Фундамент платформы залегает на разной глубине как это отражается в рельефе

Обновлено: 16.05.2024

Как называется часть платформы где фундамент выходит на поверхность земли?

Как называется часть платформы где фундамент выходит на поверхность земли?

Платформы — это относительно устойчивые участки земной коры. Возникают они на месте существовавших ранее складчатых сооружений высокой подвижности, образующихся при замыкании геосинклинальных систем, путём последовательного их превращения в тектонически стабильные участки.

Характерной чертой строения всех литосферных платформ Земли является их строение из двух ярусов или этажей.

Нижний структурный этаж называется также фундаментом. Сложен фундамент из сильно дислоцированных метаморфизованных и гранитизированных пород, пронизанных интрузиями и тектоническими разломами.

По времени образования фундамента платформы делятся на древние и молодые.

Древние платформы, составляющие к тому же ядра современных материков и называемые кратонами, имеют докембрийский возраст и сформировались в основном к началу позднего протерозоя. Древние платформы разделяются на 3 типа: лавразийский, гондванский и переходный.

К первому типу относятся Северо-Американская (Лавренция), Восточно-Европейская и Сибирская (Ангарида) платформы, образованные в результате распада суперконтинента Лавразия, который в свою очередь образовался после распада протоконтинента Пангея.

Ко второму: Южно-Американская, Африкано-Аравийская, Индостанская, Австралийская и Антарктическая. Антарктическая платформа до палеозойской эры была разделена на Западную и Восточную платформу, которые объединились лишь в палезойской эре. Африканская платформа в архее была разделена на протоплатформы Конго (Заир), Калахари (Южно-Африканская), Сомали (Восточно-Африканская), Мадагаскар, Аравия, Судан, Сахара. После распада суперконтинента Пангея африканские протоплатформы, за исключением Аравийской и Мадагаскарской, объединились. Окончательное объединение произошло в палеозойскую эру, когда Африканская платформа превратилась в Африкано-Аравийскую платформу в составе Гондваны.

К третьему промежуточному типу относятся платформы небольшого размера: Сино-Корейская (Хуанхэ) и Южно-Китайская (Янцзы), которые в разное время являлись как частью Лавразии, так и частью Гондваны.

В фундаменте древних платформ участвуют архейские и раннепротерозойские образования. В пределах Южно-Американской и Африканской платформ часть образований относится к верхнепротерозойскому времени. Образования глубокометаморфизованы (амфиболитовая и гранулитовая фации метаморфизма); главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены граниты. Поэтому такой фундамент называют гранитогнейсовым или кристаллическим.

Молодые платформы сформировались в палеозойское или позднекембрийское время, они окаймляют древние платформы. Их площадь лишь 5% от всей площади континентов. Фундамент платформ сложен фанерозойскими осадочно-вулканическими породами, испытавшими слабый (зеленосланцевая фация) или даже только начальный метаморфизм. Встречаются блоки более глубокометаморфизованных древних, докембрийских, пород. Граниты и другие интрузивные образования, среди которых следует отметить офиолитовые пояса, играют подчиненную роль в составе. В отличие от фундамента древних платформ фундамент молодых именуется складчатым.

В зависимости от времени завершения деформаций фундамента разделение молодых платформ на эпибайкальские (наиболее древние), эпикаледонские и эпигерцинские.

К первому типу относятся Тимано-Печорская и Мизийская платформы Европейской России.

Ко второму типу относятся Западно-Сибирская и Восточно-Австралийская платформы.

К третьему: Урало-Сибирская, Среднеазиатская и Предкавказская платформы.

Между фундаментом и осадочным чехлом молодых платформ часто выделяется промежуточный слой, к которому относятся образования двух типов: осадочное, молассовое или молассово-вулканическое выполнение межгорных впадин последнего орогенного этапа развития подвижного пояса, предшествовавшего образованию платформы; обломочное и обломочно-вулканогенное выполнение грабенов, образованных на стадии перехода от орогенного этапа к раннеплатформенному

Верхний структурный этаж или платформенный чехол сложен неметаморфизованными осадочными породами: карбонатными и мелководными песчано-глинистыми в платформенных морях; озёрными, аллювиальными и болотными в условиях гумидного климата на месте бывших морей; эоловыми и лагунными в условиях аридного климата. Породы залегают горизонтально с размывами и несогласием в основании. Мощность осадочного чехла обычно 2-4 км.

В ряде мест осадочный слой в результате поднятия или размыва отсутствует и фундамент выходит на поверхность. Такие участки платформ называют щитами. На территории России известны Балтийский, Алданский и Анабарский щиты. В пределах щитов древних платформ выделяют три комплекса пород архейского и нижнепротерозойского возраста:

Зеленокаменные пояса, представленные мощными толщами закономерно перемежающихся пород от ультраосновных и основных вулканитов (от базальтов и андезитов к дацитам и риолитам) к гранитам. Их протяжённость до 1000 км при ширине до 200 км.

Комплексы орто- и пара- гнейсов, образующие в сочетании с гранитными массивами поля гранитогнейсов. Гнейсы отвечают по составу гранитам и обладают гнейсовидной текстурой.

Гранулитовые (гранулито-гнейсовые) пояса, под которыми понимаются метаморфические породы, сформировавшиеся в условиях средних давлений и высоких температур (750-1000° C) и содержащие кварц, полевой шпат и гранат.

Участки где фундамент перекрыт всюду мощным осадочным чехлом называют плитами. Большинство молодых платформ по этой причине называют иногда просто плитами.

Наиболее крупными элементами платформ являются синеклизы: обширные впадины или прогибы с углами наклона всего в несколько минут, что соотвествуют первым метрам на километр движения. В качестве примера синеклиз можно назвать Московскую с центром вблизи одноименного города и Прикаспийскую в пределах Прикаспийской низменности. В противоположность синеклизам крупные поднятия платформ называются антеклизами. На Европейской территории России известны Белорусская, Воронежская и Волго-Уральская антеклизы.

Крупными отрицательными элементом платформ являются также грабены или авлакогены: узкие протяжённые участки, линейно ориентированные и ограниченные глубинными разломами. Бывают простыми и сложными. В последнем случае наряду с прогибами в их состав входят поднятия — горсты. Вдоль авлакогенов развит эффузивный и интрузивный магматизм с которым связано формирование вулканических покровов и трубок взрыва. Все магматические породы в пределах платформ называются траппами.

Более мелкими элементами являются валы, купола и т.д.

Литосферные платформы испытывают вертикальные колебательные движения: поднимаются или опускаются. С подобными движениями связывают неоднократно происходившие в течении всей геологической истории Земли трансгрессии и регрессии моря.

В Центральной Азии с новейшими тектоническими движениями платформ связывают образование горных поясов Центральной Азии: Тянь-Шаня, Алтая, Саян и т.д. Подобные горы называют возрожденными (эпиплатформы или эпиплатформенные орогенные пояса или вторичные орогены). Они формируются в эпохи оррогенеза в районах примыкающих к геосинклинальным поясам.

Читать еще: Можно ли сделать навес за забором?

Платформа земной коры


Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).


Рис. 3. До кембрийские платформы: I — Северо-Американская; II — Восточно-Европейская; III — Сибирская; IV — Южно-Американская; V — Африкано-Аравийская; VI — Индийская; VII — Восточно-Китайская; VIII — Южно-Китайская; IX — Австралийская; X — Антарктическая

Фундамент более молодых платформ образован в периодыбайкальской,каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.

Самым сложным внешним фактором является выветривание.

Выветривание — совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинамифизического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим факторомхимического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называютсякорой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа — речные долины, овраги, ледниковые формы и т. д.

Не нашли то, что искали? Воспользуйтесь поиском:

Отключите adBlock!
и обновите страницу (F5)
очень нужно

Геологическое строение территории России

В основе территории России лежат крупные тектонические структуры (платформы, щиты, складчатые пояса), которые выражены разнообразными формами в современном рельефе – горами, низменностями, возвышенностями и др.

На территории России имеются две крупные древние докембрийские платформы (фундамент их сформировался в основном в архее и протерозое) — это Русская и Сибирская, а также три молодые (Западно-сибирская, Печорская и Скифская). Представление о геологическом строении и условиях залегания пород отражены на тектонической карте России.

На Восточно-Европейской платформе в пределах России находится Балтийский щит, на Сибирской – Алданский и Анабарский.

На Восточно-Европейской платформе располагается Русская плита, на Сибирской – Лено-Енисейская.

Молодые платформы в России не имеют выходов фундамента на поверхность. На них практически повсеместно накопился чехол из осадочных горных пород, то есть они целиком представлены плитами. Например, на Западно-Сибирской платформе — Западно-Сибирская плита и т.д.

К плитам платформ приурочены такие крупнейшие формы рельефа, как равнины различной высоты. На Русской плите находится Русская равнина (Восточно-Европейская), на Лено-Енисейской – Средне-Сибирское плоскогорье, на Западно-Сибирской – Западно-Сибирская низменность, на Печорской – Печорская низменность, на Скифской – равнины Предкавказья. Наличие на территории России нескольких крупных платформ обусловило то, что равнины занимают три четверти территории России.

Читать еще: Через сколько дней после заливки фундамента можно снимать опалубку осенью


Восточно-Европейская платформа

В пределах Русской плиты фундамент древней Восточно-Европейской платформы перекрыт осадочным чехлом горных пород преимущественно палеозойского и мезозойского возраста. Чехол на разных участках обладает различной мощностью. Над впадинами фундамента он достигает 3 км и более. Хотя неровности фундамента сглаживаются осадочными породами, некоторые из них отражаются на рельефе. Высоты большей части Русской равнины — менее 200 м, однако в ее пределах есть и возвышенности (Средне-Русская, Смоленско-Московская, Приволжская, Северные Увалы, Тиманский кряж).

Как породы фундамента, так и осадочного чехла содержат крупные месторождения полезных ископаемых. Среди рудных ископаемых наибольшее значение имеют железные осадочно-метаморфического происхождения, приуроченные к кристаллическому фундаменту. С магматическими породами Балтийского щита связаны месторождения медно-никелевых, алюминиевых руд и апатитов. Разнообразные осадочные породы содержат нефть, газ, каменный и бурый уголь, каменные и калийные соли, фосфориты, бокситы.

Сибирская платформа

В пределах Лено-Енисейской плиты Сибирской платформы древний кристаллический фундамент погребен под мощным чехлом в основном палеозойских отложений. Особенностью геологического строения Сибирской платформы является наличие траппов – излившихся на поверхность или застывших в осадочных толщах магматических пород.

Средне-Сибирское плоскогорье имеет высоты 500-800 м над уровнем моря, высшая точка- на плато Путорана (1701 м).

Фундамент и осадочный слой Сибирской платформы содержат огромное количество полезных ископаемых. В породах фундамента и трапах находятся крупные железнорудные месторождения. К внедрившимся в осадочный чехол магматическим породам приурочены алмазы и медно-никелевые руды с хромом и кобальтом. В палеозойских и мезозойских толщах осадочных пород образовались огромные скопления каменных и бурых углей, калийных и поваренных солей, нефти и газа.

Западно-Сибирская платформа

Фундамент молодой Западно-Сибирской платформы представляет собой разрушенные горные сооружения, созданные в эпохи герцинской и байкальской складчатостей. Фундамент перекрыт мощным чехлом мезозойских и кайназойских морских и континентальных преимущественно песчано-глинистых отложений. К мезозойским породам приурочены огромные запасы нефти и газа, бурые угли, железные руды осадочного происхождения.

Высоты преобладающей части Западно-Сибирской равнины не превышают 200 м.

Платформы обрамляются горно-складчатыми областями, которые отличаются от платформ характером залегания горных пород и высокой подвижностью земной коры.

Русскую равнину отделяют от Западносибирской древние Уральские горы, протянувшиеся с севера на юг на 2,5 тыс. км.

С юго-востока Западно-Сибирскую равнину окаймляют Алтайские горы.

Сибирскую платформу с юга обрамляет пояс гор Южной Сибири. В современном рельефе это Байкальская горная страна, Саяны, Енисейский кряж.

На Алданском щите Сибирской платформы расположены Становой хребет и Алданское нагорье.

К востоку от реки Лены, вплоть до Чукотки, а также в Приморье располагаются значительные горные массивы (хребты: Черского, Верхоянский, Колымское нагорье).

На крайнем северо-востоке и востоке страны проходит Тихоокеанский пояс складчатости, включающий Камчатку, остров Сахалин и гряду Курильских островов. Далее на юг эта область молодых гор продолжается на Японских островах. Курильские острова являются вершинами высочайших (около 7 тыс. м) гор, поднимающихся со дна моря. Их большая часть находится под водой.

Мощные горообразовательные процессы и подвижки литосферных плит (Тихоокеанской и Евразийской) в этом районе продолжаются. Свидетельством этому являются интенсивные землетрясения и моретрясения. Для мест вулканической деятельности характерны горячие источники, в том числе периодически фонтанирующие — гейзеры, а также выбросы газов из кратеров и трещин, которые свидетельствуют об активных процессах в глубине недр. Действующие вулканы и гейзеры наиболее широко представлены на полуострове Камчатка.

Горно-складчатые области России отличаются друг от друга по времени формирования.

По этому признаку выделяют пять видов складчатых областей.

1. Области байкальской и раннекаледонской складчатости (700 – 520 млн лет тому назад) образовались территории Прибайкалья и Забайкалья, Восточного Саяна, Тывы, Енисейского и Тиманского кряжей.

2. Области каледонской складчатости (460-400 млн лет) сформировались Западный Саян, Горный Алтай.

3. Области герцинской складчатости (300 – 230 млн. лет) – Урал, Рудный Алтай.

4. Области мезозойской складчатости (160 – 70 млн. лет) – Северо-Восток России, Сихотэ-Алинь.

5. Области кайнозойской складчатости (30 млн. лет до настоящего времени) – Кавказ, Корякское нагорье, Камчатка, Сахалин, Курильские острова.

Складчатые области докайнозойского возраста возникали на границах древних литосферных плит при их столкновении. Количество, размеры и очертания литосферных плит неоднократно менялись на протяжении геологической истории. Сближение древних литосферных плит вызывало столкновение континентов друг с другом и с островными дугами. Это приводило к смятию в складки осадочных толщ, накопившихся в морских бассейнах окраин континентов и формированию складчатых горных сооружений. Именно таким образом в раннем палеозое возникли области каледонской складчатости Алтая и Саян, в позднем палеозое – герцинские складки Горного Алтая, Урала, фундамента Западно-Сибирской и Скифской молодых платформ, в мезозое – складчатые области Северо-Востока и Дальнего Востока России.

Сформировавшиеся складчатые горы со временем разрушались под воздействием внешних сил: выветривания, деятельности моря, рек, ледников, ветра. На месте гор образовывались относительно выровненные поверхности на складчатом основании. В дальнейшем обширные участки этих территорий испытывали лишь медленные поднятия и опускания. В периоды опусканий территории покрывались водами морей и происходило накопление горизонтально залегающих толщ осадочных пород. Так формировались молодые Западно-Сибирская, Скифская, Печорская платформы, имеющие складчатый фундамент, состоящий из разрушенных гор, и чехол из осадочных пород. Большие площади докайнозойских складчатых областей во второй половине кайнозоя испытали поднятия. Здесь образовались разломы, разбившие земную кору на блоки (глыбы). Отдельные поднялись на различную высоту, сформировав возрожденные глыбовые горы и нагорья Южной и Северо-Восточной Сибири, юга Дальнего Востока, Урала, Таймыра.

Горно-складчатые области отделяются от смежных платформ либо разломами, либо краевыми (предгорными) прогибами. Самыми крупными прогибами являются Предуральский, Предверхоянский и Предкавказский.

Читать еще: Отличие прессованного и непрессованного плоского шифера

Платформы и равнины

Тектонические структуры земной коры

Тектоническими структурами являются участки земной коры, которые отличаются друг от друга по строению, составу и условиям образования. Магматизм и метаморфизм наряду с тектоническими движениями являются определяющими факторами их развития. Особенности строения и состава земной коры говорят о том, что её можно назвать главной тектонической структурой. Она неоднородна и подразделяется на $4$ типа два из которых являются основными – континентальная и океаническая. К следующим тектоническим структурам относятся континенты и океаны. Они отличаются особенностями строения коры их слагающей. Структуры, которые слагают континенты и океаны, по рангу будут ниже.

К важнейшим из них относятся:

  • Платформы;
  • Подвижные геосинклинальные пояса;
  • Пограничные участки древних платформ и складчатых поясов.

Платформы – это относительно устойчивые и стабильные участки земной коры

Их разделяют по возрасту – древние платформы, имеющие архейское и протерозойское происхождение и молодые, образовавшиеся в фанерозое. Выделяют две группы древних платформ: северную группу и южную.

Попробуй обратиться за помощью к преподавателям

Северную группу платформ образуют:

  • Североамериканская;
  • Русская (Восточно-Европейская);
  • Сибирская;
  • Китайско-Корейская.

К южной группе платформ относятся:

  • Африкано-Аравийская;
  • Южноамериканская;
  • Австралийская;
  • Индостанская;
  • Антарктическая.

Около $40%$ суши занято древними платформами, а молодые платформы занимают $5%$ площади материков. Располагаются молодые платформы или между древними, например, Западно-Сибирская, или по их периферии, например, Средне-Европейская, Восточно-Австралийская. Платформы образуются в тех местах, где ранее находились складчатые сооружения высокой подвижности, образовавшиеся при замыкании геосинклинальных систем путем превращения их в стабильные участки. Платформы поднимаются или опускаются т.е. они испытывают вертикальные колебательные движения. С этими движениями связывают трансгрессии и регрессии моря, которые неоднократно происходили в течение геологической истории Земли.

Строение платформ

Платформы и древние, и молодые имеют двухъярусное строение – кристаллический фундамент, образованный метаморфизированными породами, и осадочный чехол. Фундамент является нижним структурным этажом и его формирование проходило в течение длительного времени (более $2$ млрд. лет). Затем он подвергся сильному размыву и денудации. Фундамент называют кристаллическим, потому что среди пород его слагающих, преобладают граниты и гнейсы. Платформенный чехол относится к верхнему структурному этажу и сложен осадочными неметаморфизированными породами. Осадочный чехол достигает мощности $2$-$4$ км. Фундамент платформы может выходить на поверхность в том случае, если осадочный чехол отсутствует. Причиной этого могут быть поднятия или размывы.

Выход фундамента платформы на поверхность называется щитом.

В пределах России существуют Балтийский, Алданский, Анабарский щиты.

Фундамент платформы, перекрытый мощным осадочным чехлом, называется плитой.

Молодые платформы полностью покрыты осадочным чехлом, поэтому их часто называют просто плитами, например, Западно-Сибирская плита. Плиты более распространены на платформах северного ряда, а на платформах южного ряда чаще встречаются щиты. У платформ есть наиболее крупные элементы – синеклизы.

Синеклизы – это крупные и обширные впадины или прогибы фундамента

Например, Московская синеклиза, Прикаспийская синеклиза. Противоположностью синеклиз являются антеклизы.

Антеклизы – это крупные поднятия платформ.

На территории европейской части России известны такие антеклизы как Белорусская, Воронежская, Волго-Уральская. Если в пределах одной платформы плиты и щиты поднимаются, то они образуют мегаантеклизу, если опускаются, то образуется мегасинеклиза. В антеклизах мощность отложений не более $1500$ м, а в синеклизах – мощность доходит до $5$ км. Ранние стадии образования чехла на древних платформах связаны с образованием прогибов, получивших название грабены или авлакогены, образовавшиеся в конце протерозоя. Это отрицательный элемент платформ. Наряду с прогибами в этот состав входят поднятия – горсты. Вдоль прогибов развитие получил эффузивный и интрузивный магматизм. С магматизмом связано формирование вулканических покровов и трубок взрыва. В пределах платформ все магматические породы получили название траппы.

Формы рельефа на платформах

Основными элементами структуры материков являются платформы, которые характеризуются спокойным тектоническим режимом, меньшей сейсмичностью и проявлением магматизма. В пределах платформ отмечается небольшая дифференцированность, скорость и амплитуды вертикальных колебаний, поэтому на них образуются равнинные формы рельефа, который нельзя назвать разнообразным. Причина этого заключается в однородности геологического строения платформенных участков земной коры. На платформенные равнины приходится более половины всей площади суши. На равнине амплитуды высот достигают нескольких сотен метров. Границы платформенных равнин отличаются прямолинейностью. Бассейны рек имеют большие площади и сильную разветвленность. На щитах и плитах тоже могут развиваться равнины. Исходя из наличия и мощности четвертичного покрова, а также ведущих экзогенных процессов равнины подразделяются.

В связи с этим они могут быть:

  • Аккумулятивные, как правило, низкие;
  • Денудационые равнины возвышенные, с неровной поверхностью;
  • Денудационно-аккумулятивные.

Равнины могут иметь разную поверхность:

Характер рельефа тоже может быть разнообразный:

По высоте равнины бывают:

  • Низменности – до $200$ м;
  • Возвышенности – от $200-500$ м;
  • Плоскогорья – от $500-1000$ м.

Аккумулятивная деятельность рек приводит к образованию аллювиальных равнин. Толща этих речных наносов может достигать десятки и сотни метров с одной стороны, например, в долине реки По, низовьях Ганга, Венгерской низменности, с другой стороны они могут иметь только тонкую настилку поверх размытых коренных пород. Примером аллювиальных равнин является Куро-Араксинская равнина, Верхне-Рейнская и др. Аккумулятивные равнины образуются во впадинах платформ, там, где происходит прогибание и аккумуляция. Среди них можно выделить шельфовые и внутриконтинентальные равнины. Шельфовые образуются на шельфе и могут испытывать слабые отрицательные движения. Примерами аккумулятивных равнин являются Амазонская низменность, Прикаспийская, Западно-Сибирская, Восточно-Европейкая и др. Внутриконтинентальные денудационные равнины приурочены к антеклизам и другим поднятиям платформ. Поверхность денудационных равнин тектонические деформации осложняют поднятиями и впадинами.

Структура и рельеф материковых платформ

Платформы составляют большую часть территории материков. К ним относятся огромные пространства Восточной Европы, Сибири, Китая, Индии, Африки, Австралии, Северной и Южной Америки, по-видимому, Антарктиды, островов Канадского архипелага, Гренландия, Мадагаскар и др.

В современном рельефе отражается двухчленная структура платформ. Нижнюю часть ее представляет докембрийский кристаллический фундамент, имеющий многоэтажную полигенную внутреннюю структуру. Верхнюю часть характеризует осадочный наплатформенный покров, состоящий из ряда структурно-стратиграфических комплексов.

Геоморфологические особенности платформ в главных чертах определяются рельефом кристаллического фундамента, происхождением и мощностью наплатформенного покрова, неразрывно между собою связанных. Структура наплатформенного покрова обусловливает мезорельеф и детали геоморфологических ландшафтов платформенных областей.

Основу материковых платформ представляет гранитный слой или кристаллический фундамент, сложенный породами докембрийского возраста.

Тектоника фундамента платформ изучена пока также недостаточно. В строении принимают участие крайне метаморфизованные осадочные и вулканогенные породы, пронизанные интрузиями магматических пород. Границы разновозрастных комплексов, слагающих платформы, в большинстве случаев полностью изменены и слабо прослеживаются. Имеющиеся попытки (Вилсон, 1961) расшифровки закономерностей исторического развития платформ требуют дальнейшего углубления.

Эволюция структуры докембрийской материковой земной коры протекала на первом этапе в основном таким путем, как это можно наблюдать и в современных условиях в пределах океанической земной коры по схеме: подводные вулканы — вулканические острова — островные дуги — мини-материки — материки (Бондарчук, 1969, 1970).

В структуре архейского кристаллического фундамента платформ древние вулканогенные и осадочные геосинклинальные образования уже полностью преобразованы и в строении рельефа почти не прослеживаются.

Протерозойские структуры материковой земной коры в большинстве случаев имеют субгеосинклинальное происхождение и синклинориевую структуру. Метаморфизованные и денудированные почти в такой же степени, как и вмещающие их архейские структуры, эти образования редко приобретают самостоятельное геоморфологическое значение.

Кристаллический фундамент платформ бывает приподнят и обнажен или имеет покров из резко несогласно залегающих на нем осадочных отложений.

Наблюдается два главных типа распространения наплатформенного покрова. В одних случаях осадочные толщи выполняют впадины кристаллического фундамента, залегающего на большой глубине. Возникающие в этих условиях структурно-тектонические формы рельефа выделяются в виде материковых равнин. В других случаях ранее созданный мощный наплатформенный покров, вместе с кристаллическим основанием, поднят на значительную высоту. Глубоко расчлененные эрозией платформы при этом характеризуются резким рельефом денудационных или останцовых гор.

Оба структурных комплекса платформенных частей тектоносферы резко различаются особенностями тектоорогении, поэтому структура и рельеф их рассматриваются отдельно.

Тектоорогения гранитного слоя имеет определенную последовательность развития. После консолидации литолого-стратиграфических составных компонентов выровненная денудацией поверхность кристаллического фундамента стала основой тектонического и климатического рельефообразования, создающей многообразные ансамбли элементарных форм поверхности. Сочетания их, в большинстве, обусловлены в основном тектонической структурой и составом образующих рельеф пород.

В частях, лишенных наплатформенного покрова, тектонический рельеф кристаллического фундамента характеризует блоковая структура, определяющая главные черты гипсометрии и распределения наложенных бассейнов аккумуляции. По этому признаку в тектоническом рельефе платформ выделяются щиты и плиты, разделяющие и расчленяющие их глубинные разломы. Области погруженных блоков выделяются как впадины с соответствующим им рельефом аккумулятивных равнин. Гипсометрически такие участки суши могут представлять низменности, плато, плоскогорья и горы.

Самостоятельное значение в геоморфологии рассматриваемых элементов материковой земной коры имеют возрожденные (регенеративные) формы рельефа, представляющие собой вскрытые денудацией древние тектонические структуры. Такими элементами рельефа являются, например, куполовые структуры кристаллического фундамента щитов, округлые тела плутонов или древние тектонические швы. К категории возрожденных форм рельефа, по-видимому, относятся каньоны в кристаллическом фундаменте, тектонические рубежи геологических формаций, особенно вскрытые денудацией поверхности древних кор выветривания.

В некоторых случаях в строении современных геоморфологических ландшафтов щитов значительное место занимает реликтовый рельеф. Такие геоморфологические образования можно видеть в районах выраженной ступенчатости рельефа и вершинной поверхности столовых возвышенностей — глыбовых гор и базальтовых покровов.

Образование возрожденного и реликтового рельефа часто сопряжено с распространением погребенного рельефа. К последнему, в глобальных масштабах, относится вся поверхность гранитного слоя повсюду, где на нем образовался осадочный слой земной коры. В наплатформенном покрове также прослеживается много уровней погребенного рельефа. В стратиграфическом разрезе выражением их служат поверхности несогласия, разделяющие структурные этажи и структурно-стратиграфические комплексы. Во всех случаях эти поверхности несогласия свидетельствуют об отрицании старой геоморфологической обстановки и образовании на ее месте новой.

Собственно говоря, термин «погребенный рельеф» является только заменой геологического термина «поверхность несогласия», широко применяемого в стратиграфии и исторической геологии. Если поверхности несогласия, вскрытые денудацией, снова приобретают геоморфологическое содержание, удобно пользоваться термином «возрожденный рельеф».

В областях распространения осадочного наплатформенного покрова в образовании ландшафтов существенную роль играет отраженный рельеф. В простейшем выражении он прослеживается как приуроченность низменных равнин ко впадинам кристаллического фундамента, выступов в рельефе погребенных блоков в виде холмов, отражение на поверхности глубинных складок, соляных структур или древних денудационных понижений.

Наконец, в геоморфологии щитов большое значение имеет литологический состав пород кристаллического фундамента, обнажающихся на поверхности. Особенное место в образовании геоморфологических ландшафтов занимают нагшатформенные базальтовые покровы.

Тектоорогения платформ в общем однотипна. Для всех их характерны резкие колебания рельефа фундамента, на выступах которого наблюдаются кристаллические породы, а во впадинах — породы осадочного покрова. Вместе с тем структурный рельеф каждой платформы имеет свои черты, не повторяющиеся в рельефе других платформ. Очень резко это различие сказывается в особенностях наложенных климатических форм поверхности.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Лекция 2. Строение земной коры и крупные формы рельефа.

Эндогенные процессы создают разные типы земной коры. Каждому типу земной коры соответствуют наиболее крупные - планетарные формы рельефа. Материковому типу земной коры соответствуют материки, океаническому типу – ложе океанов, геосинклинальный тип отражается в рельефе переходных зон, а рифтогенный тип соответствует в рельефе планетарной системе срединно-океанических хребтов.

Каждая планетарная форма рельефа имеет свой набор форм мега и макрорельефа, также связанных с различиями в структуре земной коры.

На материках крупнейшими формами рельефа являются материковые равнины, континентальные горы и рифтовые области.

Материки – сложные тела, сформировавшиеся в течение длительной эволюции литосферы и ее верхней части – земной коры. В пределах материков выделяются относительно устойчивые области – платформы, и области, обладающие большой тектонической подвижностью – геосинклинали. Разное строение и развитие платформ и геосинклиналей определяет различия в их рельефе. Или, можно сказать, что формы мегарельефа связаны с развитием тектонических структур второго порядка – подвижных поясов и устойчивых платформ.

Континентальные платформы – эпейрократоны имеют 2-х ярусное строение. Нижний ярус (фундамент) сложен докембрийскими кристаллическими породами, в основном гранитами, поэтому фундамент называют кристаллическим. Он разбит на блоки, пронизан интрузиями. Верхний ярус сложен осадочными породами, залегающими почти горизонтально.

Фундамент платформ на одних участках приподнят – это щиты, а на других – опущен, это плиты. Для щитов характерна устойчивая восходящая тенденция развития, осадочный чехол маломощен. Плиты имеют тенденцию к опусканию с мощностью осадочного чехла до 5-7 км. На плитах, в свою очередь, выделяются еще более мелкие структуры – антеклизы и синеклизы

Наибольшие площади занимают древние (докембрийские) платформы, например, Африкано-Аравийская, Восточно-Европейская Австралийская и др. В рельефе им соответствуют равнины, невысокие плато и плоскогорья.

Молодые платформы (Западно-Сибирская, Туранская, Скифская и др.) возникли на месте каледонских, герцинских и мезозойских складчатых областей. Породы фундамента молодых платформ слабо метаморфизованы, нет гранитов, поэтому нижний ярус представляет собой складчатое основание. Чтобы отразить в названии молодых платформ их возраст, используют приставку «эпи». Например, эпибайкальская Тимано-Печорская платформа, эпигерцинская Западно-Сибирская платформа и т.д. Как и на древних платформах здесь преобладают равнины, невысокие плато и плоскогорья, но в отличие от докембрийских платформ здесь резко увеличивается роль горного рельефа.

Глубина залегания фундамента лежит в основе геологической классификации равнин. На щитах формируются цокольныеравнины, а на плитах – пластовые равнины.

Поскольку щиты и антеклизы испытывали медленные, но устойчивые во времени поднятия, то они являются областями сноса, денудации, поэтому на них формируются денудационные равнины. К синеклизам (областям погружения), где происходит накопление материала, приурочены аккумулятивные равнины. Таким образом, по генезису выделяют денудационные (пенеплены и педиплены) и аккумулятивные равнины (ледниковые, аллювиальные и др.)

Плато– возвышенные равнины, образованные горизонтально залегающими слоями осадочных пород с плоской поверхностью и обрывистыми склонами.

Плоскогорье (пенеплен) – равнина, срезающая дислоцированные породы.

Горные системы на континентах связаны с наличием геосинклинальных поясов. Но развитие их шло по-разному, с чем и связано выделение эпигеосинклинальных и эпиплатформенных гор.

Высочайшие горные системы Альпийско-Гималайского пояса, например, дважды прошли орогенную стадию развития. Первое поднятие было в герцинскую складчатость, затем был период выравнивания, и в альпийскую складчатость вновь погружение, а затем орогенная стадия. Особенностью таких альпийских сооружений является большая мощность земной коры (до 60км). Основные формы рельефа таких гор с континентальной корой - хребты, соответствующие антиклиналям, межгорные впадины, соответствующие синклиналям, предгорные равнины, формирующиеся на участках соседних платформ, втянутых в поднятия и нагорья – обширные горные территории, включающие отдельные хребты, межгорные впадины и участки плоскогорий, сформировавшихся на месте срединных массивов. Ведущую роль в образовании рельефа таких гор играли складчатые тектонические движения.

Эпиплатформенные горы возникли в результате поднятий на участках, переживших длительное платформенное развитие. Образование их происходило в байкальскую, каледонскую и т.д. складчатости, затем они разрушились до равнин, а в альпийскую складчатость поднялись на современную высоту, но без стадии прогибания. Такие горы еще называют возрожденными. Ведущая роль в образовании их рельефа принадлежит разрывной тектонике. Это глыбовые горы.

Континентальные рифтовые области – это узкие вытянутые грабены, ограниченные сбросами. Располагаются на обширных сводовых поднятиях и в пределах древних платформ, и на молодых плитах.

С геоморфологической точки зрения дно Мирового океана разделяют на океанические впадины и материковые окраины. Окраины соответствуют зонам перехода от континентальной коры к океанической. Переходные зоны могут быть пассивными (атлантического типа) или их рассматривают как подводные окраины материков; или активными (тихоокеанского типа), рельеф которых отражает особенности геосинклинального типа земной коры.

Для атлантического типа характерна триада: континентальный шельф, континентальный склон и континентальное подножье. Переходные зоны тихоокеанского типа состоят из окраинного моря, островной дуги и глубоководного желоба.

Ложе Мирового океана с земной корой океанического типа находится на глубинах более 3-4км. В рельефе ложа развиты абиссальные равнины, представляющие собой холмистые или плоские котловины. Абиссальные котловины разделены горными хребтами, представляющими собой либо глыбовые горы, т.е. тектонического происхождения, либо вулканические горы, часто поднимающиеся над водной поверхностью.

Срединно-океанические хребты – это гигантские сводовые поднятия. В их осевых зонах расположены рифтовые долины, дно которых находится на 2-3км ниже вершины гребня. Ширина долины до 30-60км. Срединные хребты рассечены системой поперечных разломов. Система срединно-океанических хребтов образует единую планетарную систему с континентальными рифтовыми зонами, что позволяет выделить рифтогенез как особый тип развития земной коры.

Фундамент земной коры

Современные представления о глубинном строении земной коры, тектонике кристаллического фундамента Непско-Ботуобинской антеклизы базируются на геофизических данных и результатах их комплексной интерпретации. При этом строение глубоких горизонтов и рельефа поверхности кристаллического фундамента основывается главным образом на сейсмических материалах. При изучении внутренней структуры фундамента используется комплексный анализ гравиметрических и магнитометрических данных с учетом выработанных критериев отражения в потенциальных полях структурных комплексов, развитых в пределах обрамления, а также данных глубокого бурения, вскрывающих породы кристаллического фундамента.

Непско-Ботуобинская антеклиза глубинными сейсмическими зондированиями (ГСЗ) изучена недостаточно. Она пересечена двумя региональными маршрутами ГСЗ (Диксон — Хилок, Колпашево — Куду-Куель), выполненными НПО «Нефтегеофизика». В ее юго-восточной части проведены ИГиГ СО АН СССР и НТО «Иркутскгеофизика» в небольшом объеме сейсмические зондирования земной коры, являющиеся составной частью сейсмических исследований в районе Байкальской рифтовой зоны.

Эти данные, а также определение глубин залегания поверхности Мохоровичича с использованием принципа изостазии позволили составить представление о мощности земной коры и рельефе ее поверхности в пределах антеклизы.

Глубины до раздела кора ‑ мантия Непско-Ботуобинской антеклизы в среднем составляют40 км. Несмотря на небольшую мощность развитых здесь платформенных отложений (1,5-2,0 км) и приподнятое положение поверхности фундамента, она не находит отражения в рельефе поверхности Мохоровичича. Мощность коры здесь, как и для большей части Сибирской платформы, не коррелируется с мощностью платформенных отложений. Выделяемые в рельефе поверхности Мохоровичича, небольшие по амплитуде (3 км), ундуляции скорее всего отражают характер новейших тектонических движений. Так, в центральной зоне Непско-Ботуобинской антеклизы, характеризующейся наименьшими отметками глубин до подошвы земной коры (39-40 км), на карте новейшей тектоники Сибирской платформы соответствует зона меньшей активности движений за новейший этап. Зонам больших восходящих движений за новейший этап отвечают области погружения глубин до поверхности Мохоровичича. Эта закономерность наблюдается к юго-западу от центральной зоны антеклизы. Мощность коры здесь увеличивается до 42-45 км. Отмечаемая закономерность между мощностью земной коры и характером новейших движений Характерна и для других зон Сибирской платформы, таких как плато Путорана, Анабарский массив, Канско-тасеевская впадина и др.

На западе и юго-западе она ограничивается Канско-Тасеевской впадиной с глубиной погружения фундамента до7 км. На юго-востоке Непско-Ботуобинская антеклиза ограничена Предбайкальским региональным прогибом с глубинами до кровли фундамента4 км, а на северо-востоке — Ыгыаттинской (6 км) и Кемпендяйской (12 км) впадинами.

Таким образом, по кровле кристаллического фундамента Непско-Ботуобинская антеклиза представляет собой огромную по размерам (350×750 км) и амплитуде (750-1000 м) приподнятую зону. Склоны и купольная часть этой поверхности осложнены разломами, положительными и отрицательными структурными формами с амплитудой до 200-250 м.

Читайте также: