Что можно отнести к жестким фундаментам

Обновлено: 14.05.2024

Ф.12.3. В чем отличие гибких фундаментов от жестких фундаментов?

Условно здания и сооружения подразделяются на абсолютно жесткие, конечной жесткости и гибкие. Гибкие сооружения, передавая нагрузку на основания, следуют за осадкой, которая может быть различной в разных точках основания. При таком деформировании в них не возникает практически никаких дополнительных усилий и разрушений. Как правило, конструкции таких зданий имеют статически определимую схему. Подавляющее число зданий обладает конечной жесткостью. Для них приходится регламентировать не только величины осадок, но и их неравномерность, потому что неравномерность осадок вызывает появление дополнительных усилий в конструкциях, которые могут нарушить их прочность. Абсолютно жесткие сооружения при деформациях здания не изгибаются, а дают осадку как единый массив, и плоская подошва сооружения после деформации основания остается плоской, но возможны лишь вертикальные оседания и наклон сооружений.

Ф.12.2. Каким образом можно учесть совместную работу сооружения и его основания?

Совместную работу основания и сооружения, обладающего конечной жесткостью, возможно учесть, используя схему с упругооседающими опорами. В "абсолютно" гибких сооружениях нагрузки, передающиеся основанию, считаются неизменными при деформировании основания, и совместная работа основания и сооружения оценивается лишь предельными значениями средних осадок и их неравномерности (относительной разности). Для абсолютно жестких сооружений регламентируются их осадка и крен.

При расчете сооружений конечной жесткости учитывается не только жесткость фундамента, но и всего сооружения в целом.

Ф.12.3. В чем отличие гибких фундаментов от жестких фундаментов?

К категории жестких относятся фундаменты, которые вследствие своих конструктивных особенностей практически не изгибаются под действием внешних нагрузок. Принимается, что реактивное давление по подошве жестких фундаментов определяется без учета их изгиба и изменяется по линейному закону (рис.Ф.12.3,а) как по длине, так и ширине фундамента.

Гибкие фундаменты обладают способностью изгибаться в одном или обоих направлениях подошвы. Реактивные давления по подошве определяются исходя из совместной работы фундамента и основания и зависят от прогиба фундамента (рис.Ф.12.3,б).

Что можно отнести к жестким фундаментам

По характеру работы различают ленточные фундаменты жесткие и гибкие.

Жесткие фундаменты

Жесткие фундаменты изготовляются из бута, бутобетона или бетона, т. е. материалов, хорошо сопротивляющихся сжатию, но - плохо — растяжению и скалыванию (изгибу). Кладка бутового фундамента ведется на цементном или сложном растворе. В малоэтажном строительстве (до двух-трех этажей) фундаменты при сухих грунтах могут быть сложены на известковом растворе

устройство ленточного фундамента

Рис.1. Жесткие ленточные фундаменты: а — прямоугольного поперечного сечения б и в ступенчатого поперечного сечения

Ширина подошвы ленточных фундаментов принимается по расчету. Она зависит от величины нагрузки, действующей на подошву фундамента, и расчетного сопротивления грунта основания. Поперечное сечение фундамента при прочных грунтах и небольших нагрузках на подошву имеет прямоугольную форму.

При большем числе этажей нагрузка от веса здания возрастает, что требует соответствующего уширения подошвы, так как ленточный фундамент распределяет нагрузку от веса здания на относительно малопрочные (по сравнению с прочностью каменной кладки стен) грунты основания. В этом случае поперечное сечение фундамента устраивается с уступами консолями, работающими на изгиб под влиянием реактивного сопротивления грунтов основания и распределяющими нагрузку на необходимую ширину основания. Уширение фундамента производится под определенным углом а углом распространения давления в материале.

как сделать ленточный фундамент

Поперечное сечение фундамента в этом случае принимает форму трапеции. Как показала практика, в растянутой зоне кладки жестких фундаментов не возникает трещин от изгиба, если, отношение высоты уступа к ширине не менее указанных в таблице.
Высота трапеции и число ступеней зависит от расчетной ширины подошвы ленточного фундамента может быть определена по формуле: h=b-b1/2 tg a

Размеры обрезов (ступеней) в бутовой кладке обычно принимаются 15—25 см при соответствующей высоте ступени.
В зданиях до двух этажей нижняя часть каменной кладки фундамента из соображений экономии может быть заменена подушкой из гравия, щебня, крупного песка. При этом фундамент должен иметь высоту не менее 0,5 м, необходимую для равномерного распределения давления по его подошве.

Гибкие фундаменты

Гибкие фундаменты применяются при малой прочности грунтов основания или при больших нагрузках на подошву. Изготовляются они из железобетона, способного работать на растяжение и скалывание (изгиб). Форму придают им трапецоидальную. Грани в них могут быть наклонены к вертикали под любым углом, так как растягивающие и скалывающие усилия, возникающие при изгибе, воспринимаются арматурой, укладываемой в растянутой зоне. Высота железобетонной трапеции принимается по расчету. Трапецоидальная форма гибкого фундамента может быть заменена ступенчатой.

устройство ленточного фундамента

Сравнивая между собой жесткие и гибкие фундаменты, можно сделать следующие практические выводы. Жесткие фундаменты следует рекомендовать в тех случаях, когда грунты основания относительно прочные, т. е. допускают давление 2—3 кг/см2, нагрузки на подошву относительно невелики — здания высотой до 5—7 этажей, а также когда число уступов (ступеней) не превышает двух - трех.

При слабых же грунтах и больших нагрузках на подошву жесткие фундаменты вследствие малого угла распространения давления в материалах, из которых они изготовляются, получаются большой ширины, глубокими, имеют большой вес и становятся экономически невыгодными.

Поэтому при слабых грунтах, допускающих давление 1,2—1,5 кг 1см2, или при больших нагрузках на подошву рекомендуются гибкие фундаменты, так как они способны работать на изгиб и распределять нагрузку от веса здания на необходимую (расчетную) ширину основания. При этом их не нужно заглублять более глубины промерзания.

правильный ленточный фундамент

Вид фундаментов при разных грунтах:
а — жесткий фундамент при слабых грунтах; б — гибкий фундамент при слабых грунтах; в — жесткий фундамент при прочных грунтах

Прочность кладки жестких фундаментов в основном зависит от марки камня и раствора. Прочность бутовой кладки зависит в значительной степени от формы камня (рваный или постелистый бут) и тщательности его укладки. Бутовую кладку фундаментов и стен подвалов следует вести под лопатку с околкой выступающих частей кам Камни при этом нужно тщательно подбирать, а пустоты плотно заполнен: щебенкой и раствором

монолитный ленточный фундамент

Наружные стены подвальных помещений из бута, служащие одновременно фундаментами и находящиеся под действием больших нагрузок, должны быть сложены из постелистого нерваного камня. Стены подвальных помещений, предназначенных, например, для котельных со сложным оборудованием, кухонь, столовых, облицовываются в 1/2 кирпича с перевязкой в 1 кирпич через 4—5 рядов. Дверные и оконные проемы в бутовых стенах подвалов также облицовываются кирпичом.

В ленточных фундаментах и стенах подвалов следует предусматривать отверстия для пропуска труб сантехники, причем размеры отверстий по высоте должны быть такими, чтобы элементы сантехники в процессе осадки здания не были повреждены.

Переход заложения ленточных фундаментов от одной глубины к другой производится уступами. При плотных грунтах отношение высоты уступа к его длине должно быть не более 1 : 1 и высотой не более 1,0 м. При неплотных грунтах отношение высоты уступа к его длине должно быть 1 : 2 и высотой не более 0,5 м.

Ленточные и плитные фундаменты для многоэтажных зданий

В многоэтажных зданиях при большой нагрузке на колонны или при слабых грунтах фундаменты под отдельными опорами могут быть настолько большими, что становится целесообразным объединить их, превратив в систему неразрезных балок.
Фундаментные балки обычно выполняются из железобетона и могут быть в виде отдельных лент или перекрестных систем.

Ленты рассчитываются на отпор грунта как балки, лежащие на упругом основании. В первом приближении площадь подошвы ленточного фундамента принимается так, чтобы среднее давление на основание не превышало допускаемого. При этом стремятся избежать местных перенапряжений под колоннами и у концов лент путем устройства местных расширений и консолей.

Если вес здания или сооружения (например, в высоких зданиях) на единицу площади основания приближается к допускаемому давлению на грунт, то под зданием делают сплошную ребристую или безбалочную плиту, рассчитываемую на реактивное давление грунта.

Типы фундаментов и области их применения

Для того чтобы дом покоился на надежном фундаменте, а не трещал по швам и рассыпался, необходимо основательно подойти, в первую очередь, к выбору типа фундамента. Для этого нужно понимать какие бывают фундаменты и в каких случаях каждый из них следует применять.



Фото: характерные наклонные трещины от неравномерной осадки фундамента

Как это бывает в большинстве случаев, у каждого типа фундамента есть и преимущества, и недостатки. Не углубляясь в тонкости, попробуем выяснить какой фундамент подходит для Ваших условий больше.

2. Типы грунтовых оснований для фундаментов

Естественное основание – это грунты природного сложения, не подвергавшиеся никакому вмешательству со стороны человека и образовавшиеся естественным путем.

Искусственные основания – это слои грунта, появившиеся в результате целенаправленных действий человека. Из искусственных оснований часто применяются – планомерно возведенные насыпи, песчаные и грунтовые подушки, слои грунта, уплотненные тяжелыми трамбовками, искусственно закрепленные грунты.

Проектирование искусственных оснований необходимо в случае если никакие типы фундаментов в данных конкретных грунтовых условиях не могут обеспечить требуемую прочность, жесткость и устойчивость здания/сооружения, или это экономически невыгодно.

3. Основные типы фундаментов

Основных типов фундаментов всего 4:

1. Столбчатые (отдельные) фундаменты – отдельные, не связанные между собой опоры под стены или колонны здания, имеющие сравнительно небольшую глубину заложения.

2. Ленточные фундаменты – сплошные линейные фундаменты под несущие стены здания.

3. Плитный фундамент – сплошная фундаментная плита, как правило из монолитного железобетона, сразу под все сооружение или под секцию сооружения.


Свайные ростверки

Свая – стальной, железобетонный (а иногда и деревянный) стержень, погруженный в грунт сквозь слабые слои для передачи нагрузки на более прочные грунты основания, как правило расположенные на глубине более 4 м.

4. Свайные фундаменты – ленточные, столбчатые или плитные фундаменты, опертые на сваи.

[В случае опирания на сваи, конструкция, объединяющая несколько свай, называется свайным ростверком (столбчатым, линейным или плитным)]

4. Какие грунты под фундаментом?

Важнейшим этапом проектирования фундамента являются инженерно-геологические изыскания. Правильнее изыскания выполнять еще до начала проектирования.

[Инженерно-геологические изыскания – комплекс работ по изучению грунтов и грунтовых вод в основании будущего сооружения. Включают в себя как минимум бурение разведочных скважин с отбором образцов грунта и грунтовой воды и последующим испытанием их в грунтовой лаборатории]

Дело в том, что фундамент, как отмечалось выше – важнейшая часть любого сооружения, и правильность выбора параметров фундамента напрямую зависит от правильности и полноты сведений о грунтах в его основании.


Пример инженерно-геологического разреза

Даже лучшие инженеры-проектировщики в области фундаментов не смогут правильно запроектировать конструкцию, если у них неверные или неполные сведения о грунтах в основании. Проект будет заведомо ошибочным, или фундамент окажется избыточно дорогим и трудоемким.

[Недостаток сведений о грунтах при проектировании фундамента можно перекрыть только большими запасами по прочности и, как следствие, перерасходом финансов, но и это не дает гарантии надежности]

Если вы не знаете какие грунты залегают под вашим будущим фундаментом то попробуйте поспрашивать соседей которые уже начали или даже окончили строительство на своих участках. Если и у соседей не окажется информации о инженерно-геологических изысканиях то рекомендую прочитать статью определяем тип и характеристики грунта самостоятельно без лаборатории.

5. Столбчатые (отдельные) фундаменты – все за и против

Отдельно стоящие столбчатые фундаменты применяются не только в малоэтажном строительстве, но и при строительстве производственных, торговых, административных и жилых зданий.


Вообще в литературе времен СССР отдельный столбчатый фундамент на естественном основании под колонны был основным решением для каркасных зданий по технико-экономическим показателям (самый дешевый вариант). То есть его применение рассматривалось ранее всех остальных вариантов.

Когда столбчатые отдельные фундаменты следует применять?

Бывают случаи, когда столбчатые фундаменты – единственное рациональное решение даже при строительстве крупного объекта. Как правило эта ситуация происходит когда характеристики грунтов ухудшаются по мере увеличения глубины их залегания.

Например, при разработке проекта для двухэтажного торгового центра в его основании в верхней части геологического разреза оказались достаточно прочные грунты , а нижние слои становились тем слабее, чем глубже они залегают вплоть до глубины 10-12 м. Применение свай в таких условиях только ухудшает положение, а ленточные и плитные фундаменты не выгодны из-за большого шага колонн (9х9 м).

Преимущества столбчатого фундамента:

  • Самая невысокая стоимость из всех типов;
  • Простота возведения.

Недостатки:

При малоэтажном строительстве столбчатые фундаменты можно порекомендовать только для деревянных дачных построек, или если в основании действительно прочные грунты (гравий, средний или крупный песок, скала).

Для домов из жестких каменных материалов (кирпич, газобетон) такие фундаменты не подходят из-за большого риска неравномерных осадок, что для тяжелых хрупких стен недопустимо.

Кроме того, применение столбчатых фундаментов вызывает необходимость в создании какого-либо жесткого цоколя здания (фундаментные балки, нижняя деревянная обвязка или др.) на который будут опираться стены здания, а если здание с подвалом необходимо отдельно возводить стены подвала.

6. Ленточные фундаменты – когда они нужны?

Ленточный фундамент выполняется в виде непрерывного замкнутого в плане контура (ленты) под всеми наружными и внутренними несущими стенами здания. А если есть несущие стены, значит здание не каркасное. Иногда ленточный фундамент применяют и для каркасных зданий, но как правило при небольшом шаге колонн – до 6х6 м и относительно слабых грунтах.

Ленты могут быть малозаглубленные:


Малозаглубленный ленточный фундамент


Заглубленный ленточный фундамент

Ленточный фундамент в общем случае состоит из стеновой и плитной (подошвы) частей . Стены и подошва ленточного фундамента могут выполняться сборными – из блоков ФБС, или монолитными – из армированного железобетона, залитого на прямо на месте.

[Для сборного ленточного фундамента из блоков ФБС и др. штучных материалов очень желательно выполнять сплошные армированные монолитные пояса по верху блоков, и монолитную ленту в основании стен из блоков. Тогда такой фундамент будет намного лучше сопротивляться неравномерным деформациям и перераспределять нагрузки на основание]

Преимущества ленточного фундамента перед столбчатым:

  • Большая суммарная площадь подошвы. Это позволяет передавать распределенную нагрузку на более слабые грунтовые основания;
  • Неравномерные нагрузки от здания перераспределяются за счет большой жесткости и прочности конструкции фундамента. Это снижает среднюю осадку фундамента и неравномерные деформации;
  • Сразу образуются стены подвала и опоры для вышерасположенных стен.

Недостатки:

  • Более высокая стоимость и трудоемкость чем у столбчатого варианта;
  • При неравномерных нагрузках в лентах возникают большие усилия, для восприятия которых требуются серьезное армирование;
  • Нет возможности передавать большие точечные нагрузки на основание, т.к. ширина подошвы ленты ограничена.

Если Вы сэкономили на армировании и монолитном поясе и ленточный фундамент не выдержал нагрузок, в нем появились трещины, то он по своей сути превращается в столбчатый – отдельные фрагменты работаю независимо друг от друга, перераспределения усилий между фрагментами не происходит, увеличиваются неравномерные деформации.

В целом для малоэтажного строительства это наиболее оптимальный вариант если грунты недалеко от поверхности достаточно прочные (на глубине 1,5-3 м).

7. Плитные фундаменты – область применения, преимущества, недостатки

Плитные фундаменты применяют при специальном технико-экономическом обосновании. Они распределяют нагрузки от надземной части здания на очень большую площадь, но при этом в самой плите возникают огромные напряжения. Для того чтобы воспринять эти нагрузки без разрушения и излишних деформаций, необходимо выполнять плиту очень мощной с надежным армированием (толщина плиты многоэтажных домов достигает 1,5 м и более). Да и вообще перекрыть всю площадь под зданием плитой толщиной 0,5 м – очень накладно.


Преимущества плитного фундамента:

  • Применим на слабых основаниях, самый надежный вариант на естественном основании при правильном проектировании;
  • Снижает осадки и неравномерные деформации основания даже при слабых грунтах;
  • Для зданий с подвалом сразу служит несущей плитой пола.

Недостатки:

  • В конструкции возникают очень большие усилия, особенно от точечных нагрузок, восприятие которых требует больших затрат на бетон и арматуру;
  • Еще более высокая стоимость и трудоемкость;

Применяют плитный фундамент, когда в основании сооружения слабые грунты (площади подошвы столбчатых и ленточных фундаментов недостаточно), а применение свай не дает ожидаемого увеличения несущей способности.

8. Свайные фундаменты – когда без них никак?

Свайные фундаменты выполняются в виде:

  • отдельных столбчатых свайных ростверков под колонны каркаса;
  • линейных ростверков, в том числе и непрерывных замкнутых ленточных фундаментов на свайном основании;
  • плитных ростверков – монолитные (редко сборные) фундаментные плиты, опертые на сваи;
  • иногда применяют одиночные сваи под колонны.

Нагрузка от ростверка передается на сваи, а те в свою очередь передают ее на грунтовое основание своими боковыми поверхностями и нижними концами (лопастями, если сваи винтовые). Обычно на нижний конец сваи приходится основная нагрузка, а боковые поверхности передают меньшую часть усилия.

Сваи по типу погружения в основном применяют: забивные, буронабивные и винтовые. На типах свай останавливаться подробно не будем, на этот счет см. соответствующие статьи. По материалу сваи бывают железобетонные , стальные, иногда деревянные.

Преимущества свайного фундамента:

  • Позволяет пройти слабые грунты и передать нагрузки на заглубленные плотные геологические слои;
  • Позволяет воспринимать не только сжимающие нагрузки, но и выдергивающие и горизонтальные усилия, хорошо сопротивляется морозному пучению;
  • При правильном проектировании очень высокая надежность фундамента.

Недостатки:

  • Самая высокая стоимость и трудоемкость;
  • Необходимость возведения свайного ростверка;
  • Необходимость применения спец. техники для погружения свай или бурения скважин;
  • Стальные сваи подвержены коррозии в агрессивных грунтовых условиях, а антикоррозионные покрытия часто повреждаются при погружении свай.

[Сваи, вопреки бытовому мнению, не дают никакой гарантии от осадок и перекосов фундаментов, а в некоторых грунтовых условиях могут быть вообще неприменимы (например, при текучих суглинках и глинах под нижними концами свай)]

В целом сваи применяют, когда необходимо передать нагрузки на заглубленные плотные грунты минуя верхние слабые слои, или, когда при сравнении вариантов, фундаменты на естественном основании оказываются дороже чем свайные.

Исключением являются свайные фундаменты из винтовых свай под деревянные малоэтажные дома и постройки – они выполняются без ростверка, под обкладной брус. Имеют сравнительно небольшую стоимость и высокую надежность, поэтому могут быть выгоднее других вариантов и рекомендованы к применению при определенных грунтовых условиях.


Сваи из стальных труб, заполненных бетоном, объединенные железобетонным ростверком

Минимальная глубина погружения сваи, применяемой в строительстве как правило 4,0 м. Если глубина будет меньше – по сути получится столбчатый фундамент, погруженный в грунт без откопки котлована.

9. Заключение

Краткое описание фундаментов в этой статье может помочь Вам определиться с выбором и, если он сделан, то следует переходить к более глубокому изучению выбранного типа фундамента.

Незаглубленные и малозаглубленные фундаменты

Хотя нормы проектирования фундаментов гласят что глубина заложения фундамента в пучинистых грунтах должна быть больше глубины промерзания такое решение устраняет только лобовые силы морозного пучения, но не устраняет касательные силы пучения на боковой поверхности, которые так же очень велики и нагрузка от легкого малоэтажного здания не может им противостоять. А в северных регионах РФ нормативная глубина промерзания меняется в пределах от 1,5 до 3,0 м. и более. В такой ситуации следует рассмотреть вариант поверхностного фундамента.

Малозаглубленный или поверхностный фундамент является одним из наиболее простых и экономичных вариантов для легких зданий и сооружений – это минимальные затраты на материалы и почти полное отсутствие земляных работ. Но при своей кажущейся простоте этот тип фундаментов имеет особенности, которые необходимо учитывать, как на этапе проектирования, так и на этапе строительства.

К малозаглубленным фундаментам относят все типы фундаментов если глубина заложения их подошвы не превышает нормативной глубины промерзания пучинистого грунта основания, то есть фундаменты полностью расположены в зоне сезонного промерзания/оттаивания грунтов

В данной статье рассматриваются только поверхностные и практически незаглубленные фундаменты (глубина не более 20 см), т.к. если фундаменты заглублены, но менее глубины промерзания то они будут накапливать деформации пучения год за годом не полностью возвращаясь в исходное положение после оттаивания грунта, и их применение абсолютно не обоснованно. Если же фундамент все таки имеет некоторое заглубление то необходимо выполнять засыпку пазух котлована достаточной ширины непучинистым материалом (песок средний и крупный, ПГС. Ширина пазухи должна быть не менее глубины заложения фундамента) и предусматривать мероприятия, обеспечивающие проскальзывание фундамента относительно грунта по боковой поверхности чтобы обеспечить свободное оседание фундамента после подъема морозным пучением.


Заглубление фундамента без выполнения специальных мероприятий не правильное решение

Поверхностные и малозаглубленные фундаменты имеет смысл использовать при строительстве малоэтажных сооружений, дач, гаражей, хозяйственных построек, бань и т.д. Их можно использовать при возведении срубов из бревен или стен из ячеистых бетонов, при возведении каркасно-щитовых домов. Естественно применение ограничено зданиями без подвала.

Не рекомендуется применение малозаглубленных и поверхностных фундаментов под кирпичные дома т.к. стены из кирпича и других каменных материалов очень чувствительны к деформациям фундамента и при малейшем смещении дают трещины (армированная кладка более устойчива, но все равно очень хрупка). Так же не следует применять их для двух- и более этажных построек из-за большой нагрузки на основание и фундамент, а несущая способность их часто сильно ограничена.


Трещина в кладке от смещения фундамента

Согласно примечанию к п. 6.8.10 СП 22.13330.2016 Малозаглубленные фундаменты допускается применять для сооружения пониженного уровня ответственности и малоэтажных зданий при нормативной глубине промерзания не более 1,7 м. А, например, в Руководстве п.4.22 говорится что глубина промерзания под подошвой малозаглубленного фундамента должна быть не более 1,0 метра, а под подошвой заглубленного не более 0,5 м.

Согласно п. 8.6 СП 22.13330.2016 при проектировании малозаглубленных фундаментов на пучинистых грунтах обязательно выполнение проверочных расчетов на деформации пучения (на подъем фундаментов).

2. Типы поверхностных фундаментов

Малозаглубленные и поверхностные фундаменты могут быть следующих типов:

  • Ленточные;
  • Столбчатые (к ним так же относятся и «сваи» малой глубины погружения (менее глубины промерзания грунта). На самом деле это не сваи, а отдельные столбчатые фундаменты т.к. настоящая свая по определению имеет глубину погружения не менее 4,0 метра);
  • Плитные;

Любой из этих типов фундаментов будет относиться к малозаглубленным если его подошва залегает выше нормативной глубины промерзания пучинистого грунта основания. Если же грунт основания не пучинистый то данная классификация не имеет особого значения.

Для определения характеристик грунтов основания следует обратиться в специализированные изыскательские организации или на крайний случай воспользоваться указаниями этой статьи.

Максимальная несущая способность, естественно, будет присуща плитному варианту из-за большой площади опирания на грунт, как и максимальная стоимость и трудоемкость.


Поверхностный плитный фундамент

Достаточной несущей способностью обладают ленточные фундаменты (при правильном проектировании). Имеются ввиду монолитные непрерывные ленты из армированного железобетона, или ленты из крупных блоков с монолитным армированным поясом по верху и монолитной подошвенной плитой. Ленты из блоков ФБС без дополнительных мероприятий не обеспечивают необходимой прочности и жесткости.


Малозаглубленный ленточный фундамент

Столбчатые малозаглубленные фундаменты на пучинистых грунтах следует применять только в сочетании с монолитной сплошной рамой (как правило железобетонной системой перекрестных балок), объединяющей их в единое целое, или же под совсем неответственные сооружения без общей жесткой рамы (сараи, кладовки, веранды, беседки и др. сооружения III уровня ответственности). В целом их применение очень ограничено и не рекомендуется под более-менее ответственные сооружения.


Малозаглубленные столбчатые фундаменты

Подробно все типы фундаментов и их особенности разобраны в этой статье.

3. Особенности и возможные проблемы малозаглубленных фундаментов

  1. Основная особенность малозаглубленных и поверхностных фундаментов заключается в том, что на них действуют лобовые силы морозного пучения. А учитывая, что такие фундаменты как правило используются под легкие сооружения нагрузка на грунт под ними мала и никак не может противостоять огромным силам поднятия вспучивающегося грунта, можно смело утверждать что при промерзании грунта фундамент будет двигаться, смещаться по вертикали – то есть «гулять». Этот негативный эффект можно снизить за счет утепления грунта, но полностью устранить очень сложно.

Но огромным плюсом поверхностных и практически незаглубленных фундаментов является то что они после оттаивания грунтов возвращаются в исходное положение, не накапливая деформаций пучения.

  1. Следующая особенность проистекает из первой – т.к. фундамент, а вместе с ним и здание смещаются по вертикали от морозного пучения то примыкающие к нему снаружи лестницы, крыльца, пристройки должны быть приспособлены к таким смещениям.


  1. В летний период (то есть в не замерзшем состоянии) слои грунта, близкие к поверхности, имеют намного более низкую несущую способность чем залегающие на глубине (это явление объясняется в статье в подразделе «4. Зависимость глубины заложения фундамента от прочности грунтов основания и нагрузки на фундамент»), поэтому следует тщательно проверять расчетами несущую способность основания и, при необходимости, увеличивать его площадь, глубину заложения или другие мероприятия.
  2. Как правило фундамент имеет достаточно большую высоту над уровнем планировки грунта. Связано это с тем что ему необходимо придать достаточно большую жесткость и прочность, для этого нужна

4. Поведение малозаглубленных фундаментов при воздействии морозного пучения

Практически всегда промерзающий грунт поднимается неравномерно (причины описаны в статье физика процесса пучения). Неравномерное пучение воздействует на малозаглубленный фундамент вызывая:

  1. Если фундамент сплошной и достаточно прочный для восприятия нагрузок от здания после неравномерного подъема промерзающего грунта, то он поднимается и испытывает крены, но остается практически неизменным по форме, т.е. верхняя плоскость фундамента остается плоской, хотя и наклоняется или смещается по вертикали (конечно фактически поверхность ограниченно изгибается в зависимости от жесткости фундамента). Весной, после полного оттаивания грунта фундамент вернется в исходное положение восстановив свою изначальную форму.
  2. Если прочности фундамента недостаточно, то фундамент разрушается – появляются широкие трещины и сколы бетона. После оттаивания грунта форма фундамента не будет восстановлена полностью.


5. Что следует учитывать при проектировании и строительстве малозаглубленных фундаментов

Для начала следует изучить документы:

Учтите при проектировании следующие основные моменты:

  1. Чтобы перемещения фундамента от морозного пучения не вызывали повреждений надземной части здания (трещины в стенах, лопнувшие стекла) и вообще не вызывали никаких проблем в дальнейшем (заклинившие двери, перекошенные крыльца и др.) фундамент должен быть сплошным, непрерывным под все здание, а лучше и под крыльца, и иметь достаточную жесткость и прочность чтобы сохранить свою первоначальную форму и не сломаться при неравномерном поднятии промерзающего грунта. Для обеспечения необходимой прочности и жесткости необходимо выполнять расчеты фундамента и армирования с учетом неравномерного смещения основания. Расчеты лучше выполнять на разные варианты неравномерного смещения основания в конечно-элементной программе (например SCAD или др.), вручную расчёты выполнять будет значительно сложнее (особенно для плитных и сложных по форме ленточных фундаментов).


Пример результата расчетов армирования монолитной ленты в программе SCAD
  1. Следует учитывать наличие почвенно-растительного слоя – если фундамент опереть на органический плодородный грунт, то в результате разложения органики гарантированы большие осадки фундамента, растянутые во времени. Кроме того, почвенно-растительный слой обладает очень низкой несущей способностью и не может служить несущим основанием. Данный слабый слой необходимо полностью заменять, как правило, на песчаную подушку.
  2. Следует учитывать низкую несущую способность верхних слоев грунта. Слои грунта, близкие к поверхности, имеют намного более низкую несущую способность чем залегающие на глубине, поэтому следует тщательно проверять расчетами несущую способность основания и, при необходимости, увеличивать его площадь, глубину заложения или другие мероприятия.
  3. Крыльца, наружные лестницы и другие части здания, опертые на отдельные фундаменты, должны иметь подвижные крепления к основному сооружению, позволяющие взаимные перемещения до 10 см и более (зависит от степени пучинистости грунта и глубины промерзания) или вообще быть независимыми от основного здания.
  4. Следует предусмотреть мероприятия для снижения воздействия морозного пучения на фундаменты. Например утепление отмостки, боковых поверхностей фундамента, грунта под зданием (для отапливаемых зданий применять минимальное утепление чтобы тепло могло частично проникать в грунт). Это позволит уменьшить глубину промерзания грунта под подошвой фундамента и вблизи него, особенно эффективно для отапливаемых зданий.


Влияние утепление отмостки и фундамента на промерзание грунта

6. Снижение воздействия морозного пучения на поверхностные фундаменты

Для снижения воздействия пучения на поверхностные фундаменты применяют следующие мероприятия:

Дополнительно о мерах борьбы с морозным пучением см. эту статью.

7. Примеры конструктивных решений мелкозаглубленных фундаментов




8. Заключение

Поверхностные (малозаглубленные) фундаменты имеют свою достаточно узкую область применения. Основной их недостаток — это подверженность морозному пучению и смещениям по высоте в зимний период. Основным их достоинством помимо простоты и низкой стоимости является то что о наличии деформаций пучения известно заранее и эти деформации точно будут обратимыми, а не накапливаться год от года.

При проектировании и строительстве таких фундаментов следует учитывать многие их особенности, выполнять детальные расчеты, продумывать множество деталей, связанных с подвижностью фундамента, а значит и всего здания/сооружения.

9. Связанные статьи

Один комментарий к публикации “Незаглубленные и малозаглубленные фундаменты”

Одним из путей решения проблемы строительства на пучинистых грунтах малоэтажных зданий является использование мелкозаглубленных фундаментов. Такие фундаменты закладываются на глубине 0,2-0,5 м от поверхности грунта или непосредственно на поверхности (незаглубленные фундаменты). К таким образом, на мелкозаглубленные фундаменты действует незначительные касательные силы пучения, а при незаглубленных фундаментах они равны нулю.

Ф.12.1. Как можно подразделить сооружения по жесткости?

Условно здания и сооружения подразделяются на абсолютно жесткие, конечной жесткости и гибкие. Гибкие сооружения, передавая нагрузку на основания, следуют за осадкой, которая может быть различной в разных точках основания. При таком деформировании в них не возникает практически никаких дополнительных усилий и разрушений. Как правило, конструкции таких зданий имеют статически определимую схему. Подавляющее число зданий обладает конечной жесткостью. Для них приходится регламентировать не только величины осадок, но и их неравномерность, потому что неравномерность осадок вызывает появление дополнительных усилий в конструкциях, которые могут нарушить их прочность. Абсолютно жесткие сооружения при деформациях здания не изгибаются, а дают осадку как единый массив, и плоская подошва сооружения после деформации основания остается плоской, но возможны лишь вертикальные оседания и наклон сооружений.

Ф.12.2. Каким образом можно учесть совместную работу сооружения и его основания?

Совместную работу основания и сооружения, обладающего конечной жесткостью, возможно учесть, используя схему с упругооседающими опорами. В "абсолютно" гибких сооружениях нагрузки, передающиеся основанию, считаются неизменными при деформировании основания, и совместная работа основания и сооружения оценивается лишь предельными значениями средних осадок и их неравномерности (относительной разности). Для абсолютно жестких сооружений регламентируются их осадка и крен.

При расчете сооружений конечной жесткости учитывается не только жесткость фундамента, но и всего сооружения в целом.

Ф.12.3. В чем отличие гибких фундаментов от жестких фундаментов?

К категории жестких относятся фундаменты, которые вследствие своих конструктивных особенностей практически не изгибаются под действием внешних нагрузок. Принимается, что реактивное давление по подошве жестких фундаментов определяется без учета их изгиба и изменяется по линейному закону (рис.Ф.12.3,а) как по длине, так и ширине фундамента.

Гибкие фундаменты обладают способностью изгибаться в одном или обоих направлениях подошвы. Реактивные давления по подошве определяются исходя из совместной работы фундамента и основания и зависят от прогиба фундамента (рис.Ф.12.3,б).


Рис.Ф.12.3. Распределение реактивных давлений по подошве фундаментов: а - жесткие фундаменты; б - гибкие фундаменты

Ф.12.4. Какие типы фундаментов относятся к категории гибких?

К гибким могут быть отнесены фундаменты, у которых отношение высоты к их длине слставляет менее 1/3. Такими фундаментами являются:

 ленточные фундаменты под колонны гражданских и промышленных зданий (см.рис.Ф.9.12,е);

 сплошные железобетонные плиты высотных зданий, элеваторов, градирен, атомных и тепловых электростанций (рис.Ф.9.12,о,р);

 фундаменты из перекрестных лент (рис.Ф.9.12,ж);

 коробчатые фундаменты (рис.Ф.9.12,н);

 кольцевые фундаменты дымовых труб (рис.Ф.9.12,п).

Ф.12.5. Как определяются предварительные размеры гибких фундаментов?

Предварительные размеры фундаментов в плане и по высоте находят как для жесткой фундаментной балки шириной b= 1 м и длиной 2lисходя из линейного распределения реактивных давлений по подошве фундамента (рис.Ф.12.5).



где Nсумма всех вертикальных нагрузок на фундамент;Aплощадь подошвы фундамента;Mмомент всех сил относительно центра тяжести подошвы фундамента.

Определив реактивное давление, находим изгибающий момент в каждом сечении фундамента.

По величине найденного максимального момента определяют необходимый по условию прочности момент сопротивления фундамента, а по нему требуемые сечение и жесткостьEI.

Ф.12.3. В чем отличие гибких фундаментов от жестких фундаментов?

К категории жестких относятся фундаменты, которые вследствие своих конструктивных особенностей практически не изгибаются под действием внешних нагрузок. Принимается, что реактивное давление по подошве жестких фундаментов определяется без учета их изгиба и изменяется по линейному закону (рис.Ф.12.3,а) как по длине, так и ширине фундамента.

Гибкие фундаменты обладают способностью изгибаться в одном или обоих направлениях подошвы. Реактивные давления по подошве определяются исходя из совместной работы фундамента и основания и зависят от прогиба фундамента (рис.Ф.12.3,б).


Рис.Ф.12.3. Распределение реактивных давлений по подошве фундаментов: а - жесткие фундаменты; б - гибкие фундаменты

Ф.12.4. Какие типы фундаментов относятся к категории гибких?

К гибким могут быть отнесены фундаменты, у которых отношение высоты к их длине слставляет менее 1/3. Такими фундаментами являются:

 ленточные фундаменты под колонны гражданских и промышленных зданий (см.рис.Ф.9.12,е);

 сплошные железобетонные плиты высотных зданий, элеваторов, градирен, атомных и тепловых электростанций (рис.Ф.9.12,о,р);

 фундаменты из перекрестных лент (рис.Ф.9.12,ж);

 коробчатые фундаменты (рис.Ф.9.12,н);

 кольцевые фундаменты дымовых труб (рис.Ф.9.12,п).

Ф.12.5. Как определяются предварительные размеры гибких фундаментов?

Предварительные размеры фундаментов в плане и по высоте находят как для жесткой фундаментной балки шириной b= 1 м и длиной 2lисходя из линейного распределения реактивных давлений по подошве фундамента (рис.Ф.12.5).



где Nсумма всех вертикальных нагрузок на фундамент;Aплощадь подошвы фундамента;Mмомент всех сил относительно центра тяжести подошвы фундамента.

Определив реактивное давление, находим изгибающий момент в каждом сечении фундамента.

По величине найденного максимального момента определяют необходимый по условию прочности момент сопротивления фундамента, а по нему требуемые сечение и жесткостьEI.

Ф.12.6. Какие теории применяются при расчете гибких фундаментов?

При расчете гибких фундаментов совместно с грунтовым основанием применяются две теории:

 теория местных упругих деформаций, основанная на гипотезе Винклера-Циммермана;

 теория общих упругих деформаций, основанная на гипотезе упругого полупространства.

Теория местных упругих деформаций основана на гипотезе прямой пропорциональности между давлением и местной осадкой:


где sупругая осадка грунта в месте приложения давления интенсивностьюpв рассматриваемой точке;ksкоэффициент упругости основания, именуемый "коэффициентом постели".

Из приведенного выражения следует, что осадка поверхности основания возникает только в месте приложения давления pи поэтому модель грунта можно представить в виде совокупности отдельно стоящих пружин (рис.Ф.12.6,а).

В действительности на реальном грунтовом основании понижение поверхности наблюдается и за пределами нагруженного участка (рис.Ф.12.6,б), образуя упругую лунку. Кроме того, коэффициент постели не учитывает размеров подошвы фундамента и не является постоянной величиной для данного грунта. Как показали исследования, данная гипотеза дает достаточно достоверные результаты для слабых грунтовых оснований.



Рис.Ф.12.6. Деформация поверхности грунта основания: а - по теории местных упругих деформаций; б - по теории общих упругих деформаций

Теория общих упругих деформаций основана на гипотезе упругого полупространства, согласно которой основание работает как сплошная однородная упругая среда, ограниченная сверху плоскостью и бесконечно простирающаяся вниз и в стороны. Деформационные свойства упругой среды характеризуются величиной модуля деформации, который не зависит от величины нагрузки под подошвой фундамента, в отличие от коэффициента постели. При нагружении такого упругого основания деформации имеют место не только в месте приложения нагрузки, но и за ее пределами (рис.Ф.12.6,б), что и наблюдается под реальными фундаментами.

Деформация упругого основания по теории общих упругих деформаций определяется с использованием решений теории упругости.

Читайте также: