Фундамент дымовой трубы расчет

Обновлено: 18.04.2024

Расчет дымовой трубы

Каждая дымовая труба для котельной или промышленного предприятия разрабатывается в индивидуальном порядке с учетом специфики производства, состава отводимых газов и климатических особенностей района строительства.

Онлайн-опросник

Рекомендуем ознакомиться

Примеры расчетов дымовой трубы

1. Пример расчета колонной дымовой трубы высотой 30 метров можно скачать по ссылке
2. Пример расчета самонесущей дымовой трубы высотой 10 метров можно скачать по ссылке
3. Прочностной расчет несущей металлоконструкции башни и фундаментов для ферменной дымовой трубы высотой 25 метров можно скачать по ссылке


Общие данные

Расчет, как правило, выполняется с помощью проектно-вычислительного комплекса, таких как SCAD, ЛИРА-САПР, Robot Structural Analysis, IDEA StatiCa, STAAD, APM Structure3D. Комплекс реализует конечно-элементное моделирование статических и динамических расчетных схем, проверку устойчивости, выбор невыгодных сочетаний усилий, подбор арматуры железобетонных конструкций, проверку несущей способности стальных конструкций. В представленной ниже статье описаны лишь фактически использованные при расчетах дымовых труб возможности комплексов.

Производство дымовых и вентиляционных труб

Серия Д1
Артикул: 155 Дымовые трубы серии Д1 предназначены для отвода продуктов сгорания от котлов, работающ.
  • Высота, м 7-15
  • Диаметр, мм 150-600
  • Кол-во стволов, шт 1-3
  • Материал газохода Нерж. сталь
Серия Д2
Артикул: 156 Дымовые трубы серии Д2 предназначены для отвода продуктов сгорания от котлов, работающи.
  • Высота, м 7-60
  • Диаметр, мм 400-6000
  • Кол-во стволов, шт 1
  • Материал газохода Нерж./Ст3
Серия Д3
Артикул: 157 Дымовые трубы серии Д3 предназначены для отвода продуктов сгорания от котлов, работающи.
  • Высота, м 15-35
  • Диаметр, мм 200-1300
  • Кол-во стволов, шт 1-3
  • Материал газохода Нерж./Ст3
Серия Д4
Артикул: 158 Дымовые трубы серии Д4 предназначены для отвода продуктов сгорания от котлов, работающи.
  • Высота, м 15-40
  • Диаметр, мм 200-1300
  • Кол-во стволов, шт 1-4
  • Материал газохода Нерж./Ст3
Серия Д5
Артикул: 159 Дымовые трубы серии Д5 предназначены для отвода продуктов сгорания от котлов, работающи.
  • Высота, м 20-60
  • Диаметр, мм 400-3000
  • Кол-во стволов, шт 1
  • Материал газохода Нерж./Ст3
Серия Д6
Артикул: 160 Дымовые трубы серии Д6 предназначены для отвода продуктов сгорания от котлов, работающи.
  • Высота, м 40-150
  • Диаметр, мм 500-6000
  • Кол-во стволов, шт 4
  • Материал газохода Нерж./Ст3

Краткая характеристика методики расчета

В основу расчета положен метод конечных элементов с использованием в качестве основных неизвестных перемещений и поворотов узлов расчетной схемы. В связи с этим идеализация конструкции выполнена в форме, приспособленной к использованию этого метода, а именно: система представлена в виде набора тел стандартного типа (стержней, пластин, оболочек и т.д.), называемых конечными элементами и присоединенных к узлам.

Тип конечного элемента определяется его геометрической формой, правилами, определяющими зависимость между перемещениями узлов конечного элемента и узлов системы, физическим законом, определяющим зависимость между внутренними усилиями и внутренними перемещениями, и набором параметров (жесткостей), входящих в описание этого закона и др.

Узел в расчетной схеме метода перемещений представляется в виде абсолютно жесткого тела исчезающе малых размеров. Положение узла в пространстве при деформациях системы определяется координатами центра и углами поворота трех осей, жестко связанных с узлом. Узел представлен как объект, обладающий шестью степенями свободы - тремя линейными смещениями и тремя углами поворота.

Все узлы и элементы расчетной схемы нумеруются. Номера, присвоенные им, следует трактовать только, как имена, которые позволяют делать необходимые ссылки.

Основная система метода перемещений выбирается путем наложения в каждом узле всех связей, запрещающих любые узловые перемещения. Условия равенства нулю усилий в этих связях представляют собой разрешающие уравнения равновесия, а смещения указанных связей - основные неизвестные методы перемещений.

В общем случае в пространственных конструкциях в узле могут присутствовать все шесть перемещений:

1 - линейное перемещение вдоль оси X;

2 - линейное перемещение вдоль оси Y;

3 - линейное перемещение вдоль оси Z;

4 - угол поворота с вектором вдоль оси X (поворот вокруг оси X);

5 - угол поворота с вектором вдоль оси Y (поворот вокруг оси Y);

6 - угол поворота с вектором вдоль оси Z (поворот вокруг оси Z).

Нумерация перемещений в узле (степеней свободы), представленная выше, используется далее всюду без специальных оговорок, а также используются соответственно обозначения X, Y, Z, UX, UY и UZ для обозначения величин соответствующих линейных перемещений и углов поворота.

В соответствии с идеологией метода конечных элементов, истинная форма поля перемещений внутри элемента (за исключением элементов стержневого типа) приближенно представлена различными упрощенными зависимостями. При этом погрешность в определении напряжений и деформаций имеет порядок (h/L) k , где h - максимальный шаг сетки; L - характерный размер области. Скорость уменьшения ошибки приближенного результата (скорость сходимости) определяется показателем степени k, который имеет разное значение для перемещений и различных компонент внутренних усилий (напряжений).

Системы координат

Для задания данных о расчетной схеме могут быть использованы различные системы координат, которые в дальнейшем преобразуются в декартовы. В дальнейшем для описания расчетной схемы используются следующие декартовы системы координат:

Глобальная правосторонняя система координат XYZ, связанная с расчетной схемой

Локальные правосторонние системы координат, связанные с каждым конечным элементом.

Тип схемы

Расчетная схема определена как система с признаком 5. Это означает, что рассматривается система общего вида, деформации которой и ее основные неизвестные представлены линейными перемещениями узловых точек вдоль осей X, Y, Z и поворотами вокруг этих осей.

Количественные характеристики расчетной схемы

Расчетная схема характеризуется следующими параметрами:

- количество конечных элементов.

- общее количество неизвестных перемещений и поворотов.

- количество комбинаций загружений.

Выбранный режим статического расчета дымовой трубы

Статический расчет системы выполняется в линейной постановке.

Набор исходных данных

Детальное описание расчетной схемы дымовой трубы должны быть представлены в табличной форме - сведения о расчетной схеме, содержащие координаты всех узлов, характеристики всех конечных элементов, условия примыкания конечных элементов к узлам и др.

Граничные условия

Условия примыкания элементов к узлам

Точки примыкания конечного элемента к узлам (концевые сечения элементов) имеют одинаковые перемещения с указанными узлами.

Исключение составляют стержневые элементы для которых предусмотрено наличие шарниров и/или ползунов, разрешающих угловые и/или линейные перемещения узлов и концевых сечений элементов относительно узлов расчетной схемы.

Характеристики использованных типов конечных элементов

В расчетную схему дымовой трубы включены конечные элементы следующих типов:

Стержневые конечные элементы, для которых предусмотрена работа по обычным правилам сопротивления материалов. Описание их напряженного состояния связано с местной системой координат, у которой ось X1 ориентирована вдоль стержня, а оси Y1 и Z1 - вдоль главных осей инерции поперечного сечения.

Некоторые стержни присоединены к узлам через абсолютно жесткие вставки, с помощью которых учитываются эксцентриситеты узловых примыканий. Тогда ось X1 ориентирована вдоль упругой части стержня, а оси Y1 и Z1 - вдоль главных осей инерции поперечного сечения упругой части стержня.

К стержневым конечным элементам рассматриваемой расчетной схемы относятся следующие типы элементов:

Элемент, который работает по пространственной схеме и воспринимает продольную силу N, изгибающие моменты Мy и Mz, поперечные силы Qz и Qy, а также крутящий момент Mk.

Конечные элементы оболочек, геометрическая форма которых на малом участке элемента является плоской (она образуют многогранник, вписанный в действительную криволинейную форму срединной поверхности оболочки). Для этих элементов, в соответствии с идеологией метода конечных элементов, истинная форма перемещений внутри элемента приближенно представлена упрощенными зависимостями. Описание их напряженного состояния связано с местной системой координат, у которой оси X1 и Y1 расположены в плоскости элемента и ось Х1 направлена от первого узла ко второму, а ось Z1 ортогональна поверхности элемента.

Треугольный элемент, не является совместным и моделирует поле нормальных перемещений внутри элемента полиномом 4 степени, а поле тангенциальных перемещений полиномом первой степени. Располагается в пространстве произвольным образом.

Четырехугольный элемент, который имеет четыре узловые точки, не является совместным и моделирует поле нормальных перемещений внутри элемента полиномом 3 степени, а поле тангенциальных перемещений неполным полиномом 2 степени. Располагается в пространстве произвольным образом.

Описание загружений и их характеристики

Конструкция должна быть рассчитана на статические и динамические загружения.

Динамический расчет системы выполняется с использованием разложения по формам собственных колебаний. При этом в расчете использование не более, чем приведенное ниже число форм:

пульсация ветрового потока по СНиП 2.01.07-85* - 6 форм

В динамическом нагружении «Пульсация ветрового потока по СНиП 2.01.07-85*» выполняется расчет по методике, в которой давление ветра на сооружение рассматривается как сумма статической и пульсационной составляющих ветровой нагрузки. Последняя есть случайная функция времени, обусловленная случайной скоростью пульсаций. Усилия в элементах системы и перемещения ее точек (обобщенно - реакция сооружения Х) находятся раздельно от статической составляющей ветровой нагрузки и от инерционных сил, соответствующих каждой форме собственных колебаний. Суммарное значение реакции определяется по формуле

из которой видно, что колебания совершаются вокруг смещенного состояния равновесия, соответствующего статической (средней) компоненте нагружения. В результатах расчета представляются отдельные составляющие динамической реакции Xi d и суммарное значение статической и всех динамических компонент. При этом знак динамической добавки принимается таким же, как и у компоненты X c .

Результаты расчета дымовой трубы

В отчете результаты расчета представляются выборочно. Вся полученная в результате расчета информация должна хранится в электронном виде.

Перемещения

Вычисленные значения линейных перемещений и поворотов узлов от загружений представляются в таблице результатов расчета «Перемещения узлов».

Вычисленные значения линейных перемещений и поворотов узлов от комбинаций загружений представляются в таблице результатов расчета «Перемещения узлов от комбинаций».

Правило знаков для перемещений

Правило знаков для перемещений принято таким, что линейные перемещения положительны, если они направлены в сторону возрастания соответствующей координаты, а углы поворота положительны, если они соответствуют правилу правого винта (при взгляде от конца соответствующей оси к ее началу движение происходит против часовой стрелки).

Усилия и напряжения

Вычисленные значения усилий и напряжений в элементах от загружений представляются в таблице результатов расчета дымовой трубы «Усилия/напряжения элементов».

Вычисленные значения усилий и напряжений в элементах от комбинаций загружений представляются в таблице результатов расчета «Усилия/напряжения элементов от комбинаций загружений».

Для стержневых элементов усилия по умолчанию выводятся в концевых сечениях упругой части (начальном и конечном) и в центре упругой части, а при наличии запроса пользователя и в промежуточных сечениях по длине упругой части стержня. Для пластинчатых, объёмных, осесимметричных и оболочечных элементов напряжения выводятся в центре тяжести элемента и при наличии запроса пользователя в узлах элемента.

Правило знаков для усилий (напряжений)

Правила знаков для усилий (напряжений) приняты следующими:

Для стержневых элементов возможно наличие следующих усилий:

N - продольная сила;

M - крутящий момент;

MY - изгибающий момент с вектором вдоль оси Y1;

QZ - перерезывающая сила в направлении оси Z1 соответствующая моменту MY;

MZ - изгибающий момент относительно оси Z1;

QY - перерезывающая сила в направлении оси Y1 соответствующая моменту MZ;

RZ - отпор упругого основания.

Положительные направления усилий в стержнях приняты следующими:

для перерезывающих сил QZ и QY - по направлениям соответствующих осей Z1 и Y1;

для моментов MX, MY, MZ - против часовой стрелки, если смотреть с конца соответствующей оси X1, Y1, Z1;


положительная продольная сила N всегда растягивает стержень.

На рисунке показаны положительные направления внутренних усилий и моментов в сечении горизонтальных и наклонных (а), а также вертикальных (б) стержней.

Знаком “+” (плюс) помечены растянутые, а знаком ”-” (минус) - сжатые волокна поперечного сечения от воздействия положительных моментов My и Mz.

В конечных элементах оболочки вычисляются следующие усилия:

нормальные напряжения NX, NY;

сдвигающее напряжений TXY;

моменты MX, MY и MXY;

перерезывающие силы QX и QY;

реактивный отпор упругого основания RZ.


На рисунке показаны положительные значения напряжений, перерезывающих сил и векторов моментов, действующие по граням элементарного прямоугольника, вырезанного в окрестности центра тяжести КЭ оболочки.



Суммарные значения приложенных нагрузок по нагружениям.

В протоколе решения задачи для каждого из нагружений указываются значения суммарной узловой нагрузки, действующей на систему.

Расчетные сочетания усилий

Значения расчетных сочетаний усилий представляютя в таблице результатов расчета «Расчетные сочетания усилий».

Вычисление расчетных сочетаний усилий производится на основании критериев, характерных для соответствующих типов конечных элементов - стержней, плит, оболочек, массивных тел. В качестве таких критериев приняты экстремальные значения напряжений в характерных точках поперечного сечения элемента. При расчете учитываются требования нормативных документов и логические связи между загружениями.

Основой выбора невыгодных расчетных сочетаний усилий служит принцип суперпозиции. Из всех возможных сочетаний, отбираются те РСУ, которые соответствуют максимальному значению некоторой величины, избранной в качестве критерия и зависящей от всех компонентов напряженного состояния:


а) для стержней - экстремальные значения нормальных и касательных напряжений в контрольных точках сечения, которые показаны на рисунке


б) для элементов, находящихся в плоском напряженном состоянии - по огибающим экстремальным кривым нормальных и касательных напряжений по формулам:


Обозначения приведены на рисунке. Нормальные напряжения вычисляются в диапазоне изменения углов от 90° до -90°, а касательные от 90° до 0°. Шаг изменения углов 15°.


в) для плит применяется аналогичный подход - расчетные формулы приобретают вид:

Кроме того, определяются экстремальные значения перерезывающих сил.

г) для оболочек также применяется аналогичный подход, но вычисляются напряжения на верхней и нижней поверхностях оболочки с учетом мембранных напряжений и изгибающих усилий.

д) для объемных элементов критерием для определения опасных сочетаний напряжений приняты экстремальные значения среднего напряжения (гидростатического давления) и главных напряжений девиатора.

Анализ устойчивости

Задача устойчивости конструкции дымовой трубы решается в классической постановке для упругой системы и в предположении, что все приложенные к системе внешние нагрузки (следовательно, и внутренние силы) растут пропорционально одному и тому же параметру λ. То значение параметра λ, при котором матрица жесткости системы А(λ) впервые перестает быть положительно определенной, является критическим, а соответствующее значение λ - коэффициентом запаса устойчивости. Положительная определенность матрицы жесткости означает, что при любых значениях узловых перемещений и поворотов потенциальная энергия системы положительна, и для деформирования системы необходимо затратить энергию. В этом случае система в целом оказывает сопротивление деформированию (является отпорной). Если же система теряет устойчивость, она теряет отпорность и ее матрица жесткости становится вырожденной (с нулевым детерминантом).

Коэффициенты запаса устойчивости системы

Значения коэффициентов запаса устойчивости при комбинациях загружений представляются в таблице результатов расчета дымовой трубы « Коэффициенты запаса устойчивости от комбинаций».

При этом решается задача определения минимального λ, при котором происходит вырождение матрицы жесткости.

Поиск коэффициента запаса устойчивости проводится в интервале [0, 2.0], где 2.0 - оценка верхней границы интервала поиска коэффициента запаса устойчивости, которое задано в исходных данных. Если коэффициент запаса устойчивости системы больше указанной верхней границы, то он не вычисляется.

При составлении матрицы устойчивости для каждого конечного элемента (способного, в принципе, терять устойчивость) вычисляется значение λkp, которое приводит к потере устойчивости самого элемента в форме, когда все узлы, к которым этот элемент примыкает, остаются неподвижными. Номер элемента, на котором достигается min λkp, сообщается в протоколе.

Формы потери устойчивости

Формы потери устойчивости от комбинаций представляется в таблице результатов расчета дымовой трубы «Формы потери устойчивости от комбинаций».

В предположении, что коэффициент запаса устойчивости является точным, найдено решение задачи о таких значений узловых перемещений и поворотов, которые вызываются только внутренними сжимающими напряжениями и усилиями. Это и есть форма потери устойчивости. Поскольку уравнение устойчивости решено при нулевой правой части, то форма потери устойчивости определена с точностью до множителя.

Модальный анализ. Собственные формы. Инерционные нагрузки

Формы колебаний конструкции дымовой трубы представляются в таблице результатов расчета «Формы собственных колебаний».


Для каждой из учтённых в динамическом загружении форм колебаний конструкции напечатана частота этой формы (круговые частоты w в радианах, частоты f в герцах, периоды колебаний Т в секундах). Они связаны зависимостями:

Для каждой из учитываемых форм собственных колебаний напечатаны соотношения между величинами амплитуд в узлах расчетной схемы по каждой из разрешенных задачей степени свободы в узле. Наибольшая величина амплитуды назначается 1000, значения остальных величин амплитуд определяются в долях от 1000.

Инерционные нагрузки в узлах расчетной схемы по направлениям степеней свободы, разрешенных расчетной схемой, могут использоваться для анализа вклада каждой из учтенных форм собственных колебаний в прочностной расчет либо для дальнейших численных исследований конструкции. Для контроля выведено заданное распределение весов масс. Распределение весов масс указывает, например, как были распределены массы для собственного веса конструкции в указанные узлы сосредоточения.

Определение главных и эквивалентных напряжений

Значения главных и эквивалентных напряжений в элементах конструкции дымовой трубы представляются в таблице результатов расчета «Главные и эквивалентные напряжения».

Значения главных и эквивалентных напряжений от комбинаций представляются в таблице результатов расчета «Главные и эквивалентные напряжения от комбинаций».

На проходящей через произвольную точку тела и произвольно ориентированной площадке, нормаль к которой v имеет направляющие косинусы l, m, n с осями x, y, z, действует нормальное напряжение sv и касательное напряжение tv с равнодействующей Sv.

Существуют три таких взаимно перпендикулярных площадки, на которых касательные напряжения равны нулю. На этих площадках, называемых главными, действуют главные напряжения s1, s2 и s3. При этом имеется в виду, что s1³s2³s3.Известно также, что главные напряжения обладают экстремальными свойствами, а именно - на любой площадке результирующее напряжение Sv£s1 и Sv³s3.


Для характеристики напряженно-деформированного состояния используется коэффициент Лоде-Надаи

принимающий значение 1 при чистом сжатии, 0 при чистом сдвиге и -1 при чистом растяжении.

При выводе результатов расчета главные напряжения s1³s2³s3 обозначаются как N1³N2³N3 а для углов Эйлера введены обозначения: q - ТЕТА, y - PSI, j - FI.

Для плит и оболочек главные напряжения определяются на нижней (Н), срединной (С) и верхней (В) поверхностях. Положение главных площадок характеризуется углом наклона главного напряжения N1 к оси X1.


Главные напряжения в стержневых КЭ определяются по формуле

Здесь sx, tx и ty нормальное и касательные напряжения в характерных точках контура поперечного сечения стержня.

Использованные теории прочности


Для сложного напряженного состояния, характеризующегося главными напряжениями s1, s2 и s3, обычно используется некоторая гипотеза (теория прочности), которая предусматривает возможность сопоставления некоторого эквивалентного напряжения se с пределом s0 + , который соответствует простому одноосному растяжению. Условие, характеризующее отсутствие предельного состояния в материале, записывается в виде

где k1. kn - некоторые константы материала. Иногда удобнее сопоставлять эквивалентное напряжение с пределом s0 - , соответствующим сопротивлению образца материала при простом одноосном сжатии. Соответствующее эквивалентное напряжение обозначается как sS.


В расчете использовалась теория наибольших касательных напряжений:

Фундамент дымовой трубы расчет

ТРУБЫ ПРОМЫШЛЕННЫЕ ДЫМОВЫЕ

Industrial chimneys. Design rules

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - Ассоциация пече-трубостроителей и пече-трубопроизводителей России ("РосТеплостройМонтаж")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Введение

Работа выполнена некоммерческой организацией - Ассоциация пече-трубостроителей и пече-трубопроизводителей России "РосТеплостройМонтаж" (Ассоциация "РосТеплостройМонтаж").

Авторский коллектив: АО "Союзтеплострой" (Г.М.Мартыненко - руководитель разработки), Ассоциация "РосТеплостройМонтаж" (Ю.П.Сторожков), СРО НП "МонтажТеплоСпецстрой" (А.Ф.Федин), ООО АС "Теплострой" (В.А.Сырых, Т.В.Цепилов), ООО "Спецвысотстройпроект" (канд. техн. наук С.Б.Шматков), АО НИЦ "Строительство - НИИЖБ им.А.А.Гвоздева (докт. техн. наук Т.А.Мухамедиев), ООО "ПСФ Энерго" (канд. техн. наук А.З.Корсунский), АО "ЦНИИПромзданий" (д-р техн. наук В.В.Гранев, канд. архитектуры Д.К.Лейкина, К.В.Авдеев), ЗАО ЦНИИПСК им.Мельникова (инженеры Е.А.Понурова, Г.Р.Шеляпина, Р.М.Шилькрот, канд. хим. наук Г.В.Оносов), ОАО "Теплопроект" (инж. А.А.Ходько), ФГБОУ ВПО "Южно-Уральский государственный университет" (докт. техн. наук, проф. В.И.Соломин, докт. техн. наук, проф. В.М.Асташкин, докт. техн. наук А.Н.Потапов), при участии объединения "Союзкомпозит" (С.Ю.Ветохин), АНО "Центр нормирования, стандартизации и классификации композитов (инж. А.В.Гералтовский).

1 Область применения

1.1 Настоящий свод правил устанавливает требования к проектированию промышленных дымовых труб, включая фундаменты, с несущими стволами из кирпича, железобетона, стали, полимерных композитов, а также на промышленные дымовые трубы, поддерживаемые несущими металлическими башнями (каркасами).

1.2 Настоящий свод правил не распространяется на проектирование промышленных дымовых труб высотой от отметки установки 15 м и менее.

1.3 Настоящий свод правил не распространяется на проектирование фундаментов промышленных дымовых труб, предназначенных для строительства в особых условиях: на вечномерзлых, просадочных, насыпных и намывных грунтах, подрабатываемых и закарстованных территориях.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия

ГОСТ 12071-2014 Грунты. Отбор, упаковка, транспортирование и хранение образцов

ГОСТ 19281-2014 Прокат повышенной прочности. Общие технические условия

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

СП 14.13330.2014 "СНиП II-7-81* Строительство в сейсмических районах" (с изменением N 1)

СП 15.13330.2012 "СНиП II-22-81* Каменные и армокаменные конструкции" (с изменениями N 1, N 2)

СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия"

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 27.13330.2011 "СНиП 2.03.04-84 Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур"

СП 28.13330.2012 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменениями N 1, N 2)

СП 43.13330.2012 "СНиП 2.09.03-85 Сооружение промышленных предприятий" (с измененением N 1)

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, N 2, N 3)

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 агрессивная среда: Среда эксплуатации сооружения, вызывающая уменьшение сечений и деградацию свойств материалов отдельных конструкций сооружения во времени.

3.2 воздействие: Явление, вызывающее изменение напряженно-деформированного состояния строительной конструкции.

3.3 газоотводящий ствол: Вертикальная часть газоотводящего тракта, обеспечивающая отвод в атмосферу и рассеивание отводимых газов.

3.4 газоход: Часть газоотводящего тракта по которому отводимые газы перемещаются от обслуживаемого оборудования (теплового или промышленного агрегата) до дымовой трубы (газоотводящего ствола).

3.5 дивертор: Устройство на газоотводящем стволе, обеспечивающее, при необходимости, переключение направления потока отводимых газов.

3.6 диффузор: Расширяющийся по ходу движения газа участок газоотводящего тракта.

3.7 защитная система: Система защиты несущего ствола дымовой трубы от агрессивного или температурного воздействия отводимых газов, состоящая из защитной футеровки (газоотводящего ствола), тепловой изоляции, опорных конструкций.

3.8 интерцепторы: Спиралевидные ребра, устанавливаемые в верхней части трубы (обычно металлической), для предотвращения или уменьшения ее резонансных колебаний в ветровом потоке.

3.9 конфузор: Сужающийся по ходу движения газов участок газоотводящего тракта.

3.10 коэффициент сочетаний нагрузок: Коэффициент, учитывающий уменьшение вероятности одновременного достижения несколькими нагрузками их расчетных значений.

3.11 коэффициенты надежности: Коэффициенты, учитывающие возможные неблагоприятные отклонения значений нагрузок, характеристик материалов и расчетной схемы строительного объекта от реальных условий его эксплуатации, а также уровень ответственности строительных объектов.

3.12 лучковая арка: Арка, отношение стрелы подъема которой к пролету менее 1/2.

Примечание - Отношение стрелы подъема лучковой арки и лучкового свода к пролету, как правило, составляет 1/8, 1/12, 1/16 или 1/32, а центральный угол - от 120° до 180° соответственно.

3.13 маркировочная окраска: Окраска высотного сооружения горизонтальными полосами белого и красного (оранжевого) цветов для выделения его на фоне местности с целью обеспечения безопасности полетов воздушных судов.

3.14 молниезащита: Устройство для защиты дымовой трубы и ее отдельных элементов от прямого удара молнии.

3.15 надежность: Способность строительного объекта выполнять требуемые функции в течение расчетного срока эксплуатации.

3.16 несущая конструкция: Конструкция, воспринимающая основные нагрузки и обеспечивающая прочность, жесткость и устойчивость сооружения.

3.17 несущая способность: Максимальный эффект воздействия, при котором в конструкциях, а также грунтах основания, не происходит разрушение любого характера (пластического, хрупкого, усталостного) и потеря местной или общей устойчивости.

3.18 полуциркульная арка: Арка, отношение стрелы подъема которой к пролету равно 1/2 и центральный угол равен 180°.

3.19 предельное состояние: Состояние строительного объекта, при превышении характерных параметров которого эксплуатация строительного объекта недопустима, затруднена или нецелесообразна.

3.20 промышленная труба: Высотное сооружение, предназначенное для создания тяги, отвода и рассеивания в атмосфере продуктов сгорания топлива или воздуха, содержащего вредные примеси.

Примечание - Промышленные трубы, отводящие преимущественно продукты сгорания топлива, называются дымовыми, а промышленные трубы, отводящие преимущественно воздух, содержащий вредные примеси, называются вентиляционными.

3.21 разделительная стенка: Конструкция в нижней части ствола трубы или газоотводящего ствола, разделяющая встречные потоки подводимых газов при двух и более вводах газоходов.

3.22 расчетная модель трубы: Модель взаимосвязанной системы "ствол трубы - фундамент - основание", используемая при проведении расчетов и включающая в себя: расчетные схемы, идеализирующие геометрию рассчитываемого объекта; расчетные модели нагрузок и воздействий; расчетные модели напряженно-деформированного состояния; расчетные модели материалов.

3.23 расчетный срок службы: Установленный в нормах проектирования, задании на проектирование или в проектной документации временной период (срок) использования строительного объекта по назначению до его капитального ремонта либо реконструкции при нормальной эксплуатации с предусмотренным техническим обслуживанием.

Примечание - Расчетный срок службы отсчитывается от начала эксплуатации или возобновления эксплуатации после капитального ремонта, реконструкции, или расконсервации.

3.24 световое ограждение: Обозначение местоположения высотного сооружения в темное время суток и при плохой видимости с помощью заградительных огней, устанавливаемых на сооружении для обеспечения безопасности полетов воздушных судов.

3.25 светофорные площадки: Площадки, предназначенные для размещения на них и обслуживания заградительных огней светового ограждения трубы, используемые также при осмотрах, обследованиях, техническом обслуживании и ремонтах трубы.

3.26 секция газоотводящего ствола: Укрупненная составная часть газоотводящего ствола, ограниченная температурно-компенсационными стыками, свободным или опорным краями и собранная из нескольких царг с помощью жестких (чаще всего неразъемных) соединений.

3.27 царга: Отдельный конструктивный элемент дымовой трубы или газоотводящего ствола, как правило, цилиндрической формы, имеющий необходимые детали для соединения с аналогичными элементами или смежными частями дымовой трубы или газоотводящего тракта

4 Общие требования

4.1 Проектирование промышленных дымовых труб (далее - труб) следует выполнять с учетом требований СП 43.13330.2012 (пункты 9.3 и 9.4), при этом должна быть обеспечена эвакуация в атмосферу и эффективное рассеивание отводимых газов до допустимых гигиеническими нормами пределов концентрации вредных веществ и твердых частиц на уровне земли в зоне расположения трубы.

При проектировании труб следует учитывать их уровень ответственности.

4.2 Трубы по конструктивным особенностям делятся:

- на свободностоящие (самонесущие) - кирпичные, армокирпичные, монолитные железобетонные, сборные железобетонные, стальные, из полимерных композитов;

- трубы с оттяжками - стальные, из полимерных композитов;

- трубы в поддерживающем каркасе (башне) - стальные, из полимерных композитов.

Несколько труб допускается объединять соединительными конструкциями, не препятствующими независимым перемещениям каждой из труб относительно остальных, объединенных в одно сооружение.

Фундамент для трубы дымохода: необходимость, расчет, монтаж своими силами

Дымоход предназначен для отведения из жилого помещения вредных продуктов горения от печи или камина. Дымовая труба сможет успешно справляться с возложенными на нее функциями только в том случае, если будет возведена правильно, с соблюдением всех норм. Чтобы дымоход был устойчив и прослужил длительное время, требуется устанавливать его на отдельный фундамент. Фундамент дымохода может быть изготовлен самостоятельно. О том, как это сделать, читайте далее.

Основание для дымовой трубы

Основание для дымовой трубы

В каких случаях требуется фундамент

Дымоходы для печей и каминов могут изготавливаться:

    из кирпича. Кирпичные дымовые трубы отличаются сложностью установки, возникновением конденсата и образованием сажевого налета внутри трубы, которые постепенно ведут к его разрушению. Несмотря на приведенные факторы, дымоходы из кирпича обладают эстетичным внешним видом и широко используются при строительстве печей;

Дымовая труба, изготовленная из кирпича

  • из металла. Могут использоваться как стандартные металлические трубы различного диаметра, так и сэндвич трубы. Такие дымоходы отличаются невысокой стоимостью и простотой монтажа;

Дымовая труба, собранная из сэндвич труб

  • из керамических труб. Самый большой недостаток керамического дымохода – высокая стоимость материалов, применяемых для изготовления;

Дымовая труба из прямоугольных керамических блоков

Дымовая труба из прямоугольных керамических блоков

  • из полимерных труб. Пластиковые дымоходы устойчивы к перепадам температур, долговечны, просты в установке и требуют минимальных экономических затрат. Единственный минус – не способность выдерживать температуру горения более 250ºС.

Дымовая труба, изготовленная из пластика

Дымовая труба, изготовленная из пластика

Дымовые трубы из кирпича и керамики достаточно тяжелые. Поэтому при сооружении дымохода из этих материалов требуется сооружение индивидуального фундамента.

Габариты фундамента

Расчет фундаментов дымовых труб осуществляется на основании габаритных размеров дымохода.

Стандартный фундамент дымовой трубы имеет параметры:

  1. минимум 40 см ниже уровня поверхности земли;
  2. на 15 см с каждого края больше размеров дымовой трубы.

Способ определения размеров фундамента

Способ определения размеров фундамента

Строители промышленных дымоходов производят полный расчет дымовой трубы: фундамент, его высоту, сечение и так далее. Он выполняется на основании формул, предложенных СНиП «Основания и фундаменты», и учитывает все параметры трубы и глубину промерзания почвы в районе установки дымохода.

Самостоятельно провести расчет по формулам, представленным в документах достаточно сложно. Поэтому можно воспользоваться параметрами основания, представленными выше, или прибегнуть для расчета к помощи квалифицированных проектировщиков.

Строительство фундамента

Необходимые материалы

Перед строительством фундамента требуется подготовить все необходимые материалы, к которым относятся:

  • песок;
  • гравий или битый кирпич;
  • бетонная смесь. Оптимально подойдет марка бетона В15, но можно использовать и более высокий класс смеси;
  • металлическая арматура сечением не менее 12 мм;
  • жаропрочный кирпич;
  • любой гидроизоляционный материал.

Основные этапы

Фундаменты под дымовые трубы строятся по следующей схеме:

  1. выбирается место для установки печи и дымохода. Желательно, чтобы дымовая труба не соприкасалась со стенами жилого дома, так как при таком размещении возможно дополнительное образование конденсата. Фундамент печи и дымохода должен располагаться в некотором удалении от фундамента дома;

Оптимальные варианты расположения печи и дымохода в жилом доме

Оптимальные варианты расположения печи и дымохода в жилом доме

  1. в месте предполагаемой установки печи и дымохода выкапывается яма соответствующих габаритных размеров;
  2. по периметру ямы выставляется опалубка, которую можно сделать самостоятельно из подручных досок;
Опалубка требуется для укрепления стенок подготовленного котлована и, соответственно, уменьшения его размеров, а также для облегчения процесса заливки бетонной смесью.
  1. дно ямы приблизительно на 20 см засыпается смесью песка и гравия (битого кирпича). Благодаря этой операции можно выровнять дно котлована и основать «подушку» для будущего фундамента;
  2. песчано-гравийная смесь перекрывается слоем гидроизоляционного материала, чтобы снизить образование конденсата, способного разрушить бетонную заливку;
  3. укладываются металлические пруты в качестве армирующих элементов. Применение прутков является обязательным условием заливки, так как арматура способствует увеличению прочности бетонного основания;

Начальный этап возведения фундамента для дымохода

Начальный этап возведения фундамента для дымохода

При применении гидроизоляционного материала арматура должна располагаться на расстоянии 5 см от каждого слоя. Если фундамент заливается без дополнительной гидроизоляции, то расстояние между арматурными слоями можно увеличить до 7 см.
  1. производится заливка бетоном. Толщина слоя бетона должна составлять 200-300 мм. Бетон должен быть вровень или несколько выше уровня грунта;

Основной этап строительства фундамента

Основной этап строительства фундамента

  1. фундамент под дымоход прокладывается еще одним слоем гидроизоляции;
  2. далее целесообразно выполнить кирпичную кладку до уровня пола жилого помещения. Некоторые строители пренебрегают данным этапом. Однако дополнительная кладка позволит придать дымоходу дополнительную устойчивость и практически полностью исключить сезонные колебания конструкции, что приведет к меньшим потерям и уменьшению затрат на обслуживание и сезонное восстановление.

Заключительный этап строительства фундамента

Заключительный этап строительства фундамента

Познакомиться со всеми этапами строительства фундамента для дымохода и печи можно на видео.

Строительство фундамента под дымоход требуется исключительно при установке массивной конструкции. Чаще всего фундамент обустраивается сразу и для печи (камина), и для дымохода. Точного расчета конструкция не требует. Вполне достаточно знать общие правила монтажа фундаментов.

Читайте также: