматривают мероприятия, исключающие возможность недопустимого нагрева элементов фундамента, предотвращающие их неравномерный нагрев и уменьшающие угловые и вертикальные перемещения поверхностей верхнего строения фундамента.

Температура поверхности теплоизоляции горячих элементов турбоустановки не должна превышать 45°С.

Между поверхностью теплоизоляции горячих элементов турбоустановки и элементами фундамента должен быть оставлен зазор не менее 50 мм.

Нe допускают жесткой связи элементов верхнего строения и колонн фундамента с конструкциями здания машзала и вспомогательного оборудования. Между верхним строением фундамента и полом машзала на отметке обслуживания по всему периметру оставляют зазор.

4. СОДЕРЖАНИЕ ЗАДАНИЯ ПРЕДПРИЯТИЯ-ИЗГОТОВИТЕЛЯ ТУРБОАГРЕГАТА НА ФУНДАМЕНТ

4.1. Задание предприятия-изготовителя турбоагрегата на фундамент должно содержать следующие данные:

техническую характеристику турбоагрегата (тип, мощность, рабочая частота вращения, масса валопровода, критические частоты вращения валопровода в диапазоне от 7 до 57 Гц);

технические требования к фундаменту в соответствии с указаниями раздела 5 настоящего РТМ;

схему, координаты приложения и величины вертикальных статических нагрузок, передаваемых на фундамент от неподвижных и вращающихся частей агрегата (с указанием нагрузок от массы оборудования, изоляции и заполняющей жидкости), с указанием размеров площадок передачи нагрузок; при этом следует принимать коэффициенты перегрузки:

на нагрузки от оборудования

на нагрузки от изоляции

на нагрузки от заполняющей жидкости

схему, координаты приложения и величины горизонтальных статических нагрузок и крутящих моментов, передаваемых на фундамент при термических перемещениях турбины и деформациях трубопроводов, с указанием размеров площадок передачи нагрузок; направление этих нагрузок при пуске, работе и останове агрегата, а также места фикспунктов; при этом коэффициент трения следует принимать не более 0,3, а коэффициент перегрузки равным 1,05;

схему, координаты приложения, направления и частоты вынуждающих сил, передаваемых на фундамент, с указанием размеров площадок передачи сил; величину амплитуды каждой из вынуждающих сил, учитываемых при расчете колебании фундамента и условиях нормальной эксплуатации турбоагрегата, следует принимать равной 15% статической нагрузки от массы ротора, приходящейся на рассматриваемую площадку; при определении динамических усилий в элементах фундамента при расчете на прочность коэффициент перегрузки следует принимать 5,0;

схему, координаты приложения, направления, частоту, продолжительность и величины амплитуд одновременно действующих нагрузок, передаваемых на фундамент в аварийных условиях, с указанием размеров площадок передачи; нагрузки задаются как вынуждающие центробежные силы и учитываются в расчете прочности элементов фундамента с коэффициентом перегрузки 1,0;

схему, координаты приложения, величины амплитуд и частоты нагрузок, передаваемых на фундамент при коротком замыкании генератора, с указанием размеров площадок передачи нагрузок; при этом коэффициент перегрузки следует принимать равным 1,0 (эти данные передаются разработчику рабочей документации фундамента предприятием-изготовителем генератора);

Читайте также: