Как определить размеры условного фундамента

Обновлено: 24.04.2024

5.4. Определение размеров условного фундамента

Определение размеров условного фундамента производится в следующей последовательности.

1. Определяем размеры условного фундамента. Границы условного свайного фундамента определяются следующим образом (рис. 5.3): снизу – плоскостью АБ , проходящей через нижние концы свай; сверху – поверхностью планировки земли; с боков – вертикальными плоскостями АВ и ВБ , отстоящими от нагруженных граней крайних рядов вертикальных

свай на расстоянии h у.ф. tg α , где α – угол распределения напряжений, определяется по формуле

где ϕ II , mt – усредненный угол внутреннего трения в пределах грунта,

пробиваемого сваей (рис. 5.3), определяется по формуле

ϕ 1 h 1 2 + ϕ 2 h 2 + ϕ 3 h 3

= 18 0,35 + 23 2,0 + 37 1,1 = 93,0 = 26,96 ° .

Определяется высота условного фундамента h у.ф. , по формуле

h у.ф. = NL – FL у.ф.

= 159,50 – 155,85 = 3,65 м.

Определяем ширину подошвы условного фундамента b у.ф. :

b у.ф. = 5 d + 2 tg α l св = 5 0,3 + 2 tg 6,74 3,7 = 2,37 м,

где d – диаметр круглой сваи или размер стороны квадратного поперечного сечения сваи, d = 0,3 м; l св – длина сваи без учета заделки в ростверк, определяется по формуле

l св = L св – h з = 4,0 – 0,3 = 3,7 м.

здесь h з – высота (глубина) заделки сваи в ростверк, h з = 0,3 м. 4. Определяем длину подошвы условного фундамента l у.ф. :

l у.ф. = 5 d + 2 tg α l св = 5 0,3 + 2 tg 6,74 3,7 = 2,37 м.

5. Определяем площадь подошвы условного фундамента A у.ф. :

A у.ф. = b у.ф. l у.ф. = 2,37 2,37 = 5,62 м 2 .

6. Определяем собственный вес свай G св :

G св = V св γ m = 1,33 25 = 33,25 кН,

где V св – объём свай, определяется по формуле

V св = A св l св n = 0,09 3,7 4 = 1,33 м 3 ,

здесь A св – площадь поперечного сечения сваи, A св = 0,09 м 2 ; l св – длина сваи без учета заделки в ростверк, l св = 3,7 м; n – количество свай, n = 4 шт; γ m = 25 кН/м 3 – удельный вес бетона сваи.

7. Определяем собственный вес ростверка G р :

G р = V р γ m = 3,375 25 = 84,375 кН,

где γ m = 25 кН/м 3 – удельный вес бетона ростверка; V р – объём ростверка, определяется по формуле

V р = l пл b пл h пл + l п b п h п = 2,1 2,1 0,6 + 0,9 0,9 0,9 = 3,375 м 3 ,

здесь l пл , b пл , h пл , l п , b п и h п – длина, ширина и высота соответственно плиты

и подколонника ростверка.

8. Определяем собственный вес грунта G гр , расположенного на уступах ростверка, определяется по формуле:

G гр = ( V у.ф. – V р – V св ) γ II / = (14,12 – 3,375 – 1,33) 17,5 = 164,76 кН, где V у.ф. – объём условного фундамента грунта (прямоугольник ABCD , рис.

5.3), определяется по формуле:

V у . ф . = A у . ф . h у . ф . = 5,62 3,65 = 14,12 м 3 ,

здесь A у . ф . – площадь подошвы условного фундамента, A у . ф . = 5,62 м 2 ; γ II /

– осреднённое значение удельного веса грунта расположенного на подошве ростверка (при наличии грунтовых подземных вод определяется с учётом

взвешивающего действия воды), принимается равным γ II / = 17,5 кН/м 3 .

9. Определяем среднее давление P у.ф. под подошвой условного

N II + G р + G св + G гр

800,0 + 84,375 + 33,25 + 164,76

10. Определяем расчетное сопротивление грунта основания несущего слоя под подошвой условного фундамента:

R = γ c 1 γ c 2 [ M k z b у ф γ + M q d γ / + ( M q − 1) d b γ / + M c c ] ,

k γ . . II II II II

где γ с 1 и γ с 2 – коэффициенты условий работы, γ с 1 = 1,4 и γ с 2 = 1,34, согласно табл. 3 [1] или прил. 4, табл. 4.1 настоящего учебного пособия; k – коэффициент, k = 1,0, т.к. прочностные характеристики грунта (ИГЭ-3), залегающего под подошвой условного фундамента ( ϕ и c II ), определены непосредственными испытаниями; М γ , М q , М с – коэффициенты, зависящие

от угла внутреннего трения ϕ (п.7, табл. № 47) несущего слоя грунта, принимаются согласно табл. 4 [1] или прил. 5 настоящего учебного

пособия, для ϕ = 37 ° М γ = 1,95, М q = 8,81, М с = 10,37; b у.ф. – ширина условного фундамента, b у.ф. = 2,37 м; k z – коэффициент, k z = 1,0, т.к. ширина условного фундамента b у.ф. = 1,5 < 10 м; d b – глубина подвала – расстояние от уровня планировки до пола подвала, d b = 1,85 м; с II – расчётное значение удельного сцепления грунта, залегающего непосредственно под подошвой

условного фундамента, с II = 1 кПа; γ II / – осредненное расчетное значение удельного веса грунта, залегающего выше подошвы условного фундамента (при наличии грунтовых подземных вод определяется с учетом взвешивающего действия воды), определяется по формуле:

Ростверка, расчет условного фундамента

Расчет свайных фундаментов и их оснований ведут по двум группам предельных состояний:

по первой группе – по несущей способности грунта основания свай; по устойчивости грунтового массива со свайным фундаментом; по прочности материала свай и ростверков;

по второй группе – по осадкам свайных фундаментов от вертикальных нагрузок; по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов; по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Расчет по несущей способности грунтов основания заключается в выполнении условия (35):

где N - расчетная нагрузка, передаваемая на сваю, кН;

Fd - несущая способность сваи, определяемая любым из известных методов;

1,2 – если несущая способность сваи определена по результатам ее испытания статической нагрузкой;

1,25 – по результатам динамических испытаний, выполненных с учетом упругих деформаций грунта, а также по результатам статического зондирования грунта или его испытания эталонной сваей или сваей – зондом;

1,4 – по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта, или расчетом практического метода.

Проверку устойчивости свайного фундамента совместно с грунтовым массивом производят только в случае передачи на свайные фундаменты больших горизонтальных нагрузок, а также если фундамент расположен на косогоре или его основание имеет откосный профиль. Проверку производят по расчетной схеме сдвига грунта по цилиндрической поверхности скольжения.

Расчет свайных фундаментов по второй группе предельных состояний при действии вертикальных нагрузок проводят из условия (36):

где, S - деформация свайного фундамента (осадка или относительная разность осадок), определяемая расчетом;

S u - предельно допустимая величина деформации свайного фундамента, устанавливаемая заданием на проектирование или определяемая по СНиП 2.02.01 - 83.

Фундаменты из свай, работающих как сваи – стойки, рассчитывать по деформациям от вертикальных нагрузок не требуется.

Для фундаментов с вертикальными сваями расчетную нагрузку на сваю определяют по формуле (37):

где Nd , Mx , My - расчетные усилия (вертикальная нагрузка, изгибающие моменты) в плоскости подошвы ростверка фундамента относительно главных центральных осей;

n – количество свай в фундаменте;

x i , y i - расстояния от главных осей до оси каждой сваи;

x и y - расстояния от главных осей до оси сваи, для которой вычисляется расчетная нагрузка.

7.2 Пример расчета и проверки конструкции ростверка

Примем площадь ростверка из следующих соображений. Расчетная площадь 1,54 кв.м, принятая 2,25 кв.м. Расстояния между центрами соседних свай должны быть не менее 3d, чтобы не накладывалось напряжение в грунте на соседние сваи и не происходил их «выпор». Расстояние свеса ростверка (расстояние от центра крайней сваи до кромки ростверка) должно быть равно d. В принятой свае С9 - d = 0,3 м, а 3d = 0,9 м. При количестве свай 4 конструкция ростверка будет иметь следующий вид (рисунок 7.1).

Необходимо найти величины:

Объем принятого ростверка Vp:

где VP – объем ростверка, м 3 ;

Vк – объем опирающейся в ростверк части колонны (опоры), м 3 .

Vp – объем ростверка, м 3 ;

Vrp – объем грунта, м 3 ;

Рисунок 7.1 – Схема расположения свай в фундаменте

V р = 1,5 х1,5 х1,7 = 3,83 м 3 ;

N р = 0,85 * (3,83*23) = 74,78 кПа;

Максимальное и минимальное давление на грунт от сваи или расчетную нагрузку, приходящуюся на отдельную сваю, в общем случае, когда моменты действуют в направлении двух осей, определяют по формуле:

где Mx , Mу – изгибающие моменты вдоль оси х и оси у, кН·м;

у, х – расстояния от главных осей до оси (центра) сваи, для которой определяется расчетная нагрузка, м.

Рисунок 7.2 – Ростверк фундамента

Fd = 647,59 кПа > Рmax = 575,92 кПа.

7.3 Расчет условного фундамента

где L - длина сваи, м;

li – длина i-го участка, м.

Далее находим по формуле (29) коэффициент (угол) рассеивания напряжений с глубиной: град. , (42)

Найдем размеры и площадь площадки давления (условного фундамента) по формулам:

где rс – расстояние между сваями, м;

lсв – длина сваи, м;

Площадь условного фундамента:

Aф.усл = 4,1 х 4,1 = 16,81 м 2 .

Рисунок 7.3 – Схема распределения давления на грунт

Найдем нагрузку от веса условного фундамента:

Ny = 16,81*( 3,7*14,52+1,97 * 14,22 + 3,4*16,87+1,63*15,70) =

=16,81*(53,72+28,01+57,36+25,59)= 16,81*164,68=2768,27 кН.

Средний вес грунта условного фундамента:

Определяем расчетное сопротивление грунта:

= 1,1 (38,27 + 599,18) = 701,20 кПа.

Среднее фактическое давление по подошве условного фундамента на грунт:

РII = (1180 + 2768,27) / 16,81 = 234,88 кПа. РII < RII - условие соблюдается.

Практическое занятие № 8 - Технико-экономическое обоснование выбора варианта фундамента в ценах 1984 года

8.1 Определение объемов фундаментов и работ при их устройстве

8.1.1 Объемы по устройству внецентренно нагруженного

Элементы работ согласно расчетам практического занятия №5:

а) Разработка грунта под фундамент - 71,83 м 3 .

б) Укрепление стенок котлована (устройство опалубки) - 30,6 м 2 .

в) Устройство монолитного фундамента - 11,82 м 3 .

8.1.2 Объемы по устройству свайного фундамента

Элементы работ согласно расчетам практических занятий №6-7:

а) Разработка грунта под фундамент - 22,03 м 3 .

б) Укрепление стенок котлована (устройство опалубки) - 10,88 м 2 .

в) Устройство монолитного ростверка - 4,664 м 3 .

г) Погружение железобетонных свай – 4 шт.:

0,81 х 4 = 3,24 куб.м.

Полученные значения заносим в таблицу 8.1, и производим сравнение двух вариантов фундаментов по технико-экономическим показателям.

Таблица 8.1 – Технико-экономические показатели

По итогам расчетов принимаем вариант свайного фундамента, вследствие оптимальных технико-экономических показателей.

Определение размеров условного фундамента

Определение размеров условного фундамента производится в следующей последовательности.

1.Определяем размеры условного фундамента. Границы условного свайного фундамента определяются следующим образом (рис. 5.3): снизу – плоскостью АБ, проходящей через нижние концы свай; сверху – поверхностью планировки земли; с боков – вертикальными плоскостями АВ и ВБ, отстоящими от нагруженных граней крайних рядов вертикальных свай на расстоянии hу.ф.×tga, где a – угол распределения напряжений, определяется по формуле

где jII,mt – усредненный угол внутреннего трения в пределах грунта, пробиваемого сваей (рис. 5.3), определяется по формуле

2.Определяется высота условного фундамента hу.ф., по формуле

hу.ф. = NLFLу.ф. = 159,50 – 155,85 = 3,65 м.

3.Определяем ширину подошвы условного фундамента bу.ф.:

bу.ф. = 5d + 2tglсв = 5×0,3 + 2×tg6,74×3,7 = 2,37 м,

где d – диаметр круглой сваи или размер стороны квадратного поперечного сечения сваи, d = 0,3 м; lсв – длина сваи без учета заделки в ростверк, определяется по формуле

lсв = Lсвhз = 4,0 – 0,3 = 3,7 м.

здесь hз – высота (глубина) заделки сваи в ростверк, hз = 0,3 м.

4.Определяем длину подошвы условного фундамента lу.ф.:

lу.ф. = 5d + 2tglсв = 5×0,3 + 2×tg6,74×3,7 = 2,37 м.

5.Определяем площадь подошвы условного фундамента Aу.ф.:

6.Определяем собственный вес свай Gсв:

где Vсв – объём свай, определяется по формуле

здесь Aсв – площадь поперечного сечения сваи, Aсв = 0,09 м 2 ; lсв – длина сваи без учета заделки в ростверк, lсв = 3,7 м; n – количество свай, n = 4 шт;
gm = 25 кН/м 3 – удельный вес бетона сваи.

7.Определяем собственный вес ростверка Gр:

где gm = 25 кН/м 3 – удельный вес бетона ростверка; Vр – объём ростверка, определяется по формуле

здесь lпл, bпл, hпл, lп, bп и hп – длина, ширина и высота соответственно плиты и подколонника ростверка.

8.Определяем собственный вес грунта Gгр, расположенного на уступах ростверка, определяется по формуле:

где Vу.ф. – объём условного фундамента грунта (прямоугольник ABCD, рис. 5.3), определяется по формуле:

5,62×3,65 = 14,12 м 3 ,

здесь – площадь подошвы условного фундамента, = 5,62 м 2 ; – осреднённое значение удельного веса грунта расположенного на подошве ростверка (при наличии грунтовых подземных вод определяется с учётом взвешивающего действия воды), принимается равным = 17,5×кН/м 3 .

9.Определяем среднее давление Pу.ф. под подошвой условного фундамента:

10.Определяем расчетное сопротивление грунта основания несущего слоя под подошвой условного фундамента:

где gс1 и gс2 – коэффициенты условий работы, gс1 = 1,4 и gс2 = 1,34, согласно табл. 3 [1] или прил. 4, табл. 4.1 настоящего учебного пособия; k – коэффициент, k = 1,0, т.к. прочностные характеристики грунта (ИГЭ-3), залегающего под подошвой условного фундамента (j и cII), определены непосредственными испытаниями; Мg, Мq, Мс – коэффициенты, зависящие от угла внутреннего трения j (п.7, табл. № 47) несущего слоя грунта, принимаются согласно табл. 4 [1] или прил. 5 настоящего учебного пособия, для j = 37° Мg = 1,95, Мq = 8,81, Мс = 10,37; bу.ф. – ширина условного фундамента, bу.ф. = 2,37 м; kz – коэффициент, kz = 1,0, т.к. ширина условного фундамента bу.ф. = 1,5 < 10 м; db – глубина подвала – расстояние от уровня планировки до пола подвала, db = 1,85 м; сII – расчётное значение удельного сцепления грунта, залегающего непосредственно под подошвой условного фундамента, сII = 1 кПа; – осредненное расчетное значение удельного веса грунта, залегающего выше подошвы условного фундамента (при наличии грунтовых подземных вод определяется с учетом взвешивающего действия воды), определяется по формуле:

gII – то же, ниже подошвы условного фундамента, определяется по формуле

11.Проверяем условие, по которому среднее давление под подошвой условного фундамента не должно превышать расчетного сопротивления несущего слоя грунта Rу.ф под подошвой условного фундамента, т.е. должно выполняться условие Pу.ф. + £ Rу.ф.

Определение размеров условного фундамента

5.5.3. Определение основных размеров фундаментов (ч. 1)

Основные размеры фундаментов мелкого заложения (глубина и размеры подошвы) в большинстве случаев определяются исходя из расчета оснований по деформациям, который включает:

  • – подсчет нагрузок на фундамент;
  • – оценку инженерно-геологических и гидрогеологических условий площадки строительства; определение нормативных и расчетных значений характеристик грунтов;
  • – выбор глубины заложения фундамента;
  • – назначение предварительных размеров подошвы по конструктивным соображениям или исходя из условия, чтобы среднее давление на основание равнялось расчетному сопротивлению грунта, приведенному в табл. 5.13;
  • – вычисление расчетного сопротивления грунта основания R по формуле (5.29), изменение в случае необходимости размеров фундамента с тем, чтобы обеспечивалось условие pR ; в случае внецентренной нагрузки на фундамент, кроме того, проверку краевых давлений;
  • – при наличии слабого подстилающего слоя проверку соблюдения условия (5.35);
  • – вычисление осадок основания и проверку соблюдения неравенства (5.28); при необходимости корректировку размеров фундаментов.

В случаях, оговоренных в п. 5.1, выполняется расчет основания по несущей способности. После этого производятся расчет и конструирование самого фундамента.

А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Определение размеров подошвы фундамента по заданному значению расчетного сопротивления грунта основания. Обычно вертикальная нагрузка на фундамент N задается на уровне его обреза, который чаще всего практически совпадает с отметкой планировки. Тогда суммарное давление на основание на уровне подошвы фундамента будет:


где — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое обычно равным 20 кН/м 3 ; d и А — глубина заложения и площадь подошвы фундамента.

Если принять p = R , получим следующую формулу для определения необходимой площади подошвы фундамента:

Задавшись соотношением сторон подошвы фундамента η = l/b , получим:

Зная размеры фундамента, вычисляют его объем и вес Nf , а также вес грунта на его обрезах Ng и проверяют давление по подошве:

Определение размеров подошвы фундамента при неизвестном значении расчетного сопротивления грунта основания. Как видно из формулы (5.29), расчетное сопротивление грунта основания зависит от неизвестных при проектировании размеров фундамента (глубины его заложения d и размеров в плане b×l ), поэтому обычно эти размеры определяются методом последовательных приближений. В качестве первого приближения принимают размеры фундамента по конструктивным соображениям или из условия (5.41), т.е. принимая R = R .

Однако необходимые размеры подошвы фундамента можно определить за один прием. Из формулы (5.41)


ηb 2 (R – d) – N = 0 ,

а с учетом формулы (5.29) при b kz = 1)

Уравнение (5.43) приводится к виду:

для ленточного фундамента

для прямоугольного фундамента


;


;

Решение квадратного уравнения (5.44) производится обычным способом, а уравнения (5.45) — методом последовательного приближения или по стандартной программе.

После вычисления значения b с учетом модульности и унификации конструкций принимают размеры фундамента и проверяют давление по его подошве по формуле (5.42).

Пример 5.7. Определить ширину ленточного фундамента здания жесткой конструктивной схемы без подвала ( db = 0). Отношение L/H = 1,5. Глубина заложения фундамента d = 2 м. Нагрузка на фундамент на уровне планировки n = 900 кН/м. Грунт — глина с характеристиками, полученными при непосредственных испытаниях: φII = 18°, cII = 40 кПа, γII = γ´II = 18 кН/м 3 , IL = 0,45.

Решение. по табл. 5.10 имеем: γс1 = 1,2 и γс2 = 1,1; по табл. 5.11 при φII = 18°; Мγ = 0,43; Мq = 2,73; Мc = 5,31. Поскольку характеристики грунта приняты по испытаниям, k = 1.

Для определения ширины фундамента b предварительно вычисляем:


;

a1 = 1,2·1,1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2 = 370,1.

Подставляя эти значения в формулу (5.44), получаем 10,22 b 2 + 370,1 b – 900 = 0, откуда


м.

Принимаем b = 2,4 м.

Пример 5.8. Определить размеры столбчатого фундамента здания гибкой конструктивной схемы ( γс2 = 1). Соотношение сторон фундамента η = l/b = 1,5, нагрузка на него составляет: N = 4 МН = 4000 кН. Грунтовые условия и глубина заложения те же, что и в предыдущем примере.

a η = 1,2 · 1 · 0,43 · 18 · 1,5 = 13,93;

a1η = [1,2 · 1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2] 1,5 = 499,22.

Затем, подставляя в уравнение (5.45) полученные величины (13,93 b 3 + 499,22 b 2 – 4000 = 0) и решая его по стандартной программе, находим b = 2,46 м, тогда l = 1,5 b = 3,7 м.

Принимаем фундамент с размерами подошвы 2,5×3,7 м.

Определение размеров подошвы фундамента при наличии слабого подстилающего слоя. При наличии в пределах сжимаемой толщи основания (на глубине z от подошвы фундамента) слоя грунта с худшими прочностными свойствами, чем у лежащего выше грунта, размеры фундамента необходимо назначать такими, чтобы обеспечивалось условие (5.35). Это условие сводится к определению суммарного вертикального напряжения от внешней нагрузки и от собственного веса лежащих выше слоев грунта ( σz = σzp + σzg ) и сравнению этого напряжения с расчетным сопротивлением слабого подстилающего грунта R применительно к условному фундаменту, подошва которого расположена на кровле слабого грунта.

Пример 5.9. Определить размеры столбчатого фундамента при следующих инженерно-геологических условиях (см. рис. 5.24). На площадке от поверхности до глубины 3,8 м залегают песни крупные средней плотности маловлажные, подстилаемые суглинками. Характеристики грунтов по данным испытаний: для песка φII = 38°, сII = 0, γII = γ´II = 18 кН/м 3 , E = 40 МПа; для суглинков φII = 19°, сII = 11 кПа, γII = 17 кН/м 3 , E = 17 МПа. Здание — с гибкой конструктивной схемой без подвала ( db = 0). Вертикальная нагрузка на фундамент на уровне поверхности грунта N = 4,7 MH. Глубина заложения фундамента d = 2 м. Предварительные размеры подошвы фундамента примяты исходя из R = 300 кПа (табл. 5.13) равными 3×3 м.

Решение. по формуле (5.29) с учетом табл. 5.11 и 5.12 получаем;


кПа.

Для определения дополнительного вертикального напряжения от внешней нагрузки на кровле слабого грунта предварительно находим:

среднее давление под подошвой


p = N /b 2 + d = 4,7 · 10 3 /3 2 + 20 · 2 = 520 + 40 = 560 кПа;

дополнительное давление на уровне подошвы

По табл. 5.4 при ζ = 2z/b = 2 · 1,8/3 = 1,2 коэффициент α = 0,606. Тогда дополнительное вертикальное напряжение па кровле слабого слоя от нагрузки на фундамент будет:

Ширина условного фундамента составит:


м.

Для условного фундамента на глубине z = 1,8 м при γc1 = γc2 = k = 1 расчетное сопротивление суглинков по формуле (5.29) будет:

Rz = 0,47 · 4 · 17 + 2,88 · 3,8 · 18 + 5,48 · 11 = 30 + 196 + 60 = 286 кПа.

Вертикальное нормальное напряжение от собственного веса грунта на глубине z = 3,8 м

Проверяем условие (5.35):

315 + 62 = 377 > Rz = 286 кПа,

т.е. условие (5.35) не удовлетворяется и требуется увеличить размеры фундамента. Расчет показал, что в данном случае необходимо принять b = 3,9 м.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Методика условного фундамента к большеразмерным свайным полям

СП 24.13330.2011 п.7.46

расчеты МКЭ, проектирование, к.т.н.

Наверное не точно написали ссылку? В СП есть пункт 7.4.6, и там нет определение данного термина.

А определения нет. Это все идет из Москвы

Определение размеров условного фундамента

Определение размеров условного фундамента производится в следующей последовательности.

1.Определяем размеры условного фундамента. Границы условного свайного фундамента определяются следующим образом (рис. 5.3): снизу – плоскостью АБ, проходящей через нижние концы свай; сверху – поверхностью планировки земли; с боков – вертикальными плоскостями АВ и ВБ, отстоящими от нагруженных граней крайних рядов вертикальных свай на расстоянии hу.ф.×tga, где a – угол распределения напряжений, определяется по формуле

где jII,mt – усредненный угол внутреннего трения в пределах грунта, пробиваемого сваей (рис. 5.3), определяется по формуле

2.Определяется высота условного фундамента hу.ф., по формуле

3.Определяем ширину подошвы условного фундамента bу.ф.:

где d – диаметр круглой сваи или размер стороны квадратного поперечного сечения сваи, d = 0,3 м; lсв – длина сваи без учета заделки в ростверк, определяется по формуле

здесь hз – высота (глубина) заделки сваи в ростверк, hз = 0,3 м.

4.Определяем длину подошвы условного фундамента lу.ф.:

5.Определяем площадь подошвы условного фундамента Aу.ф.:

6.Определяем собственный вес свай Gсв:

где Vсв – объём свай, определяется по формуле

здесь Aсв – площадь поперечного сечения сваи, Aсв = 0,09 м 2 ; lсв – длина сваи без учета заделки в ростверк, lсв = 3,7 м; n – количество свай, n = 4 шт;
gm = 25 кН/м 3 – удельный вес бетона сваи.

7.Определяем собственный вес ростверка Gр:

где gm = 25 кН/м 3 – удельный вес бетона ростверка; Vр – объём ростверка, определяется по формуле

8.Определяем собственный вес грунта Gгр, расположенного на уступах ростверка, определяется по формуле:

Gгр = (Vу.ф.VрVсв)× = (14,12 – 3,375 – 1,33)×17,5 = 164,76 кН,

где Vу.ф. – объём условного фундамента грунта (прямоугольник ABCD, рис. 5.3), определяется по формуле:

5,62×3,65 = 14,12 м 3 ,

здесь – площадь подошвы условного фундамента, = 5,62 м 2 ; – осреднённое значение удельного веса грунта расположенного на подошве ростверка (при наличии грунтовых подземных вод определяется с учётом взвешивающего действия воды), принимается равным = 17,5×кН/м 3 .

9.Определяем среднее давление Pу.ф. под подошвой условного фундамента:

10.Определяем расчетное сопротивление грунта основания несущего слоя под подошвой условного фундамента:

где gс1 и gс2 – коэффициенты условий работы, gс1 = 1,4 и gс2 = 1,34, согласно табл. 3 [1] или прил. 4, табл. 4.1 настоящего учебного пособия; k – коэффициент, k = 1,0, т.к. прочностные характеристики грунта (ИГЭ-3), залегающего под подошвой условного фундамента (j и cII), определены непосредственными испытаниями; Мg, Мq, Мс – коэффициенты, зависящие от угла внутреннего трения j (п.7, табл. № 47) несущего слоя грунта, принимаются согласно табл. 4 [1] или прил. 5 настоящего учебного пособия, для j = 37° Мg = 1,95, Мq = 8,81, Мс = 10,37; bу.ф. – ширина условного фундамента, bу.ф. = 2,37 м; kz – коэффициент, kz = 1,0, т.к. ширина условного фундамента bу.ф. = 1,5 3

gII – то же, ниже подошвы условного фундамента, определяется по формуле

+ (8,81 – 1)×1,85×24,01 + 10,37×1 = 2221,06 кПа.

11.Проверяем условие, по которому среднее давление под подошвой условного фундамента не должно превышать расчетного сопротивления несущего слоя грунта Rу.ф под подошвой условного фундамента, т.е. должно выполняться условие Pу.ф. + £ Rу.ф.

Как определить размеры условного фундамента

Расчет свайного фундамента и его основания по деформациям проводится как для условного фундамента на естественном основании [4, п.6.].

Границы условного фундамента определяются:

· снизу – плоскостью, проходящей через нижние концы свай;

· с боков – вертикальными плоскостями, отстоящими от наружных граней крайних рядов вертикальных свай на расстояние ∆;

· сверху – поверхностью планировки грунта.

Рис. 8. Схема к определению размеров условного фундамента

Размеры подошвы условного фундамента:

где осредненное расчетное значение угла внутреннего трения в пределах высоты условного фундамента (рис. 8):

где расчетные значения углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi;

– глубина погружения свай в грунт;

КП – ИГОиФ – 02068982 – 290300 – 41ПГС – 2007

Проверка напряжений на уровне нижних концов свай

Давление в грунте от нормативных нагрузок р на уровне нижних концов свайне должно превышать расчетного сопротивления грунта R:

Давление под подошвой условного фундамента:

гле – осредненное значение коэффициента надежности по нагрузке;

G н нормативный вес условного фундамента (рис. 8):

где = 20 кН/м 3 – осредненный объемный вес бетона и грунта;

С н уф = 2,486*2,286*7,05*20 = 801,302 кН;

С н уф = 2,286*2,286*7,05*20 = 736,837 кН;

Определяем расчетное сопротивление грунта на уровне нижних концов свай:

где коэффициенты те же, что в п. 1.3. слой № 23;

5.5.3. Определение основных размеров фундаментов (ч. 1)

Основные размеры фундаментов мелкого заложения (глубина и размеры подошвы) в большинстве случаев определяются исходя из расчета оснований по деформациям, который включает:

  • – подсчет нагрузок на фундамент;
  • – оценку инженерно-геологических и гидрогеологических условий площадки строительства; определение нормативных и расчетных значений характеристик грунтов;
  • – выбор глубины заложения фундамента;
  • – назначение предварительных размеров подошвы по конструктивным соображениям или исходя из условия, чтобы среднее давление на основание равнялось расчетному сопротивлению грунта, приведенному в табл. 5.13;
  • – вычисление расчетного сопротивления грунта основания R по формуле (5.29), изменение в случае необходимости размеров фундамента с тем, чтобы обеспечивалось условие pR ; в случае внецентренной нагрузки на фундамент, кроме того, проверку краевых давлений;
  • – при наличии слабого подстилающего слоя проверку соблюдения условия (5.35);
  • – вычисление осадок основания и проверку соблюдения неравенства (5.28); при необходимости корректировку размеров фундаментов.

В случаях, оговоренных в п. 5.1, выполняется расчет основания по несущей способности. После этого производятся расчет и конструирование самого фундамента.

А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Определение размеров подошвы фундамента по заданному значению расчетного сопротивления грунта основания. Обычно вертикальная нагрузка на фундамент N задается на уровне его обреза, который чаще всего практически совпадает с отметкой планировки. Тогда суммарное давление на основание на уровне подошвы фундамента будет:


где — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое обычно равным 20 кН/м 3 ; d и А — глубина заложения и площадь подошвы фундамента.

Если принять p = R , получим следующую формулу для определения необходимой площади подошвы фундамента:

Задавшись соотношением сторон подошвы фундамента η = l/b , получим:

Зная размеры фундамента, вычисляют его объем и вес Nf , а также вес грунта на его обрезах Ng и проверяют давление по подошве:

Определение размеров подошвы фундамента при неизвестном значении расчетного сопротивления грунта основания. Как видно из формулы (5.29), расчетное сопротивление грунта основания зависит от неизвестных при проектировании размеров фундамента (глубины его заложения d и размеров в плане b×l ), поэтому обычно эти размеры определяются методом последовательных приближений. В качестве первого приближения принимают размеры фундамента по конструктивным соображениям или из условия (5.41), т.е. принимая R = R .

Однако необходимые размеры подошвы фундамента можно определить за один прием. Из формулы (5.41)


ηb 2 (R – d) – N = 0 ,

а с учетом формулы (5.29) при b kz = 1)

Уравнение (5.43) приводится к виду:

для ленточного фундамента

для прямоугольного фундамента


;


;

Решение квадратного уравнения (5.44) производится обычным способом, а уравнения (5.45) — методом последовательного приближения или по стандартной программе.

После вычисления значения b с учетом модульности и унификации конструкций принимают размеры фундамента и проверяют давление по его подошве по формуле (5.42).

Пример 5.7. Определить ширину ленточного фундамента здания жесткой конструктивной схемы без подвала ( db = 0). Отношение L/H = 1,5. Глубина заложения фундамента d = 2 м. Нагрузка на фундамент на уровне планировки n = 900 кН/м. Грунт — глина с характеристиками, полученными при непосредственных испытаниях: φII = 18°, cII = 40 кПа, γII = γ´II = 18 кН/м 3 , IL = 0,45.

Решение. по табл. 5.10 имеем: γс1 = 1,2 и γс2 = 1,1; по табл. 5.11 при φII = 18°; Мγ = 0,43; Мq = 2,73; Мc = 5,31. Поскольку характеристики грунта приняты по испытаниям, k = 1.

Для определения ширины фундамента b предварительно вычисляем:


;

a1 = 1,2·1,1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2 = 370,1.

Подставляя эти значения в формулу (5.44), получаем 10,22 b 2 + 370,1 b – 900 = 0, откуда


м.

Принимаем b = 2,4 м.

Пример 5.8. Определить размеры столбчатого фундамента здания гибкой конструктивной схемы ( γс2 = 1). Соотношение сторон фундамента η = l/b = 1,5, нагрузка на него составляет: N = 4 МН = 4000 кН. Грунтовые условия и глубина заложения те же, что и в предыдущем примере.

a η = 1,2 · 1 · 0,43 · 18 · 1,5 = 13,93;

a1η = [1,2 · 1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2] 1,5 = 499,22.

Затем, подставляя в уравнение (5.45) полученные величины (13,93 b 3 + 499,22 b 2 – 4000 = 0) и решая его по стандартной программе, находим b = 2,46 м, тогда l = 1,5 b = 3,7 м.

Принимаем фундамент с размерами подошвы 2,5×3,7 м.

Определение размеров подошвы фундамента при наличии слабого подстилающего слоя. При наличии в пределах сжимаемой толщи основания (на глубине z от подошвы фундамента) слоя грунта с худшими прочностными свойствами, чем у лежащего выше грунта, размеры фундамента необходимо назначать такими, чтобы обеспечивалось условие (5.35). Это условие сводится к определению суммарного вертикального напряжения от внешней нагрузки и от собственного веса лежащих выше слоев грунта ( σz = σzp + σzg ) и сравнению этого напряжения с расчетным сопротивлением слабого подстилающего грунта R применительно к условному фундаменту, подошва которого расположена на кровле слабого грунта.

Пример 5.9. Определить размеры столбчатого фундамента при следующих инженерно-геологических условиях (см. рис. 5.24). На площадке от поверхности до глубины 3,8 м залегают песни крупные средней плотности маловлажные, подстилаемые суглинками. Характеристики грунтов по данным испытаний: для песка φII = 38°, сII = 0, γII = γ´II = 18 кН/м 3 , E = 40 МПа; для суглинков φII = 19°, сII = 11 кПа, γII = 17 кН/м 3 , E = 17 МПа. Здание — с гибкой конструктивной схемой без подвала ( db = 0). Вертикальная нагрузка на фундамент на уровне поверхности грунта N = 4,7 MH. Глубина заложения фундамента d = 2 м. Предварительные размеры подошвы фундамента примяты исходя из R = 300 кПа (табл. 5.13) равными 3×3 м.

Решение. по формуле (5.29) с учетом табл. 5.11 и 5.12 получаем;


кПа.

Для определения дополнительного вертикального напряжения от внешней нагрузки на кровле слабого грунта предварительно находим:

среднее давление под подошвой


p = N /b 2 + d = 4,7 · 10 3 /3 2 + 20 · 2 = 520 + 40 = 560 кПа;

дополнительное давление на уровне подошвы

По табл. 5.4 при ζ = 2z/b = 2 · 1,8/3 = 1,2 коэффициент α = 0,606. Тогда дополнительное вертикальное напряжение па кровле слабого слоя от нагрузки на фундамент будет:

Ширина условного фундамента составит:


м.

Для условного фундамента на глубине z = 1,8 м при γc1 = γc2 = k = 1 расчетное сопротивление суглинков по формуле (5.29) будет:

Rz = 0,47 · 4 · 17 + 2,88 · 3,8 · 18 + 5,48 · 11 = 30 + 196 + 60 = 286 кПа.

Вертикальное нормальное напряжение от собственного веса грунта на глубине z = 3,8 м

Проверяем условие (5.35):

315 + 62 = 377 > Rz = 286 кПа,

т.е. условие (5.35) не удовлетворяется и требуется увеличить размеры фундамента. Расчет показал, что в данном случае необходимо принять b = 3,9 м.

5.4. ГЛУБИНА ЗАЛОЖЕНИЯ ФУНДАМЕНТОВ (ч. 1)

Глубина заложения фундаментов является одним из основных факторов, обеспечивающих необходимую несущую способность и деформации основания, не превышающие предельные по условиям нормальной эксплуатации проектируемого сооружения и находящегося в нем оборудования.

Выбор глубины заложения фундаментов рекомендуется выполнять на основе технико-экономического сравнения различных вариантов фундаментов. Глубина их заложения должна определяться с учетом:

  • – назначения, а также конструктивных особенностей сооружения (наличия и размеров подвалов, фундаментов под оборудование и т.д.);
  • – размера и характера нагрузок и воздействий на фундаменты;
  • – глубины заложения фундаментов примыкающих сооружений, фундаментов под оборудование, глубины прокладки коммуникаций;
  • – существующего и проектируемого рельефа застраиваемой территории;
  • – инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, пустот, образовавшихся вследствие растворения солей и пр.);
  • – гидрогеологических условий площадки (уровней подземных вод и верховодки, а также возможных их изменений в процессе строительства и эксплуатации сооружения, агрессивности подземных вод и т.п.);
  • – глубины сезонного промерзания грунтов [2, 4].
Руководство по проектированию оснований и фундаментов на пучинистых грунтах Руководство по проектированию оснований зданий и сооружений СНиП 2.02.01-83 Основания зданий и сооружений СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

Глубина заложения фундаментов исчисляется от поверхности планировки или пола подвала до подошвы фундамента, при наличии бетонной подготовки — до низа ее. При выборе глубины заложения фундаментов в необходимых случаях при соответствующем обосновании следует учитывать возможность дальнейшей реконструкции проектируемого сооружения (устройство новых коммуникаций, подвальных помещений, фундаментов под оборудование и пр.).

Фундаменты сооружения или его отсека, как правило, должны закладываться на одном уровне. При заложении ленточных фундаментов смежных отсеков на разных отметках переход от более заглубленной части к менее заглубленной должен выполняться уступами. Уступы должны быть не круче 1:2, а высота уступа — не более 60 см. Ленточные фундаменты примыкающих частей отсеков должны иметь одинаковое заглубление на протяжении не менее 1 м от шва.

Допустимая разность отметок заложения соседних столбчатых фундаментов (или столбчатого и ленточного) определяется по формуле

Δha(tgφI + cI/p),


(5.24)

где а — расстоянии между фундаментами в свету; φI и cI – расчетные значения угла внутреннего трения и удельного сцепления грунта; р — среднее давление под подошвой расположенного выше фундамента от расчетных нагрузок (для расчета оснований по несущей способности).

Столбчатые фундаменты, разделенные осадочным швом, следует располагать на одном уровне.

Условие (5.24) распространяется и на случай определения допустимой разности отметок заложения фундаментов сооружения и рядом расположенных каналов, тоннелей и пр.

Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется принимать на одной отметке. Переход на большую глубину заложения следует выполнять исходя из условия (5.24). Если оно не выполняется, необходимо устройство шпунтовой стенки или другого ограждения (рис. 5.14).

Схема защиты существующего здания от дополнительных осадок при возведении рядом нового здания

Рис. 5.14. Схема защиты существующего здания от дополнительных осадок при возведении рядом нового здания с большей глубиной заложения фундамента 1 — фундамент существующего здания; 2 — фундамент нового здания; 3 — фундамент с большей глубиной заложения; 4 — шпунтовая стенка

При выборе глубины заложения фундаментов рекомендуется:

  • – предусматривать заглубление фундаментов в несущий слой грунта на 10—15 см;
  • – избегать наличия под подошвой фундамента слоя грунта малой толщины, если его строительные свойства значительно хуже свойств подстилающего слоя;
  • – закладывать фундаменты выше уровня подземных вод для исключения необходимости применения водопонижения при производстве работ.

При необходимости заложения фундаментов ниже уровня подземных вод следует предусматривать методы производства работ, сохраняющие структуру грунта.

Если глубина заложения фундаментов по условиям несущей способности и деформируемости грунтов основания оказывается чрезмерно большой, рекомендуется рассмотреть применение мероприятий по улучшению строительных свойств грунтов основания или переход на свайные фундаменты.

Одним из основных факторов, определяющих заглубление фундаментов, является глубина сезонного промерзания грунтов, которые при промораживании увеличиваются в объеме, а после оттаивания дают значительные осадки. Промерзание водонасыщенных грунтов сопровождается образованием в них прослоек льда, толщина которых увеличивается по мере миграции воды из слоев грунта, расположенных ниже уровня подземных вод. Последующее таяние таких грунтов приводит к резкому снижению их несущей способности и повышенным деформациям.

Деформации основания при морозном пучении и последующем оттаивании, как правило, неравномерны вследствие неоднородности грунта по степени его пучинистости и различия температурных условий, в которых могут находиться грунты под отдельными фундаментами.

Исключение возможности промерзания грунтов под подошвой фундаментов обеспечивается:

  • – в период эксплуатации — соответствующей глубиной их заложения, принимаемой в зависимости от вида и состояния грунтов, положения уровня подземных вод, нормативной глубины сезонного промерзания, теплового режима сооружения и пр.;
  • – в период строительства — соответствующими защитными мероприятиями.

Нормативная глубина сезонного промерзания грунтов dfn принимается равной средней из ежегодных максимальных глубин их сезонного промерзания (по данным наблюдений за период не менее 10 лет) под открытой, оголенной от снега поверхностью горизонтальной площадки при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов. Для районов, где не предусматривается очистка от снега территорий, прилегающих к проектируемым сооружениям (например, в сельской местности), нормативную глубину промерзания грунтов допускается определять на площадках под снежным покровом.

При отсутствии данных многолетних наблюдений нормативную глубину сезонного промерзания грунтов следует определять, на основе теплотехнических расчетов.

Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение, м, допускается вычислять по формуле

,


(5.25)

где d0 — глубина промерзания при ∑|Tf| = 1°С, принимаемая для суглинков и глин — 0,23; супесей, песков мелких и пылеватых — 0,28; песков гравелистых, крупных и средней крупности — 0,30; крупнообломочных грунтов — 0,34; Мt — безразмерный коэффициент, численно равный ∑|Tf| — сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, °С, принимаемых по СНиП 2.01.01-82 или по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях.

Значение dfn для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания грунта. Значение dfn допускается определять по схематической карте (рис. 5.15), где даны изолинии нормативных глубин промерзания для суглинков, т.е. при d0 = 0,23 м. При наличии в зоне промерзания других грунтов значение dfn , найденное по карте, следует умножить на отношение d0 /0,23 (где d0 соответствует грунтам данной строительной площадки). Для районов Дальнего Востока допускается пользоваться картой (рис. 5.16). Если значения dfn , найденные по карте и по формуле (5.25), не совпадают, следует принимать значение, найденное по формуле.

Читайте также: