Как работает плита сплошного фундамента на изгиб

Обновлено: 18.05.2024

Прогиб фундаментной плиты

Дмитрий
Может быть в СП ошибка?
Ведь если ширина подвала -> к бесконечности (в этом случае мы условно получаем отдельный ленточный фундамент, у которого толщина слоя грунта на обрезах разная), то по идее влияние "подвальной" составляющей в формуле должно -> к 0.

JENY
Из примечания к табл. в прил. 4 СНиП (примечание относится к бескаркасным зданиям)
5. Для сооружений, причисленных в поз. 1-3 настоящего приложения, с фундаментами в виде сплошных плит предельные значения средних осадок допускается увеличивать в 1,5 раза.

Для зданий с полным каркасом крен не регламентирован (если конкчно это не точечное здание более 40м, что б не получить Пизанскую башню

Это-то и странно, не знаю о чем тут думали разработчики СНиПов/СП. Как будто не бывает точечных зданий с полным каркасом и фундаментной плитой, для которых крен как раз очень нежелателен.

Выбор типа фундаментной монолитной плиты для строительства

Монолитная фундаментная плита представляет собой единую железобетонную конструкцию, расположенную под всей площадью дома на так называемой фундаментной подушке.

На каких почвах используется и под какие постройки подходит данный фундамент?

Данный вид фундамента как правило используют на почвах с высоким уровнем грунтовых вод или почвах подверженных вспучиванию и промерзанию. Благодаря своей конструкции монолитная плита оказывает небольшое давление на грунт, равномерно распределяя нагрузку, к тому же устойчиво ведёт себя на подвижных грунтах и хорошо нивелирует горизонтальные и вертикальные движения грунта. На устойчивых и твердых почвах возведение такого типа фундамента не целесообразно из-за высокой стоимости.

На данном типе фундамента можно возводить дома из любого материала будь то каркасный, деревянный или кирпичный дом. К примеру, согласно СНиПу, стержень отлитый из бетона марки м 250 высотой 150 мм и площадью 1 кв. см. выдерживает вес более 80 кг, а вес двухэтажного кирпичного дома площадью в 176 кв. м с кладкой в два кирпича, крышей, дверьми, окнами и полами составляет около 400 тонн. То есть давление на 1 кв. см составляет примерно 22,6 кг. Поэтому ограничения в материалах для строительства нет.

Преимущества и недостатки

Преимущества:

  • Простота конструкции — это отличительная особенность классической монолитной плиты от остальных видов фундаментов. Она не требует колоссального количества расчетов и сверхточного исполнения.
  • Скорость возведения. Как правило, стандартную монолитную плиту среднего размера (к примеру 10х12 м) возводят за 6-7 дней от начала, то есть от разметки снятия грунта и до получения готовой плиты.
  • Хорошие нагрузочные свойства. Данный фундамент, как говорилось ранее, хорошо выдерживает нагрузки и равномерно передает их почве.
  • Возможность возведения на участках с высоким уровнем грунтовых вод, а также на подвижных или подверженных пучению грунтах.
  • Долговечность. При хорошей гидроизоляции монолитный фундамент прослужит до 150 лет.
  • Подходит для строительства дома из любого строительного материала.
  • Является основанием для пола 1 этажа, так как монолитная плита располагается по всей площади дома.
  • Возможность возведения в любое время года. Отсутствие сезонности для возведения данного фундамента тоже огромное достоинство данного вида фундамента, однако в несезонное время стоимость возведения возрастет.
  • Отсутствие четких позиций под несущие стены. Это означает, что данный фундамент позволяет делать планировку дома после возведения фундамента, в таком случае вы ограничены только размерами данного фундамента.
  • Стоимость возведения — это, пожалуй, единственный большой недостаток этого вида фундамента, так как примерная стоимость 1 кв. м при толщине плиты 200 мм составит в среднем около 4 200 руб.
  • Сложность возведения на наклонных площадках и площадках со сложным рельефом. Это связанно не с изменением конструкции, а с огромным количеством земельных работ что приводит к неоправданно высокой стоимости возведения данного вида фундамента.
  • При возведении фундамента с цокольным этажом стоимость увеличивается в несколько раз.

Хотелось бы отметить, что недостатков у данного типа фундамента очень мало, и основной из них заключается в стоимости возведения.

Какие типы фундаментных плит существуют и какую лучше выбрать?

Есть 5 основных типов монолитных фундаментных плит

  • Классическая (полнотелая монолитная плита)
  • Чаша (плита с верхними ребрами жесткости)
  • Перевернутая чаша (плита с нижними ребрами жесткости)
  • Цокольный фундамент (фундаментная плита чаша-кессоном)
  • Шведская плита (утепленная монолитная плита)

Теперь разберем подробнее данные типы плит

Классическая

Этот тип фундамента представляет из себя полнотелую монолитную плиту. Конструкция простая и дешевая по сравнению с остальными типами плит. Прекрасно подходит для строительства домов из дерева, каркаса и камня. Благодаря большой площади, данный тип фундамента великолепно справляется с большими нагрузками и равномерно распределяет нагрузку на почву, позволяя возводить массивные сооружения.

Представляет собой монолитную плиту с ребрами жесткости по контуру. Благодаря ребрам жесткости, данная плита прекрасно подходит для строительства домов из камня, кирпича и пеноблоков, где особую роль играет устойчивость к скручиванию, изгибам и изломам. Данный тип фундаментной плиты сложнее в изготовлении нежели классический вариант исполнения, поскольку основная плита и ребра жесткости, как правило, заливаются в один прием.

Перевернутая чаша

Такой тип фундамента по совей сути является чашей, но перевернутой ребрами жесткости вниз. Перевернутая чаша применяется на участках с высоким уровнем грунтовых вод, или в случае необходимости поднять уровень пола выше, например, для дальнейшей отсыпки фундамента.

Данный тип фундамента не подходит для возведения тяжелых конструкций, поскольку большая часть нагрузки от строения приходится на ребра. Именно поэтому не рекомендуется возводить тяжелые строения из камня и кирпича на данном типе фундамента.

Цокольный фундамент

Разновидность классической монолитной плиты, в которую добавляется чаша-кессон с нижней плитой и стенами. Данный тип фундамента используется по-разному для обустройства бассейна в доме или в качестве технического помещения под домом. Поскольку нижняя часть фундамента полностью гидроизолирована, получается полноценный цокольный этаж. Заливка такого фундамента производится в один прием, после чего на нем возможно возведение любых строений.

Шведская плита

Это утепленная монолитная плита толщиной, как правило, 100-150 мм с одним слоем армирования и ребрами жесткости под ней. Плита заливается на пенополистерол увеличенной плотности толщиной 300 мм, который выложен на уплотненный слой песка.

Важная отличительная особенность данного фундамента: все коммуникации, включая отопление, проводятся перед заливкой фундамента. Данный тип фундамента не рассчитан на тяжелые постройки, поэтому сферой применения данного фундамента являются легкие строения, например, такие как каркасный дом или дом из SIP панелей.

Говоря про этот тип фундамента, необходимо упомянуть о двух особенностях, на которые стоит обратить внимание. Поскольку в качестве утеплителя применяется пенополистирол, то стоит предпринять меры против грызунов, которые так любят этот материал. И второе, строение возведенное на данном фундаменте, должно быть теплым, поскольку фундамент, возводимый по данной технологии, рассчитан на равномерную теплоотдачу в межсезонье. Если же этого не учесть, то дальнейшая эксплуатация дома превратится в сплошное мучение.

Этапы возведение фундамента

Сейчас мы разберем процесс возведения классической монолитной плиты толщиной 200 мм и размерами 10х10. В рамках данной статьи мы не будем рассматривать процессы сбора данных и проведения анализа грунта, а также расчет веса здания.

Первый этап

Выборка грунта для котлована будущей подушки. В зависимости от нескольких факторов, толщина подушки и глубина котлована будут меняться.

Факторы влияющие на толщину подушки

  • Уровень грунтовых вод
  • Тип грунта на участке возведения фундамента
  • Этажность будущего дома
  • Материал, из которого будет построен дом
  • Климатические особенности местности

Существует много типов подушек, каждая из которых применяется при определенных обстоятельствах.

Основные виды подушек

  • Песчаные
  • Гравийные
  • Совмещённые песчано-гравийные
  • Бетонные

В нашем примере будем использовать совмещенную подушку, где гравий – это верхний слой толщиной 150 мм, а песок — нижний слой толщиной 200 мм. Разные строители делают подушки по-разному, кто-то помещает гравий сверху, а песок снизу, кто-то наоборот, делает песок верхним слоем, предварительно проложив геоткань в несколько слоев, чтобы не допустить вымывания песка.

После обустройства котлована, делаем закладки под инженерное оборудование (вода, канализация), после чего укладываем геоткань, разравниваем и утрамбовываем песок, то же самое делаем для слоя из гравия. Рекомендуем на этапе формирования подушки позаботиться о дренаже и водоотводе (при необходимости).

Второй этап

Устанавливаем опалубку. Опалубку можно использовать как съёмную, так и несъёмную. Мы будем рассматривать несъёмную опалубку из уплотнённого пенополистерола (в дальнейшем он послужит барьером от холода).

Третий этап

Укладываем техническую пленку и раскатываем рулонную гидроизоляцию. Гидроизоляция необходима для предотвращения впитывания влаги бетонной плитой. В случае отсутствия гидроизоляции, арматура, находящаяся внутри плиты, подвергнется коррозии, в следствии чего прочность плиты снизится (возможен разлом).

Четвертый этап

Армируем плиту. В нашем примере это 2 слоя обычной арматуры с шагом вязки 200 мм. Стоит заметить, что в настоящее время на российском рынке появилась композитная арматура, которая хорошо себя зарекомендовала в малоэтажном строительстве.

Производится заливка бетоном. Возьмем, к примеру, бетон марки м 300 — это самый часто используемый бетон в малоэтажном строительстве, который характеризуется хорошим качеством при оптимальной цене. В случае высоких нагрузок на фундамент стоит использовать более прочный бетон.

На данном примере мы рассмотрели основные этапы возведения фундамента монолитная плита классическая.

В заключении данной статьи, сравнив все типы монолитных фундаментов, приходим к выводу, что самый оптимальный вариант — это монолитный фундамент чаша (монолитная плита с ребрами жесткости). По своим характеристикам она универсальна и может быть использована в большинстве случаев. Это самая дешевая и простая классическая монолитная плита, обладающая оптимальными показателями цены и характеристиками. Оптимальна для тех, кто не планирует строительство дома из тяжелых строительных материалов. Остальные три типа монолитных фундаментных плит довольно специфически, и их применение во многих случаях экономически не целесообразно. К примеру, шведская плита сложна и довольно тяжела в возведении, имеет малую несущую способность и обладает некоторыми особенностями, которые в дальнейшем могут сказаться на ходе строительства. Если неверно рассчитать вывод коммуникаций, то их перенос — это лишние траты не только денежных средств, но еще и времени, и сил.

Решение в выборе монолитной плиты необходимо принимать, основываясь на расчетах, из которых будет понятно, какую плиту лучше применять.

Плитный фундамент

В статье рассказывается об особенностях сплошных плитных фундаментов. Очень подробно рассматриваются сферы их применения, эксплуатационные и конструктивные отличия. На первый план выведены прикладные вопросы, касающиеся технологи строительства фундаментных плит.

Плитный фундамент, он же «сплошной», он же «плавающий», он же «шведская, скандинавская плита» — это цельная плита, располагающаяся под всей площадью строения, заглублённая в грунт, или заложенная на нём. Есть несколько конструктивных вариантов плит — коробчатые, плоские, ребристые, сборные из дорожных ЖБ изделий, монолитные, с расширениями на углах, с армированием или без, утеплённые и холодные… Все они имеют свои отличительные особенности и конкретную сферу применения. Для частного загородного строительства по экономическим и функциональным характеристикам наилучшим образом зарекомендовали себя плоские монолитные плиты из железобетона толщиной от 20 до 40 см с утеплением. О них мы далее и поведём разговор.

Почему выбирают плитный фундамент

В малоэтажном строительстве, что нас, собственно, и интересует, данный тип фундамента по многим причинам будет предпочтительнее своих конкурентов (и ленточных, и свайных конструкций). Объясняется это преимуществами, как сугубо технического, так и околостроительного характера.

Сильные стороны сплошных фундаментов

Универсальность по геологии оснований. Плавающая конструкция может быть корректно применена на всех типах грунтов, в том числе слабонесущих, пучинистых, горизонтально-подвижных, с высоким уровнем грунтовых вод, вечномёрзлых…

Есть некоторые ограничения по рельефу — трудно строить такой фундамент на склоне, скорее всего, сваи будут предпочтительнее. Однако есть проверенные американцами технологии возведения плит на пригорках, которые в своей конструкции (в нижней части площадки) имеют элементы высоких монолитных лент. Ещё один подходящий для таких мест «кентавр» — свайный фундамент с низким ростверком в виде монолитной плиты.

Хорошая несущая способность. Это качество обусловлено специфической механикой взаимодействия «дом/плита/грунт». В следующей главе мы подробно рассмотрим данный момент. Коротко — плита имеет большую площадь опоры, поэтому давление на грунт основания очень низкое (от 0,1 кгс/см2). Следовательно, каменный дом в два этажа на плите можно возводить смело. Говорят, лифтовая шахта Останкинской башни стоит на монолитной плите.

Высокая пространственная жёсткость. Обусловлена она отсутствием швов и соединений, применением жёсткого армирования, массивностью конструкции и большой материалоёмкостью. Плитный фундамент отлично подходит для домов с «неэластичными» стенами, которые очень боятся даже самых малых (1–3 мм) подвижек несущей конструкции — кирпичные, газобетонные, шлакоблочные, из ракушечника и других минеральных материалов.

При наличии чрезмерно пучинистых грунтов и значительной чувствительности зданий к неравномерным деформациям рекомендуется строить их на малозаглубленных и незаглубленных монолитных железобетонных плитах, под которыми устраивают подушки из непучинистых материалов.

СП 50–101–2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений».

Хорошие изоляционные характеристики. При грамотном исполнении не пропускает воду, препятствует теплопотерям через пол.

Несложная технология возведения, строится быстро. Просто размечается, минимум земляных работ, упрощённая конструкция опалубки, легко армировать и бетонировать. Может изготавливаться строителями с низкой квалификацией.

Условные недостатки плитного фундамента

Технически очень тяжело совместить в конструкции сплошную плиту и подвал.

Заливать плиту можно только при благоприятной погоде (немного проигрывает сборным и свайным забивным фундаментам).

Высокая стоимость. Повышенная материалоёмкость (бетон, арматура), конечно, накладывает свой отпечаток. Но если взглянуть на проблему в комплексе, то картина меняется кардинально — на других материалах, стадиях строительства, производственных операциях мы солидно экономим:

  • плита становится черновым полом первого этажа — не нужно делать перекрытие;
  • в массе плиты можно проложить водяной Тёплый пол, а не заливать для него отдельную стяжку;
  • для изготовления и раскрепления щитов опалубки необходимо меньше доски или листовых материалов (как минимум вдвое, по сравнению с ленточными конструкциями);
  • не нужно платить за вывоз/планирование большого объёма выбранного грунта;
  • уменьшается высота наружных стен, так как можно получить более низкий цоколь (а это недешёвые материалы отделки фасада, трудовые затраты…);
  • грузоподъёмная техника, бетононасосы, экскаваторы, забивные копры, буровые машины — не нужны, всё ограничивается автомобилями-миксерами;
  • можно возвести своими силами и не нанимать высокооплачиваемых профессиональных строителей, меньше риска финансово пострадать от «человеческого фактора» (проще технология).

Получается, что основной недостаток плитных фундаментов — это малая информированность отечественного застройщика об их преимуществах. А вот в северной части США и странах Скандинавии монолитные плиты стали фундаментом №1.

Принцип работы плитного фундамента

Ситуация

Плотность застройки растёт, людям всё чаще приходится строить на «плохих» грунтах (слабые, постоянно влажные, пучинистые, мёрзлые…).

Современные проекты загородных домов стали намного сложнее в смысле архитектурно-планировочных решений: различные части здания строятся в разную высоту (варианты в полтора этажа, пристроенные гаражи, особые решения для лестничных маршей и площадок…), неравномерное распределение несущих стен по площади застройки. Дома теперь больше, выше, тяжелее.

Проблема

Сверху на фундамент и на естественное основание оказываются неравномерные воздействия от дома. Снизу сложные грунты либо стремятся образовать местные провалы под строением, либо силами морозного пучения выталкивают здание, а потом, оттаивая, просаживаются. Возникает опасность появления деформаций и разрушения несущих конструкций.

Решение

  • Увеличить опорную площадь фундамента, снизив нагрузку от дома на естественное основание.
  • Максимально усилить пространственную жёсткость фундамента, равномерно перераспределить давление «сверху вниз».
  • Теплоизолятором разделить отапливаемые помещения от грунта под домом — таким образом, устранить неравномерность промерзания под строением (зимой под плитой грунт не оттаивает).

Все эти методы борьбы с «неравномерностями» заложены в принципе действия утеплённой монолитной плиты. Это своеобразная единая платформа под домом, которая не подвержена локальным изгибам (при грамотном проектировании), и без деформаций способна двигаться фактически вместе с грунтом — «плавать».

Особенности проектирования плитного фундамента

Проектирование плит существенно отличается от методов разработки других видов фундаментов. Здесь инженеры также учитывают все основные параметры грунта и все нагрузки (массу конструкций, эксплуатационный вес, снеговое давление). СП 20.13330.2011 никто не отменял.

Однако плитный фундамент необходимо рассматривать как единую, совместно работающую конструкцию «плита-надфундаментная часть». Поэтому в данном случае отдельное внимание уделяется детальному изучению конкретных узлов здания и несущей конструкции в целом, создаются и просчитываются чертежи дома с указанием эпюр распределения нагрузок, их направления.

Вся проблема заключается в сложности грамотного моделирования изгибающих нагрузок, возможных кренов, которые плита испытывает, и, соответственно, рассчитать её толщину, конфигурацию, потребность в армировании, в том числе и локальном. Наиболее эффективно конструирование фундаментных плит выполняется с применением специальных вычислительных комплексов, которые выдают очень подробные рабочие чертежи. Именно поэтому мы рекомендуем заказать расчёт фундаментной плиты в профильной организации, стоимость такой работы будет составлять от 5 до 10 тысяч рублей.

Наибольшее распространение получили плиты толщиной от 20 до 40 см, при этом очень интересна одна деталь: большинство расчётов показывает, что для одного и того же дома можно использовать различную толщину плиты, если правильно манипулировать процентом армирования.

Например, сплошной фундамент для какого-то абстрактного здания. При 20 сантиметрах — необходимо производить локальное «доармирование» особо нагруженных зон и не ошибиться в расчётах, при 25 сантиметрах — каркас можно вязать равномерно, особо не рискуя. А вот 30-сантиметровая плита, если сравнивать с конструкцией в 25 см, сэкономить на арматуре не позволит, зато бетона на неё пойдёт намного больше.

Исключительно грамотный расчёт позволяет лить плиты даже толщиной 15–18 см.

Заметим, что значительно усилить сопротивляемость плиты продавливанию, при этом снизить её общую толщину (читай материалоемкость) можно, делая локальные утолщения фундамента в зоне углов, стыка несущих стен, по всему периметру, под колонами. Такие усиленные плиты часто называют «американскими», в сечении они выглядят, как призма.

Плитный фундамент по площади не может быть меньше дома, должны учитываться все консольные участки. Например, если здание будет облицовываться кирпичом или другими тяжёлыми материалами, то плиту необходимо закладывать больших размеров, чтобы обеспечить опорную площадь для облицовки.

Технология строительства плитного фундамента

Так как плитные фундаменты часто используются в очень сложных геологических условиях, то к планированию и строительству плавающих конструкций предъявляются самые жёсткие требования, которые оговариваются многими нормативными документами, например, СНиП 3.03.01–87 «Несущие и ограждающие конструкции» или СП 50–101–2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений». Естественно, для возведения фундаментных плит должны использоваться исключительно качественные материалы.

Строительство всех сплошных фундаментов производится примерно по одной и той же схеме:

  • Проектирование.
  • Разметка (в натуру выносят только контуры здания).
  • Удаление дёрна, выборка грунта (если необходима подушка/дренаж).
  • Прокладка заглублённых коммуникаций (вода, канализация).
  • Устройство подушки, дренажа.
  • Монтаж гидро- и теплоизоляции.
  • Сборка «тёплого пола».
  • Вязка и укладка арматурного каркаса.
  • Сборка и раскрепление опалубки.
  • Бетонирование.
  • Распалубка.

Давайте рассмотрим эти операции подробнее.

С проектированием мы более-менее разобрались. Строите что-то серьёзное — лучше закажите разработку проекта фундамента инженерам, однозначно сохраните нервы и деньги.

Вопросы проведения подготовительных работ, выноса разметки в натуру мы уже обсудили в статье «Ленточный фундамент. Часть 2: подготовка, разметка, земляные работы, опалубка, арматура» .

Что касается земляных работ. Если замена грунта (массивные подушки) и утепление не требуется, то достаточно снять только верхний плодородный слой, в противном случае, грунт естественного основания изымается в нужном объёме. Иногда, перед выемкой есть смысл выровнять зону застройки — сделать подсыпку. Тогда добавочный материал очень тщательно уплотняется виброплитой.

Самое главное условие — насыпной грунт под плитным фундаментом ни по каким характеристикам не должен уступать материковому (естественному).

Не стоит переживать о том, что под плитой будет сложно обслуживать коммуникации. Всё делается, как обычно: там, где будет техническое помещение, в плите всегда изготавливают приямок для ввода коммуникаций (возле труб закладывается пенопласт, или делается контур из опалубки), чем меньше он будет, тем лучше для жёсткости фундамента. В любом случае трубы нельзя замоноличивать наглухо. Под плитой коммуникации проходят в траншее, засыпаются дренирующими материалами. О дренаже линий коммуникаций читайте в статье «Как сделать дренаж на участке» .

Подушка является искусственным основанием, она предназначена для замены «плохих» грунтов. В качестве материала для подушки чаще всего выступает смесь песка и щебня, которые имеют хорошие дренирующие свойства, мало сжимаются, не пучинятся. Песчано-гравийная подушка укладывается слоями по 100 мм, и каждый корж тщательно трамбуется виброплощадкой. Если применяется чистый песок, то его нужно проливать водой.

Необходимо периодически контролировать горизонтальность каждого слоя подушек.

На участках с неблагоприятным водным балансом, под плитой (подушкой) рекомендуют заложить несколько дрен для отвода воды.

Большинство технологических карт по изготовлению сплошных фундаментов предлагают под подушку расстилать геотекстиль, который не даёт песку и гравию заиливаться (читай терять важные для нас свойства).

Чтобы гидро- и теплоизоляция хорошо легла и не была деформирована массой бетона, верхняя часть подушки должна иметь максимально ровную плоскость. Некоторые производители плавающих фундаментов предпочитают даже сделать стяжку-подготовку из пескобетона.

Подушка накрывается плотной полиэтиленовой плёнкой, или другими гидроизоляционными материалами, которые при бетонировании предотвратят утечки цементного молока. Листы кладутся с нахлёстом и проклеиваются/спаиваются.

На гидроизоляцию укладывается слой утеплителя толщиной до 100 мм. Раньше применяли пенопласт, сейчас все перешли на экструдированный пенополистирол. Некоторые строители считают, что утеплитель — не является обязательным слоем, но он снижает теплопотери через плиту, не позволяет грунту под плитой неконтролируемо, неравномерно оттаивать даже под отапливаемыми помещениями. Если вы хотите применить тёплый пол — то не будете обогревать землю, а всё тепло пустите в дом. В технологических картах иностранных компаний утеплитель (и подушку) рекомендуют прокладывать за пределы плиты.

Трубы тёплого пола посредством специальной сетки раскладываются прямо на листы ЭППС, естественно, они никакими материалами не утепляются, чтобы лучше отдавать тепло. В этом слое могут также проходить некоторые трассы отопления — вот они ведутся в рукавах и теплоизоляторах. Все концы выводятся из приямка для коммуникаций, система кольцуется, опрессовывается. Под давлением закачанный в трубы воздух предотвращает деформирование их при заливке бетона.

Армирование — пожалуй, самая сложная операция при строительстве плавающих фундаментов. Здесь допускается больше всего ошибок, как технологических, так и конструкторских.

Начнём с главного. Согласно СП 52–103–2007 минимальный процент армирования железобетонной плиты составляет 0,3%. Считают его следующим образом: берут поперечный срез плиты и высчитывают его площадь, высчитывают суммарную площадь среза всех арматурных стержней, сравнивают эти показатели. Если металлоёмкость бетона недостаточна, то увеличивают диаметр арматуры или количество стержней (уменьшают шаг). Для толстых плит применяют третий ярус металла, расположеный в толще плиты. Практика показывает, что чаще всего достаточно уложить два слоя арматуры диаметром 12–14 мм, и шагом в 150–250 мм.

Не забывайте, что в нагруженных зонах (колоны, несущая стена внутри здания…) может понадобиться дополнительное армирование, осуществляемое прокладкой вспомогательных продольных стержней в пределах призм продавливания.

В зависимости от конструкции здания под несущие стены и колоны иногда есть смысл делать вертикальные выпуски арматуры (СП 52–103–2007), которые обеспечат дополнительную жёсткость системы «плита-надфундаментная часть».

Наличие защитного слоя бетона — обязательное условие качественного армирования. Сетки арматурного каркаса выставляются на специальных полимерных подставках-грибках. Грибки нижнего яруса — небольшие, около 4–5 см. Грибки промежуточные (между двумя сетками) имеют высоту, зависящую от толщины плиты, так чтобы над верхней арматурой оставалось ещё около 5 см бетона (защитный слой). Грибки располагают один над другим, их общее количество (шаг) должно обеспечить достаточную устойчивость каркаса к нагрузкам, возникающим при бетонировании.

Запрещено применять всевозможные подкладки из древесины, камня, металла.

Торцы каркаса, верхний и нижний ярус, рекомендуют (СП 63.13330.2012) связывать между собой П-образными элементами из арматуры. Арматурные стержни не должны контактировать с опалубкой, так как следует обеспечить защитный слой бетона толщиной не менее 40 мм.

Изготавливается каркас вязкой арматурных стержней проволокой. Допускается применение электродуговой сварки, но тогда необходимо использовать арматуру класса а500с, или аналогичную, с индексом «С».

Ввиду большого объёма работ по армированию, бывает целесообразно воспользоваться унифицированными сварными сетками заводского изготовления. Полученные после укладки стыки обязательно разводятся в «шахматном» порядке — стыки готовых сеток нижнего яруса армирования должны перекрываться целой сеткой верхнего яруса.

Опалубка плавающего фундамента собирается очень просто, необходимо только выровнять каждую сторону периметра. Обратите внимание, что бетона используется много, и давление на щиты будет довольно серьёзное — поэтому очень качественно разоприте их от грунта.

Опалубку следует изнутри обернуть полиэтиленом, чтобы не допустить утечек цементного молока через щели. Как вариант, можно возле опалубки проложить листы ЭППС, потом они надёжно «прилипнут» к бетону и обеспечат вертикальное утепление плиты.

Пенополистиролом также разделяют сопряжённые с домом постройки, для которых необходим свой фундамент (гараж, крыльцо, терраса…).

Отдельный маленький контур опалубки изготавливают для приямка под коммуникации.

Бетонирование необходимо производить за одну рабочую смену. Наиболее рационально будет заказать привозку бетона миксером и прямо из лотка заливать фундамент. Для бетонирования отдалённых участков можно применить самодельный жёлоб.

Бетон должен быть в обязательном порядке уплотнён глубинным вибратором.

Для изготовления плитных фундаментов используется бетон с характеристиками, которые регламентируются СП 52–103–2007. Большинство строительных компаний, производящих плавающие фундаменты, предлагают заказывать бетон со следующими эксплуатационными свойствами:

  • класс прочности от В22,5 (марка не ниже М300);
  • коэффициент водостойкости от W8;
  • морозоустойчивость от F200;
  • подвижность П-3;
  • возможно, сульфатостойкий, если грунтовые воды высоко.

Учитывая отечественные реалии, частному застройщику лучше заказывать бетон, как минимум, на марку выше нормированной — будет больше шансов получить проектный класс прочности.

Далее следует производить манипуляции по уходу за бетоном. Когда плита наберёт 50-процентную прочность, опалубку можно снимать. Мы обстоятельно рассмотрели эти работы в статье «Ленточный фундамент. Часть 3: бетонирование, заключительные операции» , добавим, что на следующий день после заливки плавающего фундамента верхнюю плоскость плиты стоит затереть — это будет хорошая основа до монтажа любых напольных покрытий.

В Северной Европе и США плавающие фундаменты активно применяются уже более полувека, они временем доказали свою надёжность, функциональность и экономическую привлекательность. В нашей стране плиты тоже нашли своего застройщика. Из года в год сплошные фундаменты становятся всё популярнее, так как во многих случаях альтернативы им просто нет.

Строй-справка.ру

Для гибких фундаментов, которые в основном воспринимают изгибающие моменты, образующиеся в результате совместной работы с основанием, предположение о линейном распределении реактивных давлений оказывается неприемлемым, потому что оно зависит от жесткости фундамента и податливости грунтового основания.

Замена реальной эпюры контактных давлений линейно распределенной приводит к существенным погрешностям при определении изгибающих моментов и поперечных сил.

К гибким фундаментам можно отнести ленточные и отдельные железобетонные фундаменты, а также сплошные железобетонные плиты и некоторые типы коробчатых фундаментов.

В зависимости от вида используемого фундамента различают плоскую задачу, когда условия работы поперечного сечения фундамента одинаковы по длине. Например, ленточный фундамент под стену в поперечном сечении имеет одинаковую форму деформации по всей длине.

В условиях пространственной задачи будут находиться ленточный фундамент под колонны, принимаемый в поперечном направлении жестким, и фундаментные плиты различной формы, работающие на изгиб в двух направлениях.

В настоящее время большое распространение при проектировании гибких фундаментов получили теории расчета балок и плит на упругом основании, которые справедливы для линейно деформируемых оснований, причем наибольшее применение получили следующие методы:
1) местных деформаций с постоянным и переменными коэффициентами постели;
2) упругого полупространства;
3) упругого слоя ограниченной толщины на несжимаемом основании;
4) упругого слоя с переменным модулем деформации основания по глубине.

Эти теории исходят из предположения о совместности деформации, фундамента и грунта, т. е. считается, что перемещение фундамента в данной точке контакта равно осадке поверхности грунта.

В методе местных упругих деформаций не учитываются осадки грунта основания за пределами площади загружения, что дает возможность представить такое основание в виде системы несвязанных между собой упругих пружин (рис. 7.1, а). Такие условия работы грунтового основания не подтверждаются экспериментальными данными, которые показывают, что в реальных условиях нагружения оседают не только нагруженная поверхность, но и соседние участки грунта (рис. 7.1, б). Это ограничивает область применения данного метода на практике.

Рис. 7.1. Схемы упругого основания

Метод местных упругих деформаций используют для слабых грунтов основания, для которых можно не учитывать осадки вне зоны приложения внешней нагрузки или в случае незначительной мощности деформируемого грунта, подстилаемого скальным основанием при полупролет рассчитываемого фундамента.

С целью расширения области применения данного метода для расчета гибких фундаментов стали учитывать переменное значение коэффициента постели по длине балки в зависимости от уровня действующего реактивного давления.

Метод упругого полупространства не имеет недостатков, присущих методу местных деформаций, так как он базируется на решениях классической теории упругости, рассматривающей однородные, упругие линейно деформируемые тела.

В соответствии с этими решениями осадки основания имеют место не только на участке под гибким фундаментом, но и за его пределами (рис. 7.1, б).

Однако и метод расчета гибких фундаментов при моделировании грунтового основания упругим полупространством не свободен от некоторых недостатков. В частности, экспериментальными исследованиями было доказано, что осадки за пределами площади загружения затухают значительно быстрее, чем это происходит согласно решению задачи деформирования упругого полупространства. Это связано с тем, что исходные предпосылки теории упругости могут быть применимы к грунтам только с. некоторыми ограничениями, допускающими некоторую идеализацию реальных свойств.

Наблюдения за деформациями оснований гибких фундаментов показали, что основные деформации уплотнения грунта происходят в пределах относительно небольшой глубины. Анализ результатов таких наблюдений показал, что поверхность грунта под возводимыми зданиями и гибкими фундаментами деформируется в соответствии с расчетной схемой линейно деформируемого слоя грунта, подстилаемого несжимаемым основанием.

Основная трудность при использовании этого метода заключается в том, что не всегда точно удается установить мощность сжимаемого слоя.

Сплошные (плитные) фундаменты

Плитные фундаменты рекомендуется выполнять в виде монолитных железобетонных плоских или ребристых плит. В зданиях стеновой конструктивной системы плитный фундамент рекомендуется устраивать под всем зданием; в зданиях ствольно-стеновой и каркасно-ствольной конструктивных систем допускается устраивать плитный фундамент только под стволами (ядрами жесткости).

Для плитных фундаментов с ребрами места пересечения ребер служат для установки колонн каркаса. Пространство между ребрами, если они направлены вверх, заполняют песком или гравием, а поверх устраивают бетонную подготовку.

При использовании безреберного фундамента колонны устанавливаются следующим образом:


Рис. 17 Сплошной безбалочный фундамент для опирания колонн

Для плитных фундаментов под бескаркасные здания небольшой высоты (или веса) требуется котлован, глубиной 50-70 см. Грунт в котловане выравнивается, поверх него насыпается подушка из щебня высотой 10-20 см, устанавливается арматура, которая представляет собой сетку металлических прутов толщиной не менее 12-16 мм, и всё это заливается первым слоем бетона высотой 20-25 см. На подготовленную основу укладывается гидроизоляция.

По периметру дома и подо всеми внутренними несущими стенами сооружается с помощью опалубки ленточный фундамент.

Поверх гидроизоляции заливается второй, защитный слой бетона 10-15 см, и поверхность будущего пола выравнивается с помощью цементно-песчаной стяжки. Завершающим этапом будет устройство гидроизоляции между фундаментом и перекрытиями цоколя.

Железобетонные плиты армируют по расчету. Высота плит для многоэтажных зданий порядка метра.

При большом заглублении сплошных фундаментов и необходимости обеспечить большую их жесткость можно проектировать фундаментные плиты коробчатого сечения с размещением подвалов между ребрами и перекрытиями коробок.

Сплошные (плитные) фундаменты применяются в следующих случаях:

- на площадке слабые грунты и значительные нагрузки, которые не могут воспринимать одиночные или ленточные фундаменты;

- неравномерная осадка зданий или сооружений не допускается или строго регламентируется. Фундаментные плиты значительно перераспределяют усилия на основание, и делают осадки и давление на него равномерным;

- технологическая необходимость создания сплошного фундамента (например, установка технологического оборудования);

- необходимость наружной защиты основания от проникновения воды (плита может быть использована в качестве гидроизоляции; днища резервуара и т.п.);

- оправдано в малоэтажном строительстве при небольшой и простой форме здания.

Сплошные фундаменты рассчитывают как плиты на упругом основании.

Достоинства: относительная простота сооружения; возможность их выполнения в тяжелых пучинистых, подвижных, просадочных и карстовых грунтах.

Недостатки: достаточно дороги (из-за большого расхода бетона и металла на арматуру).

Рис. 17 Сплошные (плитные) фундаменты




На сегодняшний день предлагается еще одна конструкция сплошного фундамента - с утеплителем, введенным в состав плиты. Такой фундамент позволяет без дополнительных затрат получить теплую конструкцию пола.

Проектирование гибких фундаментов

Фундаменты по характеру работы делятся на жесткие и гибкие. Гибкие фундаменты в основном работают на изгиб. Это сплошные фундаментные плиты, ленточные фундаменты под колонны. Жесткие фундаменты работают на сжатие, изгибающие моменты в них незначительные. При проектировании жестких фундаментов предполагается линейное изменение реактивных давлений. На самом деле эпюра контактивных давлений по подошве фундамента не будет линейной, а будет определяться жесткостью самого фундамента и податливостью грунта основания.

При расчете небольших фундаментов замена реальной эпюры контактивных давлений линейно распределенной не приведет к серьезным погрешностям в определении усилий в фундаменте. Для гибких фундаментов предположение о линейном распределении не допускается, так как вызывает ошибки в изгибающих моментах и силах. Реальные грунтовые условия представляются в виде механической линейно деформированной модели. В зависимости от принятой модели грунтового основания, наибольшее распространение получили следующие гипотезы:

1) теория местных деформаций;

2) теория упругого полупространства;

3) теория линейно деформированного слоя конечной толщины.

1. Теория местных деформаций построена на основе теории Винклера. Гипотеза этой модели заключается в следующем: реакция грунта основания в каждой точке подошвы фундамента прямо пропорциональна осадке этой точки:

- коэффициент упругого сжатия основания;

- осадка в месте определения реакций грунта.

Модель Винклера можно представить как набор несвязанных между собой пружин.

За пределами балки поверхность грунта не деформируется. Такие условия работы не подтверждаются экспериментальными данными, которые показывают, что в реальных условиях оседает не только нагруженная поверхность, но и соседние участки грунта. Эта модель применяется для расчета плит и балок на слабых грунтах, для которых можно не учитывать вне зоны приложения внешней нагрузки или в случае незначительной мощности деформированного грунта, подстилаемого скальным основанием при Н l/16.

2. Теория упругого полупространства. Основание работает как однородное, изотропное, линейно деформированное полупространство. Распределение напряжения описывает точка напряжения для упругого полупространства. Деформированные свойства определяются коэффициентом Пуассона. По этой теории осадка основания происходит не только на участке под гибким фундаментом, но и за его пределами. А область напряжений бесконечна.

Недостатки этого метода: наблюдения показывают, что осадки за пределами фундамента затухают значительно быстрее, чем это происходит согласно теории упругого полупространства.

3. Теория линейно деформированного слоя конечной толщины. Наблюдения за деформациями сооружений показывают, что основные деформации уплотнения происходят в пределах относительно небольшой глубины, ниже которой деформации практически отсутствуют, т.е. в основании деформируется слой грунта, подстилаемый несжимаемым основанием. Поэтому для расчета гибких фундаментов разработана модель линейно деформированного слоя конечной толщины.

Основные трудности при использовании модели: неопределенность сжимаемой толщи, сложное определение деформации.

Данный метод применяется при толщине слоя от Н l/16(теория местных деформаций) до Н 2l (теория упругого полупространства). В этих пределах применяется этот метод.

Читайте также: