Фундаменты под пилоны и отдельные колонны

Обновлено: 27.04.2024

Отдельные фундаменты под колонны. Конструкции сборных и монолитных фундаментов.

В зависимости от размеров сборные фундаменты ко­лонн выполняют цельными н составными. Размеры цель­ных фундаментов (рис. 12.2) относительно невелики. Их выполняют из тяжелых бетонов классов В15. В25, уста­навливают на песчано-гравийную уплотненную подготов­ку толщиной 100 мм. В фундаментах предусматривают арматуру, располагаемую по подошве в виде сварных сеток. Минимальную толщину защитного слоя арматуры принимают 35 мм. Если под фундаментом нет подготовки, то защитный слой делают не менее 70 мм.

Сборные колонны заделывают в специальные гнезда (стаканы) фундаментов. Глубину заделки d2принимают равной 1. 1,5 большему размеру поперечного сечения ко­лонн или в 1,5 раза больше. Толщина нижней плиты гнезда должна быть не менее 200 мм. Зазоры между ко­лонной и стенками стакана принимают следующими: по­низу — не менее 50 мм, поверху — не менее 75 мм. При монтаже колонну устанавливают в гнездо с помощью подкладок и клиньев или кондуктора и рихтуют, после чего зазоры заполняют бетоном класса В17,5 на мелком заполнителе.

Сборные фундаменты больших размеров, как правило, выполняют составными из нескольких монтажных блоков (рис. 12.3). На них расходуется больше материалов, чем на цельные. При значительных моментах и горизонталь­ных распорах блоки составных фундаментов соединяют между собой сваркой выпусков, анкеров, закладных де­талей н т. п.


Конструкции монолитных фундаментов

Монолитные отдельные фундаменты устраивают под сборные и монолитные каркасы зданий и сооружений. Типовые конструкции монолитных фундаментов, сопря­гаемых со сборными колоннами, разработаны под уни­фицированные размеры (кратные 300 мм): площадь по­дошвы — (1,5Х 1,5). (6X5,4) м, высота фундамента — 1,5; 1,8; 2,4; 3; 3,6 и 4,2 м (рис. 12.4). В фундаментах приняты: удлиненный подколонник, армированный простран­ственным каркасом; фундаментная плита с отношением размера вылета к толщине до 1:2, армированная двой­ной сварной сеткой; высоко размещенный армированный подколонник.

Монолитные фундаменты, сопрягаемые с монолитны­ми колонками (рис. 12.5), бывают по форме ступенчаты­ми и пирамидальными (ступенчатые по устройству опа­лубки проще). Общую высоту фундамента h принимают такой, чтобы не требовалось его армирования хомутами и отгибами. Давление от колонн передается на фунда­мент, отклоняясь от вертикали в пределах 45°. Этим ру­ководствуются при назначении размеров верхних ступе­ней фундамента (см. рис. 12.5, в).


Монолитные фундаменты, как н сборные, армируют сварными сетками только по подошве. При размерах стороны подошвы более 3 м в целях экономии стали применяют нестандартные сварные сетки, в которых половину стержней не доводят до конца на 1/10 длины (см. рис. 12.5, д).

Для связи с монолитной колонной из фундамента выпускают арматуру с площадью сечения, равной расчетному сечению арматуры колонны у обреза фундамента. В пределах фундамента выпуски соединяют хомутами в каркас, который устанавливают на бетонные или кирпичные прокладки. Длина выпусков из фундаментов должна быть достаточной для устройства стыка арматуры согласно существующим требованиям. Стыки выпусков делают выше уровня пола. Арматуру колонн можно соединять с выпусками внахлестку без сварки по общим правилам конструирования таких стыков. В колоннах, центрально сжатых или внецентренно сжатых при малых эксцентриситетах, арматуру соединяют с выпусками в одном месте; в колоннах, внецентренно сжатых при больших эксцентриситетах, — не менее чем в двух уров­нях с каждой стороны колонны. Если при этом на одной стороне сечения колонны находится три стержня, то пер­вым соединяют средний.

Арматуру колонн с выпусками лучше соединять дуго­вой сваркой. Конструкция стыка должна быть удобной для монтажа и сварки. Если все сечение армировано лишь четырьмя стержнями, то стыки выполняют только сварными.

СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87 (с Изменениями N 1, 3, 4)

5.17.1 Опалубка должна соответствовать требованиям ГОСТ 34329 и обеспечивать проектную форму, геометрические размеры и качество поверхности возводимых конструкций в пределах установленных допусков.

5.17.2 При выборе типа опалубки, применяемой при возведении бетонных и железобетонных конструкций, следует предусматривать:

точность изготовления и монтажа опалубки;

качество бетонной поверхности и монолитной конструкции после распалубки;

Опалубка должна быть сертифицирована на соответствие ГОСТ 34329 предприятием-изготовителем.

5.17.3 Нагрузки и данные для расчета опалубки приведены в приложении Т.

5.17.4 Установка и приемка опалубки, распалубливание монолитных конструкций, очистка и смазка производится по СП 48.13330 и ППР.

5.17.5 Подготовленную к бетонированию опалубку следует принимать по ГОСТ Р 52752 и акту.

5.17.6 Поверхность опалубки, соприкасающаяся с бетоном, должна быть перед укладкой бетонной смеси покрыта смазкой. Смазку следует наносить тонким слоем на тщательно очищенную поверхность.

Поверхность опалубки после нанесения на нее смазки должна быть защищена от загрязнения, дождя и солнечных лучей. Не допускается попадания смазки на арматуру и закладные детали. Допускается для смазки деревянной опалубки использовать эмульсол в чистом виде или с добавкой известковой воды.

Для металлической и фанерной опалубки допускается применять эмульсолы с добавлением уайт-спирита или поверхностно-активных веществ, а также другие составы смазок, не влияющие отрицательно на свойства бетона и внешний вид конструкций и не уменьшающие сцепление опалубки с бетоном.

Смазку из отработанных машинных масел случайного состава применять не допускается.

5.17.7 Опалубка и арматура массивных конструкций перед бетонированием должны быть очищены сжатым (в том числе горячим) воздухом от снега и наледи. Очистка и нагрев арматуры паром или горячей водой не допускаются.

Все открытые поверхности свежеуложенного бетона после окончания бетонирования и при перерывах в бетонировании должны быть тщательно укрыты и утеплены.

5.17.8 Технические требования, которые следует выполнять при бетонировании монолитных конструкций и проверять при операционном контроле, включая допустимую прочность бетона при распалубке, приведены в таблице 5.11.

Контроль (метод, объем, вид регистрации)

1 Допускаемые отклонения положения и размеров установленной опалубки

Измерительный (теодолитная и нивелирная съемки и измерение рулеткой)

2 Предельные отклонения расстояния: между опорами изгибаемых элементов опалубки и между связями вертикальных поддерживающих конструкции от проектных размеров:

Измерительный (измерение рулеткой)

От вертикали или проектного наклона плоскостей опалубки и линий их пересечений:

Фундаменты под пилоны и отдельные колонны

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ЖЕЛЕЗОБЕТОННЫЕ МОНОЛИТНЫЕ КОНСТРУКЦИИ ЗДАНИЙ

CONCRETE MONOLITHIC BUILDING STRUCTURES

Дата введения 2007-07-15

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) - филиалом ФГУП "НИЦ "Строительство"

2 РЕКОМЕНДОВАН К УТВЕРЖДЕНИЮ И ПРИМЕНЕНИЮ конструкторской секцией НТС НИИЖБ 27 апреля 2006 г.

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом и.о. генерального директора ФГУП "НИЦ "Строительство" от 12 июля 2007 г. N 123.

4 ВВЕДЕН ВПЕРВЫЕ

Внесена опечатка, опубликованная в Информационном бюллетене о нормативной, методической и типовой проектной документации, N 3, 2008 г.

Опечатки внесены изготовителем базы данных.

Введение

Настоящий Свод правил разработан в развитие СНиП 52-01-2003 "Бетонные и железобетонные конструкции. Основные положения".

Объем строительства зданий различного назначения из монолитного железобетона в последние годы значительно возрос. В то же время практика проектирования не имеет в своем распоряжении документа, где были бы объединены основные требования, выполнение которых обеспечивает надежность и безопасность такого вида зданий. Настоящий Свод правил ставит своей целью восполнить этот пробел.

Свод правил содержит рекомендации по расчету и проектированию железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

Решение вопроса о применении данного Свода правил при проектировании монолитных зданий относится к компетенции заказчика или проектной организации. В случае принятия решения о применении настоящего Свода правил должны быть выполнены все установленные в нем требования.

Свод правил разработали д-ра техн. наук А.С.Залесов, А.С.Семченков, Е.А.Чистяков, С.Б.Крылов, канд. техн. наук Р.Ш.Шарипов (НИИЖБ - филиал ФГУП "НИЦ "Строительство").

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на проектирование железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

2 Нормативные ссылки

В настоящем Своде правил использованы ссылки на следующие основные нормативные документы:

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры

СП 52-104-2004* Сталефибробетонные конструкции.

* Вероятно ошибка оригинала. Следует читать СП 52-104-2006. - Примечание изготовителя базы данных.

Другие нормативные и рекомендательные документы, ссылки на которые использованы в настоящем СП, приведены в приложении А.

3 Термины и определения

В настоящем Своде правил использованы основные термины и определения по СНиП 52-01, СП 52-101, СП 52-104 и другим нормативным документам.

4 Общие указания

4.1 Рекомендации настоящего Свода правил распространяются на проектирование различных конструктивных систем зданий, в которых все основные несущие конструкции (колонны, стены, перекрытия, покрытия, фундаменты) выполняются из монолитного железобетона с жесткими и податливыми сопряжениями между ними.

4.2 Проектирование конструкций зданий, подвергающихся климатическим температурно-влажностным воздействиям, следует выполнять по СНиП 2.01.07.

4.3 Расчет и конструирование зданий при сейсмических воздействиях следует выполнять согласно СНиП II-7. Огнестойкость конструкций и огнесохранность зданий должны отвечать требованиям СНиП 21-01 и СТО 36554501-006.

4.4 Несущие конструкции здания следует проектировать с учетом долговечности и ремонтопригодности согласно СНиП 31-01, защиту конструкций от коррозии следует выполнять согласно указаний СНиП 2.03.11.

4.5 Значения предельных деформаций основания зданий регламентируются СНиП 2.02.01. Предельные прогибы, перемещения конструкций и перекосы вертикальных и горизонтальных ячеек зданий не должны превышать допустимых значений, приведенных в СНиП 2.01.07.

4.6 Для зданий, рассчитываемых на совместное воздействие вертикальных и горизонтальных нагрузок по недеформированной схеме, прогиб верха здания с учетом податливости основания рекомендуется принимать не более 0,001 высоты здания. При больших значениях прогибов необходимо выполнить расчет по деформированной схеме. При этом значение прогиба здания не должно превышать 0,002 его высоты.

4.7 Настоящий Свод правил следует применять совместно с СП 52-101 и СП 52-104.

4.8 Железобетонные конструкции должны быть сконструированы таким образом, чтобы с достаточной надежностью предотвратить возникновение всех видов предельных состояний. Это достигается выбором показателей качества материалов, назначением размеров и конструированием согласно рекомендациям настоящего СП и действующих нормативных документов. При этом должны быть выполнены технологические требования при изготовлении конструкций, соблюдены требования по эксплуатации зданий, а также требования по экологии, энергосбережению, противопожарной безопасности и долговечности, устанавливаемые соответствующими нормативными документами, и учтены неравномерные осадки основания.

4.9 При проектировании железобетонных конструкций их надежность должна быть установлена расчетом по предельным состояниям первой и второй групп путем использования расчетных значений нагрузок, характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий.

Нормативные значения нагрузок, коэффициентов сочетаний нагрузок и коэффициентов надежности ответственности конструкций, а также разделение нагрузок на постоянные и временные (длительные и кратковременные) следует принимать согласно СНиП 2.01.07.

Порядок приложения постоянных и длительно действующих нагрузок должен определяться графиком производства работ или по факту.

4.10 Наряду с контролем прочности бетона по образцам рекомендуется контроль прочности бетона в готовой конструкции проводить с использованием неразрушающих методов по ГОСТ 22690.

4.11 При применении арматуры класса А500С с эффективным профилем, разработанным в НИИЖБ, следует пользоваться рекомендациями СТО 36554501-005. Стыковку арматуры в торец на стройплощадке следует осуществлять с помощью ванной сварки, а также винтовых и опресованных механических соединений.

Рекомендуется применение арматуры малого диаметра расширенного сортамента: 5,5; 6; 6,5; 7; 8; 9; 10; 11; 12 мм нового периодического профиля с сердечником в форме квадрата со скругленными углами в соответствии с ТУ 14-1-5500*, ТУ 14-1-5501*.

* ТУ, упомянутые здесь и далее по тексту не приводятся. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 Конструктивные решения железобетонных монолитных зданий

5.1 Конструктивное решение включает строительную и конструктивную системы, а также конструктивную схему.

5.2 Строительная система здания определяется материалом, наиболее массовой конструкцией и технологией возведения несущих элементов (монолитный железобетон).

5.3 Конструктивная система (далее - КС) здания представляет собой совокупность взаимосвязанных несущих конструктивных элементов, обеспечивающих его прочность, устойчивость и необходимый уровень эксплуатационных качеств.

5.4 Несущая КС монолитного железобетонного здания состоит из фундамента, опирающихся на него вертикальных несущих элементов (колонн и стен) и объединяющих их в единую пространственную систему горизонтальных элементов (плит перекрытий и покрытия).

5.5 В зависимости от типа вертикальных несущих элементов (колонны и стены) конструктивные системы разделяют на (рис.5.1, а, б, в):

- колонные, где основным несущим вертикальным элементом являются колонны;

- стеновые, где основным несущим элементом являются стены;

- колонно-стеновые, или смешанные, где вертикальными несущими элементами являются колонны и стены.

а - колонная КС; б - стеновая КС; в - смешанная КС;

1 - плита перекрытия; 2 - колонны; 3 - стены

Рисунок 5.1 - Фрагменты планов зданий

Нижние этажи часто решают в одной конструктивной системе, а верхние - в другой. Конструктивная система таких зданий является комбинированной.

5.6 В зависимости от инженерно-геологических условий, нагрузок и проектного задания фундаменты выполняют в виде отдельных плит переменной толщины под колонны (рис.5.2, а), ленточных плит под колонны и стену (рис.5.2, б) и общей фундаментной плиты по всей площади конструктивной системы (рис.5.2, в). При большой толщине плит применяют более экономичные, чем сплошные, ребристые и коробчатые плиты (рис.5.2, г, д). При слабых грунтах устраивают свайные фундаменты.

а - отдельный; б - ленточный; в, г, д - плитные: сплошной, ребристый и коробчатый

Рисунок 5.2 - Фундаменты

5.7 Колонны могут иметь поперечное сечение квадратное, прямоугольное, круглое, кольцевое, уголковое, тавровое и крестовое (рис.5.3, а-ж).

4.3.3. Отдельные фундаменты под колонны (ч. 2)

где h — расстояние между наружными гранями ветвей колонн.

При h ≥ 2,1 м h' принимается равной 1,2 м.

ТАБЛИЦА 4.30. ГЛУБИНА ЗАДЕЛКИ КОЛОНН
Отношение толщины стенки стакана к высоте верхнего подколонника Глубина заделки h' колонны прямоугольного сечения при эксцентриситете продельной силы
е0 < 2 hс е0 > 2hс
> 0,5 hc hc
≤ 0,5 hc Глубина заделки колонны прямоугольного сечения при эксцентриситете продельной силы

Глубина заделки всех типов колонн должна, кроме того, быть не менее глубины заделки ее рабочей арматуры, принимаемой по табл. 4.31. Для возможности рихтовки сборных колонн глубина стакана принимается на 50 мм больше глубины заделки колонны.

ТАБЛИЦА 4.31. ГЛУБИНА ЗАДЕЛКИ АРМАТУРЫ КОЛОНН
Арматура Колонна Глубина заделки рабочей арматуры колонн при проектном классе бетона
В15 В20 и выше
Горячекатаная периодического
профиля класса A-II
Прямоугольного сечения
Двухветвевая
25 d (15 d )
30 d (15 d )
20 d (10 d )
25 d (10 d )
То же, А-III Прямоугольного сечения
Двухветвевая
30 d (18 d )
35 d (18 d )
25 d (15 d )
30 d (15 d )

Примечания: 1. Допускается уменьшать глубину заделки колонн до 15 диаметров продольной рабочей арматуры при условии приварки к концам продольных рабочих стержней (дополнительных анкерующих стержней или шайб).

2. Значения, приведенные в скобках, относятся к глубине заделки сжатой рабочей арматуры,

3. Для парных стержней колонны глубина заделки определяется в соответствии с приведенным (по площади сечения) диаметром.

Толщина дна стакана назначается по расчету, но не менее 200 мм. Толщина стенок неармированного стакана dg поверху принимается не менее 0,75 высоты подколонника, а при его отсутствии — высоте верхней ступени или 0,75 глубины стакана, но не менее 200 мм. Толщина армированного стакана назначается расчетом, но не менее величин, указанных в табл. 4.32. Размеры стакана понизу принимаются больше размера колонны в плане на 100 мм, поверху — на 150 мм.

Рекомендуемые классы бетона для железобетонных монолитных фундаментов В10 и В15, для сборных — В15 и В20. Замоноличивание колонны производится бетоном марки не ниже В10. Армирование подошвы осуществляется сетками из арматуры периодического профиля классов А-II и А-III. Расстояние между осями рабочих стержней составляет 200 мм, диаметр при их длине до 3 м — не менее 10 мм, при большей длине — 12 мм. Во всех пересечениях стержни должны быть сварены. Диаметр продольных рабочих стержней подколонника принимается не менее 12 мм. Подколонники армируются продольными и поперечными стержнями; площадь сечения стержней определяется расчетом.

В местах опирания монолитных колонн на фундаменты выпуски арматуры из фундамента соединяются с арматурой колоны. Заделка выпусков арматуры в фундамент и длина выпусков из фундамента принимаются не менее величин, приведенных в табл. 4.33.

Стыки выпусков арматуры колонн и фундаментов устраиваются выше пола. Стыки рабочей арматуры при диаметре стержней до 32 мм, расположенной в растянутой зоне, должны иметь длину нахлестки не менее величин, указанных в табл. 4.33. При этом стыки располагаются вразбежку. Выпуски арматуры соединяются хомутами с расстоянием между ними не более 10 диаметров.

ТАБЛИЦА 4.32. ТОЛЩИНА СТЕНОК АРМИРОВАННОГО СТАКАНА
Направление усилия Колонна Толщина стенок стакана
В плоскости нагибающего момента Прямоугольного сечения при
эксцентриситете продольной силы e < 2 hc
То же, но при e > 2 hc
Двухветвевая

0,2 hc , но не менее 150 мм
0,3 hc , но не менее 150 мм
0,2 h' , но не менее 150 мм
Из плоскости изгибающего момента Прямоугольного сечения и двухветвевая > 150 мм
ТАБЛИЦА 4.33. ДЛИНА ЗАДЕЛКИ ВЫПУСКОВ АРМАТУРЫ
Арматура Длина выпусков при бетоне проектного класса
В10 В15 и выше
Горячекатаная периодического профиля класса A-II
и круглая (гладкая) класса A-I
То же, класса А-III

35 d
45 d

30 d
40 d

Под монолитными фундаментами при любых грунтах предусматривается сплошная бетонная подготовка толщиной 100 мм из бетона марки не ниже М50, под сборными допускается принимать песчаную подготовку.

Целесообразно возводить фундаменты на промежуточной подготовке, переменной жесткости в плане (рис. 4.13). В этом случае эпюра контактных давлений трансформируется таким образом, что наибольшие давления на грунт концентрируются под бетонной частью подготовки.

В связных грунтах целесообразно применение буробетонных (рис. 4.14) или щелевых пространственных фундаментов (рис. 4.15). Буробетонный фундамент устраивается в разбуриваемых полостях, заполняемых литым бетоном.

Фундамент на промежуточной подготовке

Рис. 4.13. Фундамент на промежуточной подготовке 1 — эпюра контактных давлений; 2 — рыхлый песок; 3 — бетон; 4 — фундамент

Буробетонный фундамент

Рис. 4.14. Буробетонный фундамент 1 — колонна; 2 — арматурный каркас; 3 — фундамент

Щелевой фундамент

Рис. 4.15. Щелевой фундамент 1 — стакан; 2 — подколонник; 3 — плитная часть; 4 — бетонные пластаны

Фундамент с анкерами

Рис. 4.16. Фундамент с анкерами 1 — фундамент; 2 — арматурный каркас; 3 — анкер

Фундаменты с пустотообразователями

Рис. 4.17. Фундаменты с пустотообразователями 1 — фундамент; 2 — пустотообразователи

Фундамент с наклонной подошвой

Рис. 4.18. Фундамент с наклонной подошвой 1 — цокольная панель; 2 — полурама; 3 — подбетонка; 4 — фундамент; 5 — подготовка

Армируется только стаканная часть. Щелевой пространственный фундамент устраивается путем прорезки узких взаимо перпендикулярных щелей шириной 10—20 см, и которые, при необходимости, устанавливается арматура с последующим заполнением бетоном. Торцы отдельных бетонных пластин могут быть вертикальными или наклонными. Подколонник опирается на верхние плоскости бетонных пластин и на грунт, находящийся между ними. Расстояние между пластинами составляет 2—4 их толщины. Нагрузка на основание передается торцом, а также боковой поверхностью, сопряжение колонн с фундаментами в этом случае такое же, как и в обычных фундаментах.

При передаче на фундамент больших моментов и небольшой вертикальной нагрузки целесообразно применять фундаменты с жесткими анкерами, воспринимающими выдергивающие усилия, что позволит уменьшить крен и отрыв подошвы (рис. 4.16). В нескальных грунтах анкеры представляют собой армированные каркасами буронабивные сваи диаметром 16—20 см, длиной 3—4 м, жестко соединяемые с плитной частью. В скальных грунтах анкеры представляют собой напрягаемые стержни с анкерующими болтами.

Массивные монолитные фундаменты устраиваются с пустотообразователями диаметром от 100 до 300 мм (рис. 4.17). Размеры сборных фундаментов из бетона М200 с наклонной подошвой под распорные конструкции приведены в табл. 4.34, а пример решения на рис. 4.18.

4.3.3. Отдельные фундаменты под колонны (ч. 1)

Основным типом фундаментов, устраиваемых под колонны, являются монолитные железобетонные фундаменты, включающие плитную часть ступенчатой формы и подколонник. Сопряжение сборных колонн с фундаментом осуществляется с помощью стакана (см. рис. 4.1, а), монолитных — соединением арматуры колонн с выпусками из фундамента (рис. 4.8, а), стальных — креплением башмака колонны к анкерным болтам, забетонированным в фундаменте (рис. 4.8, б).

Соединение колонн с фундаментом

Рис. 4.8. Соединение колонн с фундаментом а — монолитной; б — стальной; 1 — арматурные сетки; 2 — анкерные болты

Размеры в плане подошвы ( b, l ), ступеней ( b1, l1 ), подколонника ( luc, buc ) принимаются кратными 300 мм; высота ступеней ( h1, h2 ) — кратной 150 мм; высота фундамента ( hf ) — кратной 300 мм, высота плитной части ( h ) — кратной 150 мм.

ТАБЛИЦА 4.22. ВЫСОТА СТУПЕНЕЙ ФУНДАМЕНТОВ, мм
Высота плитной части
фундамента h , мм
h1 h2 h3
300 300
450 450
600 300 300
750 300 450
900 300 300 300
1050 300 300 450
1200 300 450 450
1500 450 450 600
Модульные размеры фундамента следующие:
hf 1500—12000
h 300, 450, 600, 750, 900, 1050, 1200, 1500, 1800
h1, h2, h3 300, 450, 600
b 1500—6600
l 1500—8400
b1, b2 1500—6000
buc 900—2400
luc 900—3600
l1, l2 1500—7500

Высота ступеней принимается по табл. 4.22 в зависимости от высоты плитной части фундамента [1]. Вынос нижней ступени вычисляется по формуле c1 = kh1 , где k — коэффициент, принимаемый по табл. 4.23.

Руководство по проектированию фундаментов на естественном основании под колонны зданий и сооружений промышленных предприятий

Форма фундамента и подколонника в плане принимается: при центральной нагрузке — квадратной, размерами b×b и buc×buc ; при внецентренной нагрузке — прямоугольной, размерами b×l и buc×luc , отношение b/l составляет 0,6–0,85.

Габариты фундаментов под типовые колонны прямоугольного сечения, например по сериям КЭ-01-49 и КЭ-01-55, для одноэтажных промышленных зданий принимаются по серии 1.412-1/77. Буквы в марках фундаментов обозначают: Ф — фундамент; А, Б, В и AT, БТ и ВТ — тип подколонников для рядовых фундаментов и под температурные швы (табл. 4.24), а числа характеризуют типоразмер подошвы плитной части фундамента и его типоразмер по высоте.

ТАБЛИЦА 4.23. КОЭФФИЦИЕНТ k
Давление на грунт, МПа Значения k при классе бетона
В10 В15 В20 В10 В15 В20 В10 В15 В20 В10 В15 В20




0,15 3 3 3 3 3 3 3 3 3 3 3 3
0,2 3 3 3 3 3 3 3 3 3 2,9 3 3
3
0,25 3 3 3 3 3 3 3 3 3 2,5 2,8 3
2,6 3
0,3 3 3 3 3 3 3 2,7 3 3 2,3 2,5 3
2,8 2,4 2,6
0,35 2,8 3 3 2,7 3 3 2,4 2,7 3 2,1 2,3 2,7
3 2,9 2,6 2,9 2,2 2,4 2,9
0,4 2,6 2,9 3 2,5 2,8 3 2,3 2,5 3 2 2,1 2,5
2,7 3 2,7 3 2,4 2,7 2,2 2,6
0,45 2,4 2,7 3 2,3 2,6 3 2,1 2,3 2,8 1,9 2 2,3
2,5 2,8 2,5 2,7 2,2 2,5 3 2,1 2,5
0,5 2,3 2,5 3 2,2 2,4 3 2 2,2 2,6 1,8 1,9 2,2
2,4 2,7 2,3 2,6 2,1 2,3 2,8 2 2,3
0,55 2,2 2,4 2,8 2,1 2,3 2,7 1,9 2,1 2,5 1,7 1,8 2,1
2,3 2,5 3,8 2,2 2,4 2,9 2 2,2 2,6 1,9 2,2

Примечание. Над чертой указано значение без учета крановых и ветровых нагрузок, под чертой — с учетом этих нагрузок.

ТАБЛИЦА 4.24. РАЗМЕРЫ ПОДКОЛОННОЙ ЧАСТИ ФУНДАМЕНТОВ

Размеры подколонной части фундаментов

Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ника
размеры, мм тип подколон-
ника
размеры, им hg lg bg
luc buc luc buc
400 400 А 900 300 AT 900 2100 800
900
500 500 0,22
0,25
500
600
600
500
400
600
Б 1200 1200 БТ 1200 2100 800
900
800
600
700
700
600
500
600
0,31
0,34
0,41
800
800
400
500
В 1200 1200 ВТ 1500 2100 900
900
900
900
500
600
0,44
0,52

По высоте приняты следующие размеры: тип 1 — 1,5 м; тип 2 — 1,8 м; тип 3 — 2,4 м; тип 4 — 3 м; тип 5 — 3,6 м и тип 6 — 4,2 м. В табл. 4.25 и 4.26 приводятся в качестве примера эскизы и размеры рядовых фундаментов и фундаментов под температурные швы. Эти фундаменты могут применяться при расчетном сопротивлении основания 0,15—0,6 МПа.

Все размеры фундаментов приняты кратными 300 мм. Применяется бетон класс В10 и В15. Армирование осуществляется плоскими сварными сетками из арматуры классов A-I, А-II и А-III. Защитный слой бетона принят толщиной 35 мм с одновременным устройством подготовки толщиной 100 мм из бетона В3,5.

ТАБЛИЦА 4.25. РАЗМЕРЫ РЯДОВЫХ ФУНДАМЕНТОВ
ТАБЛИЦА 4.26. РАЗМЕРЫ ФУНДАМЕНТОВ ПОД ТЕМПЕРАТУРНЫЕ ШВЫ
Эскиз Марка фундамента Размеры, мм Объем бетона, м 3
b l b1 h1 h1 hf
Размеры фундаментов под температурные швы
ФАТ3-1
ФАТ3-2
ФАТ3-3
ФАТ3-4
ФАТ3-5
ФАТ3-6
1800 2100 300 1500
1800
2400
3000
3600
4200
3,4
4,0
5,1
6,2
7,4
8,5
Размеры фундаментов под температурные швы
ФАТ6-1
ФАТ6-2
ФАТ6-3
ФАТ6-4
ФАТ6-5
ФАТ6-6
2400 2100 1500 300 300 1500
1800
2400
3000
3600
4200
4,2
4,7
5,9
7,0
8,1
9,3
ФАТ7-1
ФАТ7-2
ФАТ7-3
ФАТ7-4
ФАТ7-5
ФАТ7-6
2700 2100 1800 300 300 1500
1800
2400
3000
3600
4200
4,5
5,1
6,2
7,4
8,5
9,6

Фундамент с подбетонкой для опирании балок

Рис. 4.9. Фундамент с подбетонкой для опирании балок 1 — фундамент; 2 — подбетонка; 3 — колонна

Для опирания фундаментных балок предусмотрена подбетонка (рис. 4.9). Пример конструктивного решения фундамента приведен на рис. 4.10.

Габариты монолитных фундаментов под типовые колонны двухветвевого сечения, в частности для серии КЭ-01-52 одноэтажных промышленных зданий, принимаются по серии 1.412-2/77. Размеры подколонной части таких фундаментов приведены в табл. 4.27. Габариты плитной части имеют типоразмеры от 1 до 18, а также типоразмер 19, при котором размер подошвы составляет 6×5 м. По высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77.

Фундамент стаканного типа под колонну

Рис. 4.10. Фундамент стаканного типа под колонну 1—6 — арматурные сетки

Железобетонные фундаменты под типовые колонны прямоугольного сечения, например по сериям ИИ-04, ИИ-20 и 1.420-6 для многоэтажных производственных зданий, принимаются по серии 1.412-3/79.

ТАБЛИЦА 4.27. ТИПЫ И РАЗМЕРЫ ПОДКОЛОННИКОВ

Типы и размеры подколонников

Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ников
размеры, мм тип подколон-
ников
размеры, мм hg lg bg
luc buc luc buc
300 300 А 900 900 AT 900 2100 450
450
400 400 0,08
0,12
400 400 650
1050
500 500 0,18
0,29
600 400 Б 1200 1200 БТ 1200 2100 650
1050
700 500 0,25
0,40

Отличие в маркировке фундаментов по сравнению с другими сериями заключается в том, что после цифры, обозначающей типоразмер подошвы, приводится высота плитной части. Размеры подколонной части фундамента приведены в табл. 4.27. Габариты плитной части включают типоразмеры от 1 до 18 и типоразмер 19 (с размером подошвы 5,4×6 м). по высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77. Монолитные железобетонные фундаменты под железобетонные типовые фахверковые колонны прямоугольного сечения, в частности по шифрам 460-75, 13-74 и 1142-77, принимаются по серии 1.412.1-4. Размеры фундаментов приведены в табл. 4.28. Сопряжение колонны с фундаментом шарнирное. Фундаменты разработаны для давления 0,15- 0,6 МПа. Применяется бетон класса В10. Армирование осуществляется сварными сетками из арматуры классов A-I, А-II и А-III. Пример узла опирания колонны на фундамент дан на рис. 4.11.

Под колонны зданий применяются сборные фундаменты из одного или нескольких элементов. на рис. 4.12 приведены решения сборных фундаментов под колонны каркаса для многоэтажных общественных и производственных зданий из элементов серии 1.020-1. Элементы фундамента типа Ф применяются на естественном основании, типа ФС — для составных фундаментов (табл. 4.29). Толщина защитного слоя бетона нижней рабочей арматуры принимается 35 мм, а остальной арматуры — 30 мм. Глубина заделки колонны в фундамент должна быть не менее величин, приведенных в табл. 4.30.

4.3.4. Ленточные и плитные фундаменты под колонны

Ленточные фундаменты под колонны устраиваются в виде одинарных или перекрестных лент. Плитные фундаменты устраиваются под всем сооружением. Основными конструктивными типами являются безбалочная плита с опиранием колонн на сборные стаканы (рис. 4.19, а), безбалочная плита с монолитным стаканом (рис. 4.19, б), ребристая плита, соединяемая с колоннами с помощью монолитных стаканов (рис. 4.19, в) или выпусков арматуры (рис. 4.19, в), плита коробчатого сечения (рис. 4.19, г).

Армирование фундаментных плит осуществляется:

  • – плоскими сварными сетками с рабочей арматурой одного направления и пространственными поддерживающими каркасами;
  • – отдельными стержнями, располагаемыми в двух направлениях;
  • – унифицированными плоскими сварными сетками с добавлением отдельных стержней в местах наибольших моментов;
  • – отдельными стержнями в продольном направлении и сварными каркасами в поперечном направлении.

В качестве арматуры используется сталь класса А-III. Марка бетона плиты не менее М150.

Ленточные и плитные фундаменты могут выполняться в сборном варианте в виде отдельных блоков или плит, соединяемых между собой с последующим омоноличиванием стыков. Целесообразно осуществлять предварительное натяжение арматуры в процессе монтажа фундаментов.

Плитные фундаменты

Рис. 4.19. Плитные фундаменты а — со сборными стаканами; б — с монолитными стаканами; в — ребристая плита; г — плита коробчатого сечения

Указанные фундаменты применяются для снижения неравномерности деформаций при слабых, просадочных и набухающих грунтах, а также при наличии карстовых явлений и в сейсмических районах.

Особенности моделирования колонн (пилонов)

В проектировании часто используют прямоугольные сечения колонн (пилоны), которые, по своим функциям в работе каркаса здания принципиально ни чем не отличаются (не считая увеличения жесткости в сторону вытянутого сечения) от квадратных колонн, однако, при моделировании возникает вопрос, как такие колонны (пилоны) лучше моделировать.

Наружные стены подвалов, соединенные с перпендикулярными к ним пилонами корректнее рассчитывать, при моделировании пилонов пластинами, так как пластинчатые элементы, соединенные друг с другом, более корректно передают усилия друг на друга и на плиты. Однако, в местах перехода пластинчатого пилона на стержневой (обычно в уровне плиты перекрытия над подвалом) возникает концентрация напряжений, в плите, возле стержня колонны (соединенного с пластинчатым пилоном внизу, под перекрытием), чтобы этого избежать, можно сделать АЖТ в данном стыке (в плите перекрытия), но лучше сделать два расчета, сначала смоделировать пилон на первом, втором этаже и в подвале пластинами, а потом стержнями (с АЖТ). В первом случае моделирование будет более корректным, так как в подвале пилон из пластин соединится с наружной стеной и плитой первого этажа, а дальше продлиться до второго и третьего, при этом будет отсутствовать концентрация напряжений в месте соединения стержня с пластинами, что даст корректную картину распределения напряжений. Однако, коэффициент продольного изгиба для пластин учитывается не во всех программах, поэтому, для контроля, можно задать пилоны стержнями и проконтролировать армирование.

Про пилоны с промежуточными габаритами сечений написано в СП 63.13330.2018, в пункте 10.4.6. Там говорится о том, что армирование пилонов, занимающих по своим геометрическим характеристикам промежуточное положение между стенами и колоннами, производят как для колонн или как для стен в зависимости от соотношения длины и ширины поперечного сечения пилонов. Тут нужно обратить внимание на то, что в этом пункте не сказано о расчете, а только об армировании, т. е. этот пункт является продолжением пунктов 10.4.2 и 10.4.3, в которых описываются общие требования к армированию колонн и стен. Тем не менее, в СП 63, для стен есть конкретные формулы, отличные от расчета колонн (как стержневых элементов), в частности, в пункте 8.1.57 приводятся формулы для расчета стен с учетом сил, действующих по боковым сторонам плоского выделенного элемента. Пример усилий на плоском (пластинчатом) элементе показаны на рисунке 8.16 СП 63. Этими формулами можно пользоваться только при моделировании пилона пластинами, поэтому, если пилон по своим геометрическим характеристикам относится к стенам, то его прочность логично рассчитывать по формулам для стен, а ими можно пользоваться, только при моделировании пилона пластинами.

Следует помнить и о том, что в пилоне смоделированный пластинами горизонтальная арматура (хомуты) будет подбираться с расчетным сопротивлением продольной арматуры (вертикальной и горизонтальной), а не поперечной. Например, если в качестве хомутов будет использоваться арматура А500С, то при расчете хомутов по первому предельному состоянию расчетное сопротивление следует брать 300 МПа, а не 435 МПа, но в пластинах, для обои направлений программа примет одинаковое расчетное сопротивление, т. е. 435 МПа для арматуры А500С, таким образом, площадь горизонтальной арматуры в пластинах (хомутов) нужно умножать на коэффициент больше единицы, чтобы учесть уменьшение расчетного сопротивления для поперечной арматуры.

Ниже приведены результаты расчета пилона высотой 3 м и толщиной 200 мм, нагруженного горизонтальной силой 3.33 тс, при моделировании пластинами и стержнем (при обычном, упругом, расчете). Длина сечения меняется от 400 мм до 27 метров. Отличие в напряжениях на торце пилона тем больше, чем меньше отношение длины сечения к высоте пилона. При отношении высоты пилона к длине сечения меньше 1 распределение нормальных напряжений в нормальных сечениях пилона перестает быть равномерным, почти на всей высоте пилона, гипотеза плоских сечений не выполняется также, почти на всей высоте пилона и при уменьшении этого отношения перестает работать вообще. При таких соотношения моделирование пилона (стены) стержнем приведет к большим неточностям расчета, которые могут привести к печальным последствиям.


Рис.1. Расчетная схема пилона с нагрузкой F = 3.33 тс


Рис.2. Распределение нормальных напряжений в опорной зоне пилона сечением 200х400 мм. Отличий между моделированием стержнем и пластинами, практически, нет


Рис.3. Усилия в средней части пилона из пластин аналогичны усилиям пилона смоделированного стержнем. На приопорном участке и участке возле приложенной силы усилия отличаются от стержневой модели

Ленточный ростверк под пилоны

Если здание 2-х этажное - можете не беспокоится.
Всё это сделано с 2-х (если не 3-х) кратным запасом.

PS
Весьма жаль, что Вы об этом не знаете.

Иэменение (последнее)
Свои слова о 3-х кратном запасе прошу считать недействительными

Последний раз редактировалось VVN59, 16.08.2012 в 22:28 . Думаете хватит по 3 сваи на пилон? Надо в ЛИРЕ собрать нагрузку на фрагмент. Ну даже по укрупненным, грузовая площадь порядка 60м2, перекрытие в одном уровне, около 100т наберется.
Здание 2-х этажное, вот только сетка колонн 10х5.6м. А как Вы определили, что с 2-х кратным запасом?

"На глаз", да и счеты свои Я еще не выбросил.

Давайте всё прикинем вместе.

Грузовая площадь F=56м2. Нагрузка на 1м2 -1т. Всего на этаж - 56т. Всего на пилон - 112т.(Это в худшем случае, следовательно нагрузку на сваи от самих пилонов и ростверка учитывать не станем).
Непосредственно под пилонами расположено 2,5-:-3 свай,
-Для 3-х свай: 112/3=37,33т; Что

равно не сущей спос. сваи при статическом её испытании,
- Для 2,5-х свай: 112/2,5=44,8т;
Средняя нес-ая способность сваи (по результатам испытаний) (49+37)/2=43т
37<44,8<49; 44,8

43,0 но всё-же поменьше. Это не дело.

Извините. Немного отвлёкся. Продолжим.

А как работает ленточный ростверк? Давайте его "пощупаем".
Исходные данные по нему: - габариты 600х600
- армирование (низ/верх) 6д25АIII/6д22АIII (или наоборот - не имеет никакого значения) (только для поверочного расчета, конечно).

Несущая способность этой ленты по М=3,8х6х52х3750=4445300кгхсм=44,45тм
Согласно Вашим эпюрам М (хотя они не совпадают с расположением свай по рисунку 1 - обязательно проверьте), значения моментов в ростверке где-то в пределах 33тм.
Вывод: - Запас по М в ростверке

30т (без учета поперечки) - уточните Сами.

Общий вывод:
С полной уверенностью можно сказать, что как минимум 4 сваи будут включены в работу.
Запас несущей способности ленточного ростверка и свай можно оценить в пределах 1,3-:-2,2 (т.е. 30-:-120 %).

Читайте также: