Какая минимальная глубина заложения фундаментов под колонны

Обновлено: 20.05.2024

Размеры фундаментов промышленных зданий под колонны

Столбчатый фундамент является самым экономичным основанием для дома. Затраты при его обустройстве практически в 2 раза меньше, чем при строительстве монолитных фундаментов.

Конструкция фундамента

Конструкция столбчатого фундамента состоит из отдельных столбов, устанавливаемых в строго определенных местах:

В углах возводимого здания. В местах пересечения несущих стен. Под несущими простенками. Других местах, в которых сосредоточены большие нагрузки.

Для повышения устойчивости, исключения горизонтального смещения и, как следствие возможного опрокидывания, установленные фундаментные столбы увязываются ростверком. Обустроить столбчатый фундамент можно самостоятельно, но при этом следует все работы выполнять по предварительно составленному чертежу или схеме.

Расчет фундамента столбчатого типа непростое мероприятие и должно выполняться специалистами, которые учтут малейшие нюансы конструкции здания и особенности грунтов на строительной площадке.

Результатом проведенной работы будет общая схема основания под конкретное здание, в которой указано:

Количество столбов и их месторасположение. Форма столбов и линейные размеры. Требуемая густота армирования.

Чертежи

Коробчатый фундамент: конструкция и правила выполнения Устройство железобетонных фундаментов | Строительный портал Раздел 5. Конструкции фундаментов жилых и общественных зданий

Чертеж столбчатого фундамента в качестве образца представлен на рисунке ниже:

Кроме чертежа для удобства проведения строительных работ рекомендуется иметь под рукой также схему столбчатого фундамента.

Существует две разновидности оснований столбчатого типа для дома:

    Монолитный столбчатый фундамент. Сборный столбчатый фундамент.

Чертеж этих конструкций выглядит так:

В первом случае столбы основания заполняются бетоном, а во втором формируются с использованием кирпича или природного камня.

Этапы работ

Строительство фундамента любого типа начинается с производства земляных работ.

Этап 1 – земляные работы

Рельеф выравнивается, при необходимости, подсыпается грунт, трамбуется при помощи виброплощадки. После этого контуры фундамента выносятся на местность (с помощью колышков и шнура). Разметив таким образом габариты монолита, можно приступать к рытью котлована. Глубина его – 300-500 мм.

По периметру размер земляного корыта должен превышать аналогичные параметры фундаментной плиты на метр. Так вы обеспечите себе достаточную степень свободы действий при выполнении дальнейших работ.

На этом же этапе обустраивается дренажная система. Для этого на дне корыта выкапываются несколько траншей (в поперечном направлении) и покрываются геотекстилем.

Поверх своеобразного фильтра укладываются пластиковые трубы, просверленные в нескольких местах для поступления в них грунтовых вод.

Трубы прокладываются до дренажного колодца с уклоном в его сторону. Уложенная таким образом дренажная система засыпается щебнем и сверху снова накрывается слоем геотекстиля.

Этап 2 – устройство подушки

Данный этап заключается в засыпке на дно котлована слоя песка с последующим его увлажнением.

Влажный песок уплотняется и на него насыпается слой щебня (все слои тщательно трамбуются).

Полученная подушка скрепляется пятисантиметровым слоем цементно-песчаного раствора.

Этап 3 — гидроизоляция

При устройстве плитного фундамента своими руками не следует забывать о защите монолитной плиты (технология устройства фундамента монолитная плита) от воздействия влаги. Гидроизоляционный материал укладывается поверх подбетонки. Стыки отдельных листов герметизируют.

Специалисты рекомендуют гидроизоляцию выполнять в два слоя, верхним из которых будет служить прочная полиэтиленовая пленка.

Она защитит от повреждений основной гидроизоляционный слой, состоящий из мастики и рубероида.

Этап 4 – устройство опалубки

Для изготовления опалубки подойдут доски толщиной до 25 мм. Они строгаются с одной стороны. Доски сбиваются в щиты, а затем монтируются внутри котлована.

Струганная сторона должна быть обращена в сторону бетона (то есть внутрь корыта). В процессе заливки доски опалубки будут испытывать большие нагрузки, поэтому их предусмотрительно укрепляют укосами.

Этап 5 – армирование плиты

Арматурный каркас собирается на земле, а затем переносится в опалубку.

При этом нижний его пояс должен устанавливаться на подпорки: таким образом можно обеспечить полное закрытие каркаса бетоном.

Чтобы соблюсти необходимый зазор между нижним и верхним поясами, на первую сетку ставятся кирпичи, а на них укладывается верхняя сетка. Вертикальные распорки лучше не варить, а вязать.

Этап 6 – заливка

Заливку опалубки бетонной смесью лучше производить при помощи насоса или строительного миксера. А как сделать плитный фундамент своими руками, если подобных приспособлений нет? В этом случае сооружается простейший желоб, по которому бетон подается в котлован.

При этом течь быстрее ему помогают лопатой. В процессе заливки надо несколько раз пройтись по залитой массе глубинным вибратором – это освободит массу от воздушных скоплений. Залитую массу выглаживают виброплитой, накрывают полиэтиленом – и оставляют в покое до полного созревания бетона.

При хорошей погоде недели через три монолит наберет нужную прочность, и вы можете приступать к строительству надземной части здания.

Ну и возможно, после прочтения этой статьи, Вам не понравился плитный фундамент. Просмотрите тогда наши статьи о ленточном фундаменте, свайном фундаменте и столбчатом фундаменте.

Возможно Вы сделаете лучший выбор фундамента для Вас.

Видео плитный фундамент своими руками.

Требования к фундаментам

Монтажные работы могут быть начаты только после полной готовности фундаментов и других мест опирания металлического каркаса или его отдельных частей, перечисленных в проекте.

Разбивочные оси для установки металлоконструкций наносятся на металлические элементы, которые размещены на поверхности фундаментов вне контура опоры каркаса. Разбивочные оси и реперы требуется располагать в соответствии с требованиями СНиП по геодезическим работам в строительстве.

Анкерные болты и закладные детали для последующего монтажа металлоконструкций, как правило, устанавливаются и бетонируются на этапе возведения фундамента.

Есть 3 допустимых варианта опирания колонн на фундаменты:

  • для колонн с фрезерованными опорными торцами — на заранее установленные, выверенные и подлитые цементным раствором стальные опорные плиты с верхней строганой поверхностью;
  • для колонн с фрезерованными подошвами башмаков — непосредственно на поверхность фундаментов, возведенных до проектной отметки подошвы колонн, без последующей подливки цементным раствором;
  • на заранее установленные и выверенные опорные детали, заделанные в фундаменты, с последующей подливкой колонн цементным раствором.

Подливка бетона может осуществляться только при наличии письменного разрешения монтажной организации.

Устройство столбчатого фундамента

Заложение такого фундамента под несущий каркас будущего строения, как правило, делают открытым способом, в предварительно отрытых колодцах или траншеях ниже глубины промерзания грунта: разжиженный грунт и воду удаляют со дна, делают подсыпку из песка или щебня толщиной не более 10 см и трамбуют. Сперва заливают в опалубке (или монтируют из блоков) подошву фундамента, затем — столб (можно сложить из камня).

Площадь подошвы выбирают (рассчитывают специалисты) в зависимости от передаваемой на грунт нагрузки и его просадочности. При больших нагрузках на столбчатый фундамент его армируют (усиливают). Для относительно легких построек (одноэтажных) и сооружений от армирования можно отказаться. Но конструкция столба должна быть такой, чтобы эпюра распределения в нем нагрузки имела угол наклона более 60°. Если угол меньше, неармированная подошва разрушится. Колодец (траншею) с готовым столбчатым фундаментом обратно засыпают песком, послойно и трамбуя.

Монолитная железобетонная фундаментная плита Плитный фундамент своими руками: как сделать, инструкция, расчет Установка, монтаж, выверка и закрепление оборудования на фундаментах

Нагрузка на столбчатый фундамент определяет его размеры и конструкцию. Оптимальное восприятие нагрузки фундаментом и перенос ее на грунт основания показан на эпюре сопротивления: угол 60° и более гарантирует запас прочности даже не армированному фундаменту, менее 60° фундамент требует усиления армированием

Для столбчатого фундамента важно чтобы его подошва находилась ниже глубины промерзания грунта. Но при его возведении не всегда удается понизить уровень грунтовых вод ниже глубины промерзания. Поскольку бетонные работы в таких условиях весьма затруднительны, столбчатые фундаменты лучше делать сборными из готовых бетонных блоков, укладываемых на цементный раствор. Для подошвы следует использовать армированные блоки.

Основные характеристики, применение и преимущества

Рассмотрим основные типы монолитного жб фундамента, а так же их применении и преимуществах в строительстве зданий и домов. Какими характеристиками обладают жб фундаменты монолитных типов.

Монолитный плитный

Пример монолитного основания

Является одним из распространенных и надежных. Одним из преимуществ является то, что его не надо ставить на глубину промерзания грунта, что в свою очередь сокращает расходы на строительные материалы.

Такой фундамент обеспечивает надежность при резких перепадах температур, является прочным основанием при сооружении его на слабых грунтах. Его еще называют еще плавающим. Плитный монолитный фундамент представляет собой сплошную железобетонную плиту, которая заглублена в грунт.

Плита такого фундамента может служить и черновым полом будущего дома. Она настолько надежна, что на ней даже строят небоскребы. Применяют монолитный плитный фундамент и для постройки домов, бань, промышленных сооружений, как на слабых, так и на твердых грунтах.

Ленточный монолитный

Ленточный фундамент углубленный

Он представляет собой железобетонную полосу, которая расположена по всему периметру здания и внутри него. Такой фундамент хорошо выдерживает нагрузки в любых климатических условиях. Бывает заглубленный, мелкозаглубленный и незаглубленный — ростверк.

Мелкозаглубленный подходит для построек небольших домов и сооружений, заглубленный — для построек 1-2 этажных зданий.

Ленточный монолитный применяют при возведении домов с наклонной плоскостью участка, является идеальным вариантом при сооружении зданий из газобетона, пеноблоков так, как равномерно распределяет вертикальную нагрузку на сваи и грунт.

Столбчатый монолитный

Такой тип фундамента состоит из столбов, оголовки которых соединены между собой по периметру здания и по пересечению перегородок внутри его. Ростверк, связывая колонны, создает единую монолитную конструкцию. Данный фундамент сочетает в себе все преимущества свайного и ленточного. Применяется для строительства средних и легких видов сооружений.

Основные характеристики, применение и преимущества

Устройство фундамента: важные моменты

Устройство фундамента такого типа требует соблюдения ряда важных правил и требований. Так, если вы построите фундамент на сыром участке и оставите на зимнее время без перекрытий, стен и крыши, то конструкция может деформироваться

Это правило общее для всех фундаментов, но в особенности оно важно для столбчатого, т.к. каждый столб в данной системе представляет отдельный фундамент ввиду отсутствия единого жесткого остова

Каждый столб такого основания дает свою осадку, что усложняет и стен в будущем.

Схема столбчатого фундамента с ростверком.

Устройство фундамента должно выполняться летом или в начале осени, когда грунт достаточно прогрет и подземные воды находятся в нижних пластах. Если в процессе устройства фундамента использовались монолитные бетонные столбы, необходимо помнить, что бетон будет полностью готов через 30 дней. В течение этого времени нельзя давать нагрузки на бетонные опоры и нужно следить за тем, чтобы верхний слой бетона не пересыхал. Его можно укрыть пленкой или рубероидом. Чтобы раствор схватывался равномерно, опоры следует периодически смачивать.

Для устройства фундамента используется бетонная смесь на основе цемента марки М400. В качестве наполнителя применяется мелкий гравий и крупнозернистый песок. Вода добавляется в таком количестве, чтобы готовая смесь легко укладывалась, но не заливалась. Слишком густая или жидкая консистенция бетонной смеси снижает прочность конструкции на 25%.

При закладке опоры допускается ряд типичных ошибок. Одна из них – это неравномерность проседания. Причины следующие:

  • неправильный расчет глубины;
  • неравномерная нагрузка на опоры;
  • разная величина заглубления опор;
  • низкокачественные материалы;
  • неверная оценка несущих особенностей почвы.

Избежать этих и других ошибок вам поможет проект основания, составленный специалистами, и постоянный контроль выполнения строительных работ.

Устройство

Сборный ленточный фундамент строится методом послойного возведения.

Он состоит из следующих элементов:

  • Траншея, вырытая в грунте на определенную глубину.
  • Слой песчаной подушки, обеспечивающий ровную горизонтальную поверхность.
  • Ряд трапециевидных блоков (ФЛ), образующих опорную площадку для монтажа ленты.
  • Основное тело ленты, построенное из ФБС.

Устройство

Существуют комбинированные типы сборных лент, где вместо блоков ФЛ (трапециевидных) используется монолитная бетонная стяжка.

Такой вариант требует больших трудозатрат, но образует более жесткую подушку под ленту, устойчивую к воздействиям сил пучения грунта.

Монолитный фундамент под колонны

Монолитные основания, выливаемые одним монолитным сооружением, имеют грани ступеней под углом 90 градусов. Такие фундаменты в основном оборудуются непосредственно на строительной площадке сооружения. Для заливки на дне котлована на заранее оборудованном и подготовленном месте проводится разметка осей будущих колонн. Под каждое основание сооружается опалубка либо собирается съемная конструкция опалубки, использование которой значительно упрощает работу, поскольку не требуют дополнительных затрат на проверку правильности установки.

Для опалубки, согласно, технологических карт, проводится установка положения, как по вертикали, так и по горизонтали. Последним этапом проверки перед заливкой бетоном монолитного основания является проверка на соответствие правильности размещения по монтажным осям. После установки опалубки нижних ярусов, проводится проверка и установка подколонника (стакана).

Коробчатый фундамент: порядок устройства плиты Фундаменты мелкого заложения. Виды фундаментов презентация, доклад Устройство плиты фундамента Примыкание стен и фундаментов к пучинистому грунту

При заливке основания под сложную форму железобетонной колонны используется усиление каркаса металлической сеткой или сварным арматурным каркасом. Для установки на легких грунтах, сложных почвах, там, где требуется повышенная прочность под фундаментом возможно устройство дополнительной площадки или устройство свайного фундамента, обеспечивающего большую прочность.

Если обнаружено несовпадение длин диагоналей, разметка фундамента нуждается в корректировке. В этой ситуации прямоугольник или квадрат имеют не все прямые углы и по форме, как правило, похожи на параллелепипед.

Если отклонение заметное, проверяют углы. При отклонении величины углов, во-первых, заново измеряют углы, вбивают колышки и натягивают шнуры. Во-вторых, корректируют расположение шнуров, отмечающих положение параллельной стены. Проверяют диагонали. Как правило, старую разметку удаляют.

Установка опалубки и армирующего каркаса

Традиционный фундамент, который будет плавать, требует дополнительной установки армирующего каркаса. Армирование фундамента выполняется следующим образом:

    Нижний уровень состоит из прутьев толщиной в 10 мм, установленных по периметру уровень устанавливается аналогичному предыдущему, прутья обвязываются при помощи П-образных несущими стенами прутья укладываются с минимальным шагом.

Верхний уровень армирующего пояса монтируется на хомуты для повышения прочности готовой конструкции.

Строительство, устройство фундаментов Технология устройства фундамента, виды фундамента и способы монтажа Плитный фундамент – разновидности, расчет, методика возведения Армирование ленточного фундамента чертежи Пособие к СНиП 2.03.01-84 «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений»

Для обустройства опалубкирекомендуется использовать полистирольные листы, щиты из фанеры и досок. Высота бортика опалубки должна превышать высоту фундамента на 10 см. Щиты фиксируются к стенкам котлована, уплотняются бумагой, картонными листами или толем.

По верхней части опалубки укладывается шнур для контроля заливки, одна сторона которого надежно фиксируется к элементам опалубки.

Нужна или нет?

Согласно СП (СНиП *) перед закладкой монолитной плиты фундамента под сооружение необходимо устраивать специальную подушку.

Ее роль заключается в следующем:

  • формирует ровное и качественное дно основания;
  • отвечает за равномерное распределение давления на грунт в следствие сопротивления сжатию почвы;
  • противостоит промерзанию фундамента зимой;
  • обеспечивает стабильность сооружения в процессе эксплуатации;
  • сводит к минимуму возможные усадки конструкции;
  • является изолирующим слоем от попадания почвенной влаги в основание дома.

Исходя из вышеизложенных аспектов, устройство демпферной подложки является необходимым этапом строительства плитного фундамента. В противном случае сохраняется риск преждевременной деформации и разрушения всего сооружения в условиях промерзания грунта.

Как определить глубину заложения фундамента под колонну

Глубина заложения фундаментов зависит от многих факторов, таких как рельеф поверхности, инженерно-геологические условия площадки под строительство, конструктивные особенности дома, глубина промерзания грунтов, глубина расположения подземных вод и другое.

Важность инженерно-геологических изысканий бесспорна, но для многих частных застройщиков эта процедура является дорогостоящей. Наши статьи будут ориентированы на людей, которые в силу каких-либо причин не могут себе позволить нанять геологов и проектировщиков, но желающих на готовых примерах разобраться с расчетами оснований, а также других элементов своего будущего дома.

Определить глубину заложения фундамента в г.Москва. Рассмотрим несколько вариантов: неотапливаемый дом; отапливаемый дом без подвала с температурой в помещениях 20 о С и отапливаемый дом с неотапливаемым подвалом.

1. Первым делом нам нужно определить нормативную глубину сезонного промерзания грунтов (dfn), в метрах, которая определяется по формуле:


Для неоднородного сложения грунтов d определяется как средневзвешенное в пределах глубины промерзания.

Информационный блог о строительстве зданий

  • Home
  • /
  • Железобетонные конструкции
  • /
  • Конструкции зданий и сооружений
  • /
  • Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

В этой статье рассмотрим расчёт фундамента под колонну по 1-му предельному состоянию при нагружении фундамента вертикальной нагрузкой и горизонтальной нагрузкой с изгибающим моментом, действующими в одной плоскости.

Исходные данные

Исходными данными для расчёта фундамента будут нагрузки, приходящие на фундамент от колонны и инженерно-геологические изыскания.

В результате расчёта рамы в расчётной программе получили следующие нагрузки на фундамент:

N=21.3 т (вертикальная нагрузка)

Mx=14.8 т*м (изгибающий момент)

My=0, Qy=0 (Расчёт при действии моментов в 2-х плоскостях рассмотрю отдельно в следующих статьях)

Qx=2.8 т (поперечная нагрузка)

Хочу отметить, что лучше всего проверить 2-а расчётных сочетания:

  1. Полная ветровая, снеговая, вес конструкций, равномерно-распределённая
  2. Полная ветровая и вес конструкций

Дело в том, что одно из условий расчёта является недопущение отрыва края фундамента от земли и при отсутствии снеговой нагрузки вертикальная нагрузка будет меньше и соответственно меньше сопортивления изгибающему моменту.

Глубина сезонного промерзания – 1,79 м;

Уровень грунтовых вод 1,6 м;

Прочностные свойства грунтов определяются по инженерно-геологическим изысканиям. Для этого ищем инженерно-геологический разрез под нужный фундамент и таблицу с нормативными и расчётными характеристиками грунтов. Для расчёта по 1-му предельному состоянию (расчёту на прочность) необходимы расчётные характеристики при α=0.95 (доверительная вероятность расчётных значений), согласно п.5.3.17 СП 22.13330.2016.

ИГЭ-1 — насыпной грунт — песок разной крупности c вкл. строительного мусора до 15-20%, комки суглика, обломки ж.д. плит (в расчёте не участвует т.к. отметка низа фундамента находится ниже этого слоя грунта);

ИГЭ-2 — песок средней крупности, средней плотности, водонасыщенный: (e=0.65, ρ=1,8 т/м³, Е=30 МПа, ϕ=35°, С=1 кПа).

ИГЭ-3 — песок средней крупности, с редкими прослоями текучей супеси, суглинка, глиниcтый средней плотности, водонасыщенный: (e=0.6, ρ=1,82 т/м³, Е=35 МПа, ϕ=36°, С=1,5 кПа).

Уровень грунтовых вод 1,8 м от уровня земли.


Расчёт фундамента

Схема приложения нагрузок на фундамент выглядит следующим образом:


Глубина заложения фундамента

Глубину заложения фундамента определяем в зависимости от максимальной глубины сезонного промерзания, которая дана в отчёте по инженерно-геологическим изысканиям. В моём случае нормативная глубина сезонного промерзания равна dfn=1,79м.

Расчётная глубина сезонного промерзания вычисляется по формуле 5.4 СП 22.13330.2016

где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2 СП 22.13330.2016; для наружных и внутренних фундаментов неотапливаемых сооружений kh=1,1, кроме районов с отрицательной среднегодовой температурой;

В нашем случае здание неотапливаемое, поэтому

Глубина заложения фундамента должна быть не выше расчётной глубины промерзания (согласно таблице 5.3 СП 22.13330.2016). Для отапливаемых зданий допускается устраивать фундаменты внутри здания (не под наружными стенами) выше глубины промерзания, но должно быть гарантировано, что в холодное время года будет отопление здания. Если же допускается, что здание могут подвергнуть консервации или отключить отопление, тогда и внутренние фундаменты также должны быть заложены на расчётную глубину промерзания.

Предварительные размеры фундамента

Определяем предварительно площадь основания фундамента.

Предварительные размеры фундамента определяем по формуле:

N — вертикальная нагрузка от колонны, которую мы получили при расчёте каркаса здания (N=21,3 т=213 кН);

R – расчётное сопротивление грунта, предназначенное для предварительного расчёта приведены в Приложении Б СП 22.13330.2016 (в нашем случае Таблица Б.2 для песка средней крупности и средней плотности R = 400кПа, для глины и других грунтов см. другие таблицы в приложении Б);

Таблица Б.2 — Расчетные сопротивления R песков

Пески Значения R , кПа, в зависимости от плотности сложения песков
плотные средней плотности
Крупные 600 500
Средней крупности 500 400
Мелкие:
маловлажные 400 300
влажные и насыщенные водой 300 200
Пылеватые:
маловлажные 300 250
влажные 200 150
насыщенные водой 150 100

ȳ — среднее значение удельного веса фундамента и грунта на его обрезах, предварительно принимаемое ȳ=20 кН/м³;

d – глубина заложения фундамента (в нашем случае d=2 м)

+20% т.к. фундамент внецентренно сжатый 0,72 м²

Размеры подошвы фундамента назначаются с шагом 0,3 м, размером не менее 1,5х1,5м (Таблица 4 Пособия по проектированию фундаментов на естественном основании)

Таблица 4 Пособия по проектированию фундаментов на естественном основании

Эскиз фундамента Модульные размеры фундамента, м, при модуле, равном 0,3
h hpl соответственно hpl подошвы подколонника
h1 h2 h3 квадратной b ´ l прямоугольной b ´ l под рядовые колонны bcf ´ lcf под колонны в температурных швах bcf ´lcf
1,5 0,3 0,3 1,5´1,5 1,5´1,8 0,6´0,6 0,6´1,8
1,8 0,6 0,3 0,3 1,8´1,8 1,8´2,1 0,6´0,9 0,9´2,1
2,1 0,9 0,3 0,3 0,3 2,1´2,1 1,8´2,4 0,9´0,9 1,2´2,1
2,4 1,2 0,3 0,3 0,6 2,4´2,4 2,1´2,7 0,9´1,2 1,5´2,1
2,7 1,5 0,3 0,6 0,6 2,7´2,7 2,4´3,0 0,9´1,5 1,8´2,1
3,0 1,8 0,6 0,6 0,6 3,0´3,0 2,7´3,3 1,2´1,2 2,1´2,1
3,6 3,6´3,6 3,0´3,6 1,2´1,5 2,1´2,4
4,2 4,2´4,2 3,3´3,9 1,2´1,8 2,1´2,7
Далее с шагом 4,8´4,8 3,6´4,2 1,2´2,1
5,4´5,4 3,9´4,5 1,2´2,4
0,3 м 4,2´4,8 1,2´2,7
или 4,5´5,1
0,6 4,8´5,4
5,1´5,7
5,4´6,0

Предварительно назначаем фундамент 1,5х1,5=2,25 м², что больше предварительного минимума 0,72 м².

Расчёт максимального и минимального краевого давления

Максимальное и минимальное краевое давление находим по формуле 5.11 СП 22.13330.2016


Где N=21,3т=213 кН вертикальная нагрузка от колонны в кН;

Аф=2,25 м² – площадь фундамента, м²;

γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³;

d=2 – глубина заложения фундамента, м;

M-момент от равнодействующей всех нагрузок, действующий по подошве фундамента в кН*м, находим по формуле:

W – момент сопротивления подошвы фундамента, м³. Для прямоугольного сечения находится по формуле W=bl²/6 где в нашем случае b – это сторона подошвы фундамента вдоль буквенной оси, l – длина стороны подошвы фундамента вдоль цифровой оси (см. картинку ниже).


Т.к. предварительно мы приняли фундамент с размерами 1,5х1,5 м, то

W= bl²/6=1.5*1.5²/6=0.5625 м³


При действии вертикальной нагрузки на фундамент совместно с изгибающим моментом у нас может быть 3 варианта эпюр давления на грунты:



  1. Треугольная с отрывом края фундамента


Нельзя допускать, чтобы происходил отрыв фундамента, т.е. Pmin всегда должен быть ≥0.

1 К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований, в том числе за счет мероприятий, указанных в 5.9.

2 Для зданий с гибкой конструктивной схемой значение коэффициента γс2 принимают равным единице.

3 При промежуточных значениях L/H коэффициент γс2 определяют интерполяцией.

k=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φII и СII ) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения А).

My=1,68 (таблица 5.5 СП 22.13330.2016)

Mq=7,71 (таблица 5.5 СП 22.13330.2016)

Mc=9,58 (таблица 5.5 СП 22.13330.2016)

Тут хочу обратить внимание, несмотря на то, что мы опираемся на грунт ИГЭ-3, грунт ИГЭ-2 имеет более низкие прочностные характеристики и он заложен ниже грунта ИГЭ-3, поэтому мы принимаем считаем несущую способность основания по ИГЭ-2.

Таблица 5.5 СП 22.13330.2016

Угол внутреннего трения φII, град. Коэффициенты
My Mq Mc
1,00 3,14
1 0,01 1,06 3,23
2 0,03 1,12 3,32
3 0,04 1,18 3,41
4 0,06 1,25 3,51
5 0,08 1,32 3,61
6 0,10 1,39 3,71
7 0,12 1,47 3,82
8 0,14 1,55 3,93
9 0,16 1,64 4,05
10 0,18 1,73 4,17
11 0,21 1,83 4,29
12 0,23 1,94 4,42
13 0,26 2,05 4,55
14 0,29 2,17 4,69
15 0,32 2,30 4,84
16 0,36 2,43 4,99
17 0,39 2,57 5,15
18 0,43 2,73 5,31
19 0,47 2,89 5,48
20 0,51 3,06 5,66
21 0,56 3,24 5,84
22 0,61 3,44 6,04
23 0,66 3,65 6,24
24 0,72 3,87 6,45
25 0,78 4,11 6,67
26 0,84 4,37 6,90
27 0,91 4,64 7,14
28 0,98 4,93 7,40
29 1,06 5,25 7,67
30 1,15 5,59 7,95
31 1,24 5,95 8,24
32 1,34 6,34 8,55
33 1,44 6,76 8,88
34 1,55 7,22 9,22
35 1,68 7,71 9,58
36 1,81 8,24 9,97
37 1,95 8,81 10,37
38 2,11 9,44 10,80
39 2,28 10,11 11,25
40 2,46 10,85 11,73
41 2,66 11,64 12,24
42 2,88 12,51 12,79
43 3,12 13,46 13,37
44 3,38 14,50 13,98
45 3,66 15,64 14,64

kz=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице при b 150 кПа, поэтому увеличивать размеры фундамента нет необходимости.

Следовательно, фундамент удовлетворяет требованиям по несущей способности основания.

После этого нужно сконструировать фундамент, назначить размеры, арматуру, бетон, что обязательно рассмотрю в следующих статьях.


Расчётную программу в Excel можно скачать по ссылке

This article has 3 Comments

Для всех типов фундаментов для ввода нагрузок на основания применяются результаты статического расчета от действия какого-либо загружения или комбинации загружений. В качестве альтернативы возможен и «ручной» ввод в соответствии с расчетной схемой.

Какая минимальная глубина заложения фундаментов под колонны

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

Проектирование и устройство оснований и фундаментов зданий и сооружений

Design and construction of soil bases and foundations for buildings and structures

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н.М.Герсеванова (НИИОСП) - филиалом ФГУП "НИЦ "Строительство"

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2008 г. и опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2010 г.

Опечатки внесены изготовителем базы данных.

Введение

Свод правил по проектированию и устройству оснований и фундаментов зданий и сооружений разработан в развитие обязательных положений и требований СНиП 2.02.01-83* и СНиП 3.02.01-87.

Свод правил содержит рекомендации по проектированию и устройству оснований и фундаментов зданий и сооружений, в том числе подземных и заглубленных, возводимых в различных инженерно-геологических условиях, для различных видов строительства.

Разработан НИИОСП им. Н.М.Герсеванова - филиалом ФГУП НИЦ "Строительство" (доктора техн. наук В.А.Ильичев и Е.А.Сорочан - руководители темы; доктора техн. наук: Б.В.Бахолдин, А.А.Григорян, П.А.Коновалов, В.И.Крутов, В.О.Орлов, В.П.Петрухин, Л.Р.Ставницер, В.И.Шейнин; кандидаты техн. наук: Ю.А.Багдасаров, Г.И.Бондаренко, В.Г.Буданов, Ю.А.Грачев, Ф.Ф.Зехниев, М.Н.Ибрагимов, О.И.Игнатова, И.В.Колыбин, Н.С.Никифорова, B.C.Поляков, В.Г.Федоровский, М.Л.Холмянский; инженеры: Я.М.Бобровский, Б.Ф.Кисин, А.Б.Мещанский); ГУП Мосгипронисельстрой (д-р техн. наук B.C.Сажин).

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на основания и фундаменты вновь строящихся и реконструируемых зданий и сооружений*, возводимых в открытых котлованах.

* Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения.

Настоящий СП не распространяется на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-22-81* Каменные и армокаменные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.02-85* Основания гидротехнических сооружений

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения

СНиП 2.06.03-85 Мелиоративные системы и сооружения

СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод

СНиП 2.06.15-85 Инженерная защита территории от затопления и подтопления

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы

СНиП 3.07.03-85* Мелиоративные системы и сооружения

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 12-01-2004 Организация строительства

СНиП 23-01-99* Строительная климатология

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства (ч.I-III)

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) состава

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 22733-2002 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-90 Грунты. Методы радиоизотопных измерений плотности и влажности

ГОСТ 23161-78 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 25100-95 Грунты. Классификация

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-99 Грунты. Полевые испытания. Общие положения

3 Определения

Определения основных терминов приведены в приложении А.

4 Общие положения

4.1 Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.4 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.5 Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание - При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8 Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

Изменение в «Пособии по проектированию фундаментов
на естественном основании под колонны зданий и сооружений
(к СНиП 2.03.01—84 и СНиП 2.02.01—83)»

Рекомендовано к изданию решением технического совета Ленпромстройпроекта Госстроя СССР.

Приведены указания по проектированию различных типов фундаментов и их расчет с помощью ЭВМ.

Для инженерно-технических работников проектных организаций.

При пользовании Пособием необходимо учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники» Госстроя СССР, «Сборнике изменений к строительным нормам и правилам» и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

ПРЕДИСЛОВИЕ

Пособие разработано к СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» и СНиП 2.02.01-83 «Основания зданий и сооружений».

В Пособии содержатся основные положения по проектированию монолитных и сборных фундаментов под железобетонные и стальные колонны, их расчет и конструирование; приводятся указания по выбору оптимального варианта проектирования фундаментов, расчет и проектирование анкерных болтов и приемы армирования фундаментов.

Для облегчения труда проектировщиков приведены графики и таблицы для определения размеров фундаментов, примеры расчета и конструирования различных типов фундаментов.

Пособие разработано Ленпромстройпроектом — канд. техн. наук М.Б.Липницкий, В.А.Егорова; совместно с ЦНИИпромзданий — кандидаты техн. наук Н.А.Ушаков, А.М.Туголуков, Ю.В.Фролов; ПИ-1 - канд. техн. наук А.Л.Шехтман, А.В.Шапиро; НИИЖБом — кандидаты техн. наук Н.Н.Коровин, М.Б.Краковский; НИИОснований — д-р техн. наук Е.А.Сорочан.

Замечания и предложения по содержанию Пособия просьба направлять по адресу: 186190, Ленинград, Ленинский пр., 160, Ленпромстройпроект.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящее Пособие, разработанное к СНиП 2.03.01-084 и СНиП 2.02.01-83, распространяется на проектирование отдельных железобетонных фундаментов на естественном основании под колонны зданий и сооружений.

1.2. Проектирование оснований зданий и сооружений, то есть подбор размеров подошвы фундамента из расчета оснований, рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений» (к СНиП 2.02.01-83).

1.3. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания или фундамента и основания. Учет нагрузок и воздействий в расчетах оснований рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений».

1.4. Проектирование фундаментов, эксплуатирующихся в агрессивной среде, производится с учетом требований СНиП 2.03.11-85.

1.5. Применяемые в строительстве железобетонные фундаменты могут быть представлены следующими типами:

монолитные с применением многооборачиваемой инвентарной опалубки (черт. 1, 2);

сборные железобетонные из одного блока (черт. 3);

сборно-монолитные (черт. 4, 5).

Черт. 1. Монолитные фундаменты стаканного типа
со ступенчатой плитной частью

Читайте также: