Ленточный фундамент с подогревом

Обновлено: 17.05.2024

Утепленный теплоизолированный фундамент лучший для дома

Для защиты фундамента от воздействия сил морозного пучения грунта подошву фундамента здания обычно закладывают ниже глубины промерзания.

На пучинистых грунтах на боковую поверхность заглубленного фундамента все равно действуют касательные силы морозного пучения, которые стремятся вытолкнуть фундамент из грунта.

Величина этих сил часто бывает достаточна для того, чтобы зимой немного приподнимать относительно легкий малоэтажный дом. А летом дом опускается, и не всегда на старое место.

Мелкозаглубленный фундамент для частного дома

Для малоэтажных зданий часто применяют мелкозаглубленный фундамент. Такой фундамент при морозном пучении грунта снижает деформации стен дома до допустимого уровня за счет усиленного армирования и замены части пучинистого грунта на непучинистый.

На таком фундаменте дом два раза в год деформируется, пускай и в допустимых пределах.

Усиленное армирование заметно увеличивает затраты на сооружение фундамента, особенно на сильно пучинистых грунтах.

Как морозное пучение грунта разрушает дом

Как видим, на пучинистых грунтах любой фундамент, а значит и дом в целом, регулярно испытывает деформации, вызванные воздействием сил морозного пучения. С течением времени периодически возникающие деформации имеют свойство накапливаться. Так, многократное перегибание проволоки, в конце концов, ломает её.

Со временем может возрасти степень пучинистости грунта в основании фундамента, например, из-за повышения влажности по каким либо причинам.

Не редкость ошибки при проектировании дома, например, в определении степени пучинистости грунта или в выборе конструкции фундамента.

Как пучинистый грунт заставить не пучиниться?

С появлением новых теплоизолирующих материалов все большую популярность приобретает другой путь защиты от воздействия сил морозного пучения грунта – утепление фундамента и грунта вблизи него для того, чтобы земля под домом не промерзала.

Такой способ защиты исключает промерзание грунта и воздействие сил морозного пучения на здание.

Конструкцию теплоизолированного фундамента и стен дома выбирают без учета воздействия на них сил морозного пучения, что существенно снижает стоимость строительства.

Размещение подошвы фундаментов на малой глубине (0,3-0.4 м) от дневной поверхности, вместо закапывания фундамента на глубину промерзания, значительно сокращает трудоемкость и стоимость работ по возведению малоэтажных зданий, экономит материалы и снижает продолжительность строительства.

Такие фундаменты широко применяются в Скандинавских странах, Канаде и США.

В России их все еще используются неоправданно мало, не смотря на то, что для проектирования и строительства теплоизолированных фундаментов в России разработаны и утверждены нормативные документы. Все новое, как обычно, с трудом доходит до сознания застройщиков и проектировщиков.

Значительную долю от общей стоимости малоэтажных зданий составляют затраты на устройство фундамента. Удешевление строительства многим участникам этого процесса просто не выгодно.

Пучинистые грунты в основании фундаментов широко распространены в России. Легче перечислить непучинистые грунты.

Устройство теплоизолированного фундамента мелкого заложения – ТФМЗ

Схема укладки и параметры теплоизоляционного слоя в фундаментах отапливаемых зданий с теплоизоляцией пола показаны на рис. 1.

В качестве теплоизолированного фундамента мелкого заложения (далее – теплый фундамент) используются фундаменты на грунтовой подушке (столбчатые, ленточные или фундаментные плиты), подошва которых закладывается на глубину 0.4 м в отапливаемых зданиях и на глубину 0,3 м в неотапливаемых зданиях.

Конструкция теплоизолированного фундамента включает в себя специальным образом уложенную теплоизоляцию из плит экструдированного пенополистирола, (XPS, пеноплекс и т.п.) позволяющую уменьшить глубину сезонного промерзания под подошвой фундамента и удержать границу промерзания в слое непучинистого грунта (грунтовой подушке).

Во избежание деформаций фундамента от действия касательных сил пучения пазухи котлованов также засыпаются непучинистым грунтом.

В качестве материала для устройства подушки может быть использован песок гравелистый, крупный и средней крупности, мелкий щебень, котельный шлак. В случае необходимости увеличения несущей способности основания целесообразно применять песчано-щебеночную подушку, состоящую из смеси песка крупного или средней крупности (40 %), щебня или гравия (60 %).

Устройство подушек и засыпку пазух и траншей следует выполнять с послойным трамбованием или уплотнением площадочными вибраторами. При применении щебеночных подушек для сохранения плит утеплителя от продавливания следует применять выравнивающий слой песка, превышающий по толщине фракцию щебня в два раза.

Товары для строительства и ремонта

Для защиты грунтов основания от обводнения поверхностными и грунтовыми водами на дневной поверхности по периметру здания по песчаной подготовке толщиной 5 см на ширину теплоизоляционной юбки устраивается асфальтовая или бетонная отмостка толщиной 2-3 см. Отмостке придается уклон от здания 3%.

Кроме того, в грунтовой подушке вблизи ее подошвы по всему периметру теплоизоляционной юбки устраивается трубчатый дренаж с выпуском в ливневую канализацию или в пониженные места за пределами здания.

В отапливаемых зданиях утеплитель толщиной b y укладывается вертикально, по внешней поверхности фундамента и цоколя здания на высоту не менее 1,0 м (рис.1) от подошвы фундамента, а также горизонтально за контуром здания на глубине заложения подошвы фундамента на ширину D h , с образованием теплоизоляционной юбки толщиной b h по всему наружному периметру фундамента, кроме углов.

На углах здания толщина b c утеплителя увеличивается на участках длиной L с .

Для стока воды теплоизоляция юбки укладывается с уклоном от фундамента 3% .

Не укладывайте теплоизоляцию под отмостку

В некоторых источниках даются рекомендации, укладывать горизонтальную и вертикальную теплоизоляцию на уровень под отмостку. Так мол проще. Действительно проще, но эффективность теплоизоляции сильно снижается.

Компьютерное моделирование и натурные испытания показывают, что если расположить нижнюю границу вертикального и горизонтального слоя на 30-40 см ниже поверхности земли, у подошвы фундамента (как показано на рисунках), то температура грунта под фундаментом существенно повышается.

Как оказалось, при высоком расположении утеплителя, холод к фундаменту пробирается по грунту сбоку. Размещение теплоизоляции на уровне под отмосткой потребует значительного увеличения объема теплоизоляции.

В не отапливаемых зданиях утеплитель укладывается только горизонтально под подошвой фундамента в пределах всего здания и изоляционной юбки, которая выступает за контур здания на ширину D h .

Толщина слоя утеплителя принимается постоянной и равной b h (рис. 2). В неотапливаемых зданиях грунтовая подушка толщиной H устраивается под слоем теплоизоляции, на который опирается сам фундамент.

Рис.3. Сопряжение отапливаемого здания

Если у отапливаемых зданий имеются холодные пристройки, например, террасы, крыльца, то теплоизоляционной юбке придается форма, показанная на рис.3, а ширина юбки здания увеличивается на ширину пристройки. При этом ее параметры принимаются как для неотапливаемого здания.

Для защиты вертикальной изоляции, расположенной на внешней поверхности фундамента и цоколя здания, от механических повреждений, атмосферных воздействий, ультрафиолетового излучения и обеспечения долговечности конструкции необходимо предусмотреть светонепроницаемое и стойкое к атмосферным воздействиям защитное покрытие, которое совместимо с материалом изоляции. Защитное покрытие заглубляется в грунт не менее 15 см.

Для защиты горизонтальной теплоизоляционной юбки от механических повреждений, возникающих в результате воздействия колесной или точечной нагрузки на асфальтовое покрытие или тротуарную плитку в процессе эксплуатации, должна быть предусмотрена защита теплоизоляционных плит листовым материалом. Защитный слой располагается на верхней поверхности теплоизоляционных плит.

В процессе проектирования и строительства теплого фундамента необходимо предусмотреть мероприятия но недопущению возникновения «мостиков холода», снижающих эффективнось утепления фундамента.

На строительном рынке появился еще один теплоизоляционный материал, пригодный для утепления фундаментов. Это плиты и блоки из пеностекла.

Строительство утеплённого фундамента

После долгих поисков в 2008 году azemskov наконец нашёл то, что искал. Место нашёл идеальное недалеко от Москвы.

Участок небольшой – 6 соток в СНТ, 18 км от МКАД. От дома 40 минут езды в час пик. Он расположен на холмике, с которого открывается красивый вид. Участок расположен на краю посёлка, машины проезжают редко. До реки 150 метров, а вокруг красота.

За участок zemskov заплатил 2,6 млн. руб. включая электричество – три фазы, газ, летний водопровод из скважины. И, самое главное, места там живописные.

Выбор проекта и материалов

Сначала azemskov хотел дом с цокольным этажом, в котором можно было бы построить гараж на две машины. Но после того, как участник форума Кубарик сделал ему проект с пандусом для машин, стало ясно что проект придётся переделать, потому что пандус занимал много места на и без того маленьком участке. По просьбе azemskov Кубарик переделал проект под утеплённую финскую плиту.

Когда разговор пошёл о стенах будущего дома, azemskov долго выбирал между газобетоном и керамикой. Но после разговора на выставке с менеджером тульского завода керамики, который предложил хорошую цену на этот материал, он перестал колебаться и приобрёл керамические блоки.

Продумывая, из какого материала делать перекрытия - из монолита или из плит - он увидел предложение от Рязанского завода ЖБИ по плитам ПНО. Ему понравились их технические характеристики и, конечно же, цена. А дело в том, что покупал он их зимой, когда были скидки, а забирал в апреле.

Фундамент. Строительство утеплённой финской плиты

Стройку своего дома azemskov начал в мае 2010 года. Для его возведения он нанял двух таджиков с оплатой по 1 000 рублей за 12 часов работы.

Для строительства он приобрёл лазерный ротационный нивелир Бош за 30 000 руб.


Работа началась с разметки фундамента. За две недели силами двух таджиков был выкопан котлован. Грунт на месте строительства состоит из 25 см плодородного слоя, за ним суглинок – 50 см, а дальше твёрдая глина. Перепад высот грунта на месте строительства составляет 60 см.

По периметру фундамента он уложил водопроводную трубу ПНД 40 мм на глубину 2 метров. Проложил трубу ПНД 40 мм с тросом для прокладки электрического кабеля. Котлован сверху накрыл геотекстилем плотностью 350.


Соорудил дренаж с двумя инспекционными колодцами. Геотекстиль засыпал известняковым щебнем 20-40.

На заметку
Если вы заказали щебень или другой материал, не факт, что его доставят в назначенный срок. Поэтому не заказывайте одновременно щебёнку и вибротехнику, иначе можете понести убытки.


azemskov заказывал в двух организациях щебень и не смог его получить, тогда он просто договорился с водителями камазов, которые привезли щебёнку без задержек.


В утрамбованном щебне рабочие прокопали траншеи, насыпали песчаную постель и проложили канализационные трубы с уклоном. Щебень сверху накрыли геотекстилем плотность 350. Сверху геотекстиля насыпали песок – 20 см и хорошенько его утрамбовали.

После прокладки коммуникаций и подготовки основы в песке выкопали траншеи под рёбра плиты. Затем рабочие приступили к склейке коробов из ЭППС на рёбра плиты. Снизу применили ЭППС Styrofoam 500. Но в основном использовал Теплекс 35. В качестве клея использовал Пеносил и Инста Стик.

Укладка тёплого пола и армирование плиты

Для укладки тёплого пола azemskov закупил бухту шланга PEX 20 мм на 480 метров. Ещё взяли в аренду насос для проверки системы «тёплый пол» после укладки. Стоимость аренды составила 500 руб. в день.


Трубы тёплого пола диаметром 20 мм рабочие укладывали с шагом 150 мм и закрепляли на ЭППС. После укладки и проверки труб тёплого пола рабочие приступили к закладке арматурной сетки. Под пол взяли готовую арматурную сетку 6 мм, а ширина ячейки составила 150х150 мм. Под арматуру он приобрёл специальные подставки из пластика, но они оказались слабыми, быстро ломались под её тяжестью.

Заливка плиты

На заливку плиты заказали 32 кубометра бетона М - 350 П3 (бетон взяли с запасом). В этом процессе участвовало 8 человек. На заливку плиты им понадобилось 3 часа. Лишний бетон сняли правилом и залили вместе с оставшимся кубом на стоянку для машин. Ещё один линий куб увёз миксер.

Вначале рассчитывали при заливке бетона использовать секционную 5 метровую виброрейку, но она не выдержали и сломалась, поэтому пришлось ставить маяки на расстоянии 1,5 метра, а после заливки снимать.


Во время заливки бетона в одном месте распёрло опалубку. Брак вовремя заметили и поставили рейку на место.
После второй машины сломался бетононасос. Пришлось два миксера вылить с лотка. А за насос оплатить полную стоимость аренды за смену. Замеры горизонтальности плиты показали перепад в +/- 1см.

Для затирки плиты он арендовал «вертолёт». Аренда агрегата ему обошлась 2 000 руб. за 2 дня + диск 3 000 руб.=5 000 руб. за затирку. Затирал сам, получилась идеальная поверхность.

Совет
Для шлифовки «вертолётом» приглашайте специалиста – профессионала. Просто взять и шлифовать не получится.


Стройматериалы для строительства утепленной плиты фундамента и её общая стоимость

Для установки теплой плиты фундамента azemskov использовал:

  • ЭППС Стайрафон 500 – 6,6 кубов и клей общей стоимостью – 31 500 руб;
  • ЭППС Теплекс 354 толщиной 100 мм. – 30 кубов с отмосткой стоимостью – 92 000 руб;
  • Песок – 39 кубов стоимостью – 20 500 руб;
  • Щебень – около 133 кубов стоимостью – 125 000 руб;
  • Всевозможная мелочь: грибки для эппс, пена, муфты для канализации, геотекстиль, колодец, ревизионный дренаж, трубы ПНД, канализация, и т.д. общей стоимостью – 50 000 руб;
  • Бетон – 32 куба стоимостью – 90 500 руб;
  • Подставки под арматуру стоимостью – 3 000 руб;
  • Арматура стоимостью – 60 000 руб;
  • Тёплый пол, водоразводка общей стоимсотью – 70 000 руб.
  • Аренда «вертолёта» – 3 500 руб;
  • Бетононасос – 15 000 руб;
  • Виброплита – 5 000 руб;
  • Опресовщик отопления – 500 руб.

Оплата рабочим пока не посчитана (оплата по часам). Заказывать изготовление тёплой плиты фундамента у специалистов будет стоить – 2 000 руб. за м/2.

Доставка керамических блоков

Керамические блоки azemskov покупал в феврале со скидкой - акция 1600 руб. за куб + доставка 500 руб. куб, итого получилось - 2100 руб за куб.

На первый этаж он заказал 3 фуры – 72 поддона. Длина фуры 13 метров, подъехать к участку она не могла. Поэтому для перевозки поддонов к участку на расстоянии 700 метров пришлось заказать манипулятор КамАЗ 10-тонник со стрелой на 8 тонн за 9 500 руб. смена.

Манипулятор приехал вовремя и ждал 4 часа, пока подъедут фуры с блоками. Оказалось, что диспетчер перепутала время.

Возведение стен

Перед укладкой блоков сделали гидроизоляцию из рубероида. Технология укладки блоков такова, что рабочие сначала прокладывают пластиковую сетку с ячейкой 5 на 5 мм, а уже на неё кладут раствор и очередной блок. Для укрепления кладки стен их армируют через каждый третий ряд кладочной сеткой 50 на 50 из 4 мм проволоки. При укладке использовалась готовая кладочная смесь М- 200.

Таджики попались грамотные и аккуратные, научились читать чертежи. У них почасовая оплата, поэтому они не спешат, стараются, блоки кладут качественно. Всё делают, как скажет azemskov. Они как продолжение его мыслей. Короче – доброжелательные и сообразительные таджики.


Керамические поризованные блоки с пазами на торцах имеют размер – 490х235х220 мм. При укладке боковые швы раствором не заполняются. Толщина стены получается 235 мм.

Приобретённые керамические блоки имеют плохую геометрию, из-за чего швы немного гуляют. Чтобы контролировать размер швов azemskov выдал рабочим профильную арматуру, чтобы ставить по ней углы. Проверка лазерным ротационником подтвердила, что работа сделана качественно. Все углы в 0. Швы получаются шириной - 10 мм, а там где идёт армирование сеткой – 15 мм.

После обсуждения на форуме - запенивать или нет вертикальные швы, он решил, что плохо от этого не будет, и на всякий случай провёл эксперимент запенил швы.

Размещено участником форума «Дом и Дача» azemskov
Редактор: Адамов Роман

Как залить фундамент зимой и не пожалеть об этом

С наступлением зимы вести бетонирование значительно труднее, а главное, такие работы требуют тщательной подготовки и полного соблюдения всех строительных регламентов. Заливая фундамент зимой в мёрзлую почву, следует быть готовыми к тому, что весной земля оттает и просядет, а фундамент даст трещину, что повлечёт за собой дорогостоящий ремонт.


Но иногда жизнь вносит свои коррективы. Расчётное время работ срывается, а фундамент, который планировали залить летом, нужно возводить, когда столбик термометра падает ниже нуля.

Заливка фундамента зимой

Пользователю форума с ником AlecScrab строители предлагали залить ленточный фундамент зимой, в декабре, чтобы к весне он схватился, а в марте – начать поднимать стены. Обещали значительно снизить расценки на свою работу, т.к. сейчас – не сезон, и заказов у них мало.

Что и говорить, предложение – заманчивое, но форумчанину не даёт покоя вопрос: как правильно залить бетон при минусовой температуре, и повлияет ли это в дальнейшем на прочность ленточного фундамента.

Profanus:

– Набор прочности бетона происходит за 28 дней, но это при "плюсе", а при отрицательных температурах бетон может вообще не набрать прочность.

Вердикт форумчанина таков: заливка фундамента зимой выгодна только строителям, т.к. они хотят заработать. И для себя он никогда бы не стал заливать фундамент зимой, даже при серьёзной выгоде.

Если температура воздуха днём падает до +5°С, а ночью столбик термометра опускается ниже 0°С, то такие условия строительства считаются зимними.

При зимнем строительстве фундамент необходимо заливать, используя противоморозные добавки и специальную технологию согревания бетона. А это приводит к значительному удорожанию сметы на строительство. Удорожание может полностью нивелировать выгоду от сезонного снижения расценок на работу строителей.


По мнению 44alex,если лить бетон зимой с соблюдением всей технологии, то это выйдет дешевле, если только рабочие будут работать совершенно бесплатно.

Доводы "против" зимнего монолита

По мнению форумчанина с ником Гринпик, возведение монолитного фундамента зимой выполнять не стоит, потому что:

  • необходимы дополнительные затраты на бетон;
  • необходимы особые требования по укладке и выдерживанию бетона;
  • необходим электропрогрев бетона (или иной прогрев) под постоянным контролем температуры;
  • короткий зимний день приводит к дополнительным затратам на освещение участка, утеплению бытовки для рабочих, которые не горят желанием работать в холод;
  • можно нарваться на большое количество некачественных материалов.

Emelya:

Я тоже сначала хотел залить фундамент зимой, но, глядя на мытарства соседей, которые залили свою плиту в прошлом году в декабре при -5 С, передумал. Теперь у них с края плиты открашиваются и отваливаются куски бетона. Верхний слой, видимо, прихватило морозом, но под ногой он крошится.


Реакция гидратации

Чтобы понять, в чем заключается технология зимней заливки фундамента и насколько увеличивается сложность таких работ, необходимо рассмотреть процессы, которые происходят в бетоне при его заливке при отрицательных температурах.

В процессе твердения в бетоне протекают реакции гидратации, в ходе которых минералы цемента, взаимодействуя с водой, образуют новые соединения. Обезвоживание бетона в ранние сроки может замедлить или прекратить процесс твердения и привести к недобору прочности, а также вызвать его усадку и растрескивание.


При минусовой температуре вода, не успев прореагировать с цементом, замерзает. Поэтому реакция гидратации не происходит, а значит, бетон не затвердевает.Также значительно снижается прочность фундамента и его долговечность. Вода, застывшая в бетоне, расширяется в объёме, уменьшается коэффициент сцепления бетона с арматурой, что приводит к дальнейшему разрушению фундамента. Поэтому возведение фундамента зимой требует тщательного соблюдения сложной технологии заливки.

Поэтому большинство застройщиков с недоверием относятся к зимнему бетонированию. Однако если подойти к делу с умом и вооружиться необходимыми знаниями, можно залить качественный фундамент и при отрицательных температурах. А иногда – это единственный выход.

Как сделать укрытие для обогрева фундамента

Фундамент у форумчанина Svetoch – мелкозаглубленная лента под дом 10х10. Он успел только вырыть траншею и начал вязать арматуру. Заливать бетон хотел в середине недели (с противоморозными добавками, т.к. ночью – давно уже минус). И тут оказалось, что синоптики обещают дожди и снег. Форумчанин заволновался, можно ли оставить вырытую траншею с опалубкой, частично залитым фундаментом и арматурой на зиму.

Costeapechnik:

– Если оставить всё как есть, то арматура заржавеет, а основание ленты лопнет! Надо заливать фундамент полностью, а дождь и снег не помеха, главное – уход за бетоном после заливки.


Пользователь форума с ником Georgespb разбирается, как сделать укрытие для заливки фундамента и какой вид укрытия для обогрева конструкции является самым надежным.


авто-любитель:

– Укрытие делается так: над периметром фундамента возводится большая палатка, в неё устанавливается тепловая пушка, и температура внутри поднимается в плюс.


Требуемая мощность пушки в зависмости от уличной температуры

Уличная темапература Мощность пушки Расход газа
До -15 градусов (пушка дает примерно +8 -10 градусов к уличной температуре). 10 кВт на 100 кв.м 16-20 литров в сутки
От -15 градусов 30 кВт на 100 кв.м более 60-70 литров в сутки.

Так же греют бетон и при помощи электричества – сварочным трансформатором, подключённым к арматуре.

Для этого существуют специальные трансформаторы для прогрева бетонных изделий: ток подаётся через электроды, расставленные примерно на расстоянии 40-50 см друг от друга в фундаменте.

Но такой способ прогрева требует особого внимания!

sem2005:

– Необходим опытный мастер, который правильно смонтирует электроподогрев и будет следить за поддержанием необходимой температуры.

При таком методе прогрева бетона увеличивается вероятность поражения рабочих электрическим током. Именно поэтому, во избежание несчастных случаев, необходимо использование трансформатора с напряжением в 36 вольт. Перегрев бетона также чреват сильными трещинами, а недогрев – замерзанием.

Противоморзные добавки

Для бетона с противоморозными добавками прочность к моменту его охлаждения до температуры, на которую рассчитаны добавки, должна быть не менее 30% проектной при марке до 200, 25% – для бетона марки 300 и 20% – для бетона марки 400.

Для бетона без применения противоморозных добавок монолитных конструкций и монолитной части сборно-монолитных конструкций прочность к моменту замораживания должна составлять:

  • не менее 50% проектной при марке бетона 150,
  • 40% – для бетона марки 200–300, 30% – для бетона марок 400—500,
  • 70% – независимо от марки бетона для конструкций, подвергающихся замораживанию и оттаиванию.


Если применять противоморозные добавки, это обеспечивают процесс гидратации цемента и твердение бетона, но при отрицательных температурах эти процессы идут медленно, и в таком варианте бетон набирает критическую прочность примерно через месяц твердения на морозе.


Бетон, достигший к моменту замерзания критической прочности, нужную проектную прочность приобретает только после оттаивания и выдерживания при положительной температуре не менее 28 суток! Это значит, что поддерживать положительную температуру укрытого фундамента необходимо не только во время проведения бетонирования, но и после.


Подведя итог, можно сказать, что заливка фундамента в зимнее время и при отрицательных температурах приводит к удорожанию сметы и требует тщательного контроля на всех этапах работ. Взамен застройщики получают возможность форсировать проведение строительных работ и загодя подготовить основание для дома перед началом весеннего строительного сезона.

На FORUMHOUSE рассказывается, какую температуру выдерживать при заливке бетона зимой. Можно прочитать и о стройке колодца зимой.

Здесь собрана самая полная и подробная информация о имнем бетонировании. Как заливать бетон зимой, от чего зависит его достойное качество - горячее обсуждение «холодного» вопроса.

В этом видео рассказывается о нюансах армирования мелкозаглубленного ленточного фундамента.

Прогрев бетона в зимнее время: методы

Строительство бетонных монолитов при минусовых температурах осложняется неравномерным застыванием смеси. Вода быстро превращается в лед, процесс гидратации останавливается, в результате прочность готовой постройки нарушается. Прогрев бетона помогает избежать этих проблем.

Добиться необходимой температуры бетонной смеси можно пятью способами:

  1. электродным;
  2. проводом ПНСВ;
  3. электропрогревом опалубки;
  4. индукционным обогревом;
  5. инфракрасным теплом.

Рассказываем, в каких случаях используется каждый из них.

Электродный прогрев

Принцип действия основывается на способности бетонного раствора проводить ток. Электроды располагают внутри и на поверхности смеси. После подключения к трансформатору образуется электрическое поле и происходит нагрев. Добиться оптимальной температуры можно изменением выходных параметров трансформатора.

Что нужно знать об электродном прогреве

1. По мере схватывания бетона, его электрическое сопротивление меняется нелинейно. Чтобы избежать потери тепла и влаги, после завершения установки электродов необходимо укрыть поверхность утеплителем. Им может стать фанера с прокладкой из пенопласта, шлаковата, картон, опилки, доски и т. д. Осуществлять работы без утепляющего материала нельзя.

2. Прогрев с помощью сварочных аппаратов не рекомендуется по ряду причин:

  • при вживлении электродов в бетон ток проходит непосредственно через раствор – отсюда вытекает опасность поражения людей и животных;
  • допустимое напряжение – 36 В, в противном случае опасность удара током становится критичной;
  • сварочный трансформатор не предназначен для таких нагрузок и быстрее изнашивается.

3. Постоянный ток при прогреве бетона электродами использовать недопустимо: он способствует электролизу. Вода разлагается и не кристаллизируется. Застывание смеси становится невозможным.

4. Подходят электроды четырёх видов:

Вид электродовОписаниеСхема подключения
ПластинчатыеЭто металлические пластины, которые помещаются с разных сторон конструкции между бетоном и опалубкой. Схема подключения пластинчатого электрода
ПолосовыеПолосы металла 20–50 мм шириной. Подходят для прогрева горизонтальных элементов – например, плит или бетона, который соприкасается с грунтом. Подключаются по очереди к разным фазам с одной стороны конструкции, либо с разных сторон аналогично пластинчатым электродам. >Схема подключения полосового электрода
Струнные Размеры: 2–3 м в длину и 15 мм в ширину. Часто используются при прогреве колонн. Устанавливаются в центре конструкции. Электрическое поле образуется между опалубкой с токопроводящим листом и струной. Схема подключения пластинчатого электрода
СтержневыеПодходят для конструкций сложной формы. Вставляются прутья арматуры диаметром до 15 мм, после чего их подключают к различным фазам трансформатора. Обеспечивают сквозной прогрев.Схема подключения пластинчатого электрода

5. Трансформатор для прогрева бетона в зимнее время должен отличаться высокой мощностью, иметь защищенный корпус, быть удобным для транспортировки и выдерживать длительную работу при минусовых температурах.

Прогрев бетона проводом ПНСВ

Один из самых эффективных и безопасных способов. При прохождении тока через провод ПНСВ выделяется тепло, нагревая смесь. Расход – в среднем 60 м на 1 м3 бетона. Этот провод часто используется как напольный обогреватель в частном секторе.

Что нужно знать о проводе ПНСВ

1. Укладка кабеля в холодное года должна выполняться таким образом, чтобы он не касался опалубки, земли, а также не выходил за пределы бетона. После того, как опалубка будет залита бетонной смесью, дождитесь, пока она начнет застывать, затем подключите трансформаторную подстанцию и регулируйте температуру.

Схема укаладки провода ПНСВ змейкой

2. Секции монтируются на одинаковом расстоянии нагревательных проводов относительно друг друга (примерно 15 см). Смесь прогреется равномерно.

3. Закрепить провод на арматурном каркасе, вдоль которого он протянут, следует так, чтобы риски повредить его при подаче бетона в траншею отсутствовали.

4. Температура смеси измеряется в процессе изотермического прогрева каждые два часа. Этот пункт входит в содержание технологической карты на электрообогрев нагревательными проводами монолитных конструкций.

5. 70 В – напряжение, которым следует ограничиться при проведении работ. Поэтому при эксплуатации может потребоваться понижающий трансформатор (ПТ).

Электропрогрев опалубки (контактный метод)

Этот способ предполагает изготовление опалубки, в которую заранее будут закладываться нагревательные элементы. Они отдают бетону свое тепло при нагреве и ускоряют твердение. Электропрогрев опалубки происходит снаружи, через контактную поверхность.

Минусы: трудоемкость изготовления; низкий КПД (при заливке фундамента смесь греется лишь частично).

Индукционный обогрев

Применяется с армированными конструкциями. Металлические элементы, содержащиеся внутри них, станут сердечниками. Изолированный кабель выполняет роль индуктора и размещается петлями вокруг арматуры. Количество мотков провода и сечение необходимо рассчитать предварительно. Вдоль кабеля пускается переменный ток, образующий электромагнитное поле. Затем происходит нагревание армирующих элементов, от них тепло переходит к бетону, постепенно распространяясь по всей смеси.

Расход электроэнергии достигает 150 кВт/ч на 1 кубический метр бетона.

Плюсы: низкая цена; равномерный прогрев.

Минусы: сложный расчет; ограниченность применения (балки, колонны и т. д.).

Инфракрасный подогрев

Инфракрасные лучи нагревают поверхность непрозрачных объектов, распространяя тепло на весь объем. При применении инфракрасного подогрева бетонную конструкцию необходимо окутать прозрачной пленкой – она задержит тепло, пропустив лучи через себя. Подходит для прогрева железобетона.

Инфракрасный нагреватель Wacker Neuson HDR 45

Плюсы: простота и доступность.

Минусы: подходит только для небольших, тонких конструкций; инфракрасное тепло распространяется неравномерно.

Инфракрасный нагреватель должен быть устойчивым к сильному ветру и способным долгое время работать без дозаправки.

Выводы:

  1. Электродный прогрев подойдёт для раствора любой толщины и формы, но требует больших энергозатрат (около 1000 кВт на 3–5 куб. м.).
  2. Провод ПНСВ равномерно нагревает смесь и отличается безопасностью эксплуатации: кабель изолирован, температура легко регулируется.
  3. Контактный метод требует изготовления опалубки под заказ и не может обеспечить равномерный обогрев.
  4. Индукционный способ применим исключительно с армированными конструкциями.
  5. Инфракрасным теплом можно прогреть только небольшой слой бетона.

Также в нашем интернет-магазине представлены дизельные станции для прогрева бетона. Узнать, сколько стоит оборудование с учетом скидки, можно у наших менеджеров. Стоимость доставки зависит от габаритов и массы товара.

Особенности заливки фундамента зимой: способы прогрева бетона

Минусовая температура отрицательно сказывается на гидратации бетонной смеси. Основная задача зимнего бетонирования — сохранение влаги и поддержка нужного температурного режима для оптимального схватывания бетона. Сегодня мы рассмотрим несложные приёмы, позволяющие проводить бетонные работы в зимний период.

Прогрев бетона в зимнее время

Географическое положение нашей страны диктует свои правила и технологии на все виды строительных работ, проводимых в холодное время года. С повышением отрицательных температур бетонные работы возможны лишь на тех площадках, где заранее заложена техническая возможность электропрогрева или другого вида прогрева бетонной смеси. Как вы уже догадались, речь идет о крупных строительных площадках, где независимо от погодных условий бетон должен литься в строго определенные сроки.

Минусовая температура отрицательно сказывается на гидратации (срок набора прочности) бетонной смеси. Давайте вспомним, из чего она состоит: цемент, песок, вода и щебень. Вода — это катализатор для химической реакции процесса схватывания бетона. При отрицательной температуре происходит вымерзание влаги, которая крайне необходима для процесса набора прочности, потеря прочности бетона ставит под угрозу все дальнейшие виды работ. Основная задача зимнего бетонирования — это сохранение влаги и поддержка нужного температурного режима для оптимального схватывания бетона. Если влага в бетонной смеси закристаллизовалась, то этот бетон уже не спасти, и не стоит ждать оттепели — этот процесс необратим.

Прогрев бетона в зимнее время

Рекомендуемые нормативы зимнего бетонирования:

  1. Оптимальная температура для схватывания бетона +10…+20 °C.
  2. При температуре -20…+10 °C необходимо принимать меры для нормальной гидратации бетона.
  3. При опускании температуры ниже отметки -20 °C все виды бетонных работ запрещены.

Способы прогрева бетона в домашних условиях

При температуре 0…+10 °C допускается работа с бетоном при условии добавления присадок пластификаторов, которые не дают смеси потерять нужный набор прочности. В зависимости от температуры окружающей среды присадка разводится строго в пропорции, указанной в прилагаемой инструкции. Купить антиморозную присадку можно в любом строительном магазине.

Прогрев бетона в зимнее время

В качестве утеплителя прекрасно подходит пенопласт и пенофлекс, но покупать его для одной заливки не слишком рентабельно. Гораздо дешевле купить пенопластовую крошку и засыпать ей плиту, для того, чтобы легкую крошку не сдувало ветром, её необходимо накрыть клеенкой или брезентом, прижав его по периметру заливаемой плиты.

Колонны и стены защищены опалубкой, но все же не будет лишним накрыть открытые участки бетона той же клеенкой или брезентом. Во время набора прочности бетона происходит химическая реакция, благодаря которой сама бетонная смесь выделяет некоторое количество тепла, которое необходимо сохранить дополнительными утеплителями.

Если столбик термометра опустился ниже нуля, то выделяемого тепла уже недостаточно. На промышленных стройках для прогрева бетона при минусовых температурах используют специальные трансформаторы, посредством которых греют бетон нагревательными проводами.

Прогрев бетона в зимнее время

Покупать специальный трансформатор для того, чтобы залить в мороз пару кубов бетона, затея не слишком хорошая. В качестве такого трансформатора вполне реально использовать обычный сварочный трансформатор на 150–200 А. Ниже приведен список материалов, необходимых для прогрева небольшой плиты сварочным аппаратом:

  1. Сварочный аппарат 150–200 ампер.
  2. Провод ПНСВ 1,5мм.
  3. Одинарный алюминиевый провод АВВГ 1x2,5мм.
  4. Изолента ХБ (черная).
  5. Токовые клещи.

Подготовка к прогреву

Греющий провод ПНСВ необходимо разрезать на куски длиной в 17–18 метров. Полученные отрезки (петли) равномерно укладываем и подвязываем по всему арматурному каркасу заливаемой конструкции. Закладываем петли таким образом, чтобы после заливки они находились чуть выше середины плиты, если заливается колонна или стена, слой бетона над петлями должен быть не менее 4 см. Подвязывать греющий провод лучше всего изолированным алюминиевым проводом. Он должен идти не в натяжку, в идеале его нужно расположить в волнообразном порядке. Расстояние между петлями, в зависимости от температуры воздуха, колеблется от 10 до 40 см. Чем ниже минусовая температура, тем меньше расстояние между петлями. Количество прогревочных петель зависит от мощности сварочного аппарата. Одна петля потребляет 17–25 ампер, значит, 6–8 прогревочных петель — это максимум, что вытянет сварочный аппарат на 250 ампер.

Прогрев бетона в зимнее время

При укладке петель важно маркировать концы, как вариант, на один конец каждой петли наматываем полоску изоленты, а второй конец оставляем свободным.

После того как петли уложены и подвязаны, нужно нарастить на них алюминиевые концы, которые потом подключаются к аппарату. Длина холодных концов определяется месторасположением самого сварочного аппарата, но не более 8 метров. Сращиваем петлю и холодный конец при помощи скрутки длиной в 4–5 см. Тщательно изолируем скрутку ХБ-изолентой и укладываем её с таким расчетом, чтобы после заливки она осталась в бетоне, так как на воздухе скрутка сгорит. Маркировку изолентой нужно перенести на присоединяемый холодный конец петли.

Подключение и прогрев

После заливки все холодные концы нужно подключить к сварочному аппарату, концы с маркировкой и без сажаем на разные полюса аппарата. После того как все подключено, проверяем всю схему прогрева и включаем аппарат на минимальной нагрузке регулятора мощности. Токовыми клещами меряем каждую петлю в отдельности, норма 12–14 ампер. Через час добавляем половину запаса мощности аппарата, через два часа выкручиваем регулятор полностью. Очень важно равномерно добавлять амперы на прогревочные петли, на каждой петле должно показывать не более 25 ампер. При температуре -10 °C 20 ампер на петле обеспечивают нормальную температуру, необходимую для схватывания бетона. По мере схватывания бетона ампераж петли падает, что дает возможность постепенно его увеличивать на сварочном аппарате. Перед тем как увеличить, смотрим, упало или нет значение на самих петлях. Если ампераж не изменился с последней проверки, то ждем, когда он упадет хотя бы на 10%, и лишь после этого повышаем ток.

Прогрев бетона в зимнее время

Время прогрева зависит от объема заливки и температуры окружающего воздуха. Так же как и в бетонировании с присадками, дополнительно утепляем заливаемую конструкцию. При морозе до 10 градусов достаточно 48 часов для нормальной гидратации бетона. После того как прогревочные петли отключены, дополнительные утеплители остаются еще минимум 7 дней. Не стоит слишком нагревать бетон, так как это чревато излишним испарением влаги, что в последствии приведет к образованию трещин и потери прочности бетона. Плита под утеплителем должна быть чуть теплой и не более того. Прогрев бетона сварочным аппаратом в домашних условиях требует повышенных мер электробезопасности и должен выполнятся лишь при наличии необходимого запаса знаний электротехники и профессиональных навыков работы со сварочным аппаратом.

Прогрев бетона в зимнее время

При отсутствии сварочного аппарата можно использовать старый способ прогрева — «тепловой шатер». При заливке небольших конструкций над ними возводится палатка из брезента или фанеры, воздух в которой греется с помощью тепловых пушек или газовых обогревателей. Хорошо зарекомендовали себя при таком методе обогрева «Чудо-печки», работающие на дизельном топливе. При экономичном потреблении топлива (2 л на 12 часов) одна печь прогревает 10–15 кубов воздуха теплового шатра до нужной температуры гидратации бетона.

Читайте также: