Армирование плиты фундамента снип

Обновлено: 01.05.2024

Грамотное армирование монолитной ж/б плиты


Армирование монолитной плиты — это сложная и ответственная задача. Конструктивный элемент воспринимает серьезные изгибающие нагрузки, с которыми бетону не справится. По этой причине при заливке монтируют арматурные каркасы, которые усиливают плиту и не дают ей разрушаться под нагрузкой.

Как правильно армировать конструкцию? При выполнении задачи нужно соблюдать несколько правил. При строительстве частного дома обычно не разрабатывают подробный рабочий проект и не делают сложных расчетов. Из-за небольших нагрузок считаю, что достаточно соблюсти минимальные требования, которые представлены в нормативных документах. Также опытные строители могут заложить арматуру по примеру уже сделанных объектов.

Плита в здании может быть двух типов:

  • фундаментная;
  • перекрытия.

В общем случае армирование плиты перекрытия и фундаментной не имеет критических отличий. Но важно знать, что в первом случае потребуются стержни большего диаметра. Это вызвано тем, что под элементом фундамента есть упругое основание — земля, которое берет на себя часть нагрузок. А вот схема армирования плиты перекрытия не предполагает дополнительного усиления.

Армирование фундаментной плиты

Арматура в фундамент в этом случае укладывается неравномерно. Необходимо усилить конструкцию в местах наибольшего продавливания. Если толщина элемента не превышает 150 мм, то армирование для монолитной плиты фундамента выполняется одной сеткой. Такое бывает при строительстве небольших сооружений. Также тонкие плиты используются под крыльца.

Для жилого дома толщина фундамента обычно составляет 200—300 мм. Точное значение зависит от характеристик грунта и массы здания. В этом случае арматурные сетки укладываются в два слоя друг над другом. При монтаже каркасов необходимо соблюдать защитный слой бетона. Он позволяет предотвратить коррозию металла. При возведении фундаментов величина защитного слоя принимается равной 40 мм.

Диаметр армирования

Перед тем как вязать арматуру для фундамента, потребуется подобрать ее сечение. Рабочий стержни в плите располагаются перпендикулярно в обоих направлениях. Для соединения верхнего и нижнего ряда используют вертикальные хомуты. Общее сечение всех прутов в одном направлении должно составлять не менее 0,3% от площади сечения плиты в этом же направлении.

Пример армирования фундаментной плиты

Если сторона фундамента не превышает 3 м, то минимально допустимый диаметр рабочих прутов назначается равным 10 мм. Во всех остальных случаях он составляет 12 мм. Максимально допустимое сечение — 40 мм. На практике чаще всего используют стержни от 12 до 16 мм.

Перед закупкой материалов рекомендуется посчитать массу необходимой арматуры для каждого диаметра. К полученному значению прибавляют примерно 5 % на неучтенные расходы.

Укладка металла по основной ширине

Схемы армирования монолитной плиты фундамента по основной ширине предполагают постоянные размеры ячейки. Шаг прутьев принимается одинаковым независимо от расположения в плите и направления. Обычно он находится в пределах 200—400 мм. Чем тяжелее здание, тем чаще армируют монолитную плиту. Для кирпичного дома рекомендуется назначать расстояние 200 мм, для деревянного или каркасного можно взять большее значение шага. При этом важно помнить, что расстояние между параллельными прутами не может превышать толщину фундамента более чем в полтора раза.

Обычно и для верхнего, и для нижнего армирования используют одинаковые элементы. Но если есть необходимость уложить пруты разного диаметра, то те, которые имеют большее сечение укладывают снизу. Такое армирование плиты фундамента позволяет усилить конструкцию в нижней части. Именно там возникают наибольшие изгибающие силы.

Основные армирующие элементы в фундаментной плите

С торцов вязка арматуры для фундамента предполагает укладку П-образных стержней. Они необходимы для того, чтобы связать в одну систему верхнюю и нижнюю часть армирования. Также они предотвращают разрушение конструкции из-за крутящих моментов.

Зоны продавливания

Связанный каркас должен учитывать места, в которых изгиб ощущается больше всего. В жилом доме зонами продавливания будут участки, в которых опираются стены. Укладка металла в этой области осуществляется с меньшим шагом. Это значит, что потребуется больше прутов.

Например, если для основной ширины фундамента использован шаг 200 мм, то для зон продавливания рекомендуется уменьшить это значение до 100 мм.
При необходимости каркас плиты можно связать с каркасом монолитной стены подвала. Для этого на этапе возведения фундамента предусматривают выпуски металлических стержней.

Армирование монолитной плиты перекрытия

Расчет арматуры для плиты перекрытия в частном строительстве выполняется редко. Это достаточно сложная процедура, выполнить которую сможет не каждый инженер. Чтобы заармировать плиту перекрытия, нужно учесть ее конструкцию. Она бывает следующих типов:

  • сплошное;
  • ребристое:
  • по профлисту.

Последний вариант рекомендуется при выполнении работ самостоятельно. В этом случае нет необходимости устанавливать опалубку. Кроме того, за счет использования металлического листа повышается несущая способность конструкции. Самая низкая вероятность ошибок достигается при изготовлении перекрытия по профлисту. Стоит отметить, что оно является одним из вариантов ребристой плиты.

Перекрытие с ребрами залить непрофессионалу может быть проблематично. Но такой вариант позволяет существенно сократить расход бетона. Конструкция в этом случае подразумевает наличие усиленных ребер и участков между ними.

Еще одни вариант — изготовит сплошную плиту перекрытия. В этом случае армирование и технология похожи на процесс изготовления плитного фундамента. Основное отличие — класс используемого бетона. Для монолитного перекрытия он не может быть ниже В25.

Стоит рассмотреть несколько вариантов армирования.

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Сплошная плита

Толщина перекрытия чаще всего принимается равной 200 мм. Армирующий каркас в этом случае включает в себя две сетки, расположенные друг над другом. Такие сетки нужно связать из стержней диаметром 10 мм. В середине пролета устанавливают дополнительные пруты усиливающей арматуры в нижней части. Длина такого элемента назначается 400 мм или более. Шаг дополнительных прутов принимают таким же, как шаг основных.

Армирование монолитной сплошной плиты перекрытия

В местах опирания нужно тоже предусмотреть дополнительное армирование. Но располагают его в верхней части. Также по торцам плиты нужны П-образные хомуты, такие же как в фундаментной плите.

Пример армирования плиты перекрытия

Расчет армирования плиты перекрытия по весу для каждого диаметра стоит выполнить до закупки материала. Это позволит избежать перерасхода средств. К полученной цифре прибавляют запас на неучтенные расходы, примерно 5%.

Вязка арматуры монолитной плиты

Для соединения элементов каркаса между собой пользуются двумя способами: сварка и связывание. Лучше вязать арматуру для монолитной плиты, поскольку сварка в условиях строительной площадки может привести к ослаблению конструкции.

Для выполнения работ используют отожженную проволоку, диаметром от 1 до 1,4 мм. Длину заготовок обычно принимают равной 20 см. Существует два типа инструмента для вязания каркасов:

Способы вязки
Вязка арматуры крючком

Второй вариант существенно ускорят процесс, снижает трудоемкость. Но для возведения дома своими руками большую популярность получил крючок. Для выполнения задачи рекомендуется заранее подготовить специальный шаблон по типу верстака. В качестве заготовки используют деревянную доску шириной от 30 до 50 мм и длинной до 3 м. На ней делают отверстия и углубления, которые соответствуют необходимому расположению арматурных прутов.

Армирование плиты фундамента снип

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА РОССИЙСКОЙ ФЕДЕРАЦИИ

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ

CONCRETE AND REINFORCED CONCRETE STRUCTURES

____________________________________________________________________
Текст Сравнения СНиП 52-01-2003 с СП 63.13330.2012 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2004-03-01

1 РАЗРАБОТАНЫ Государственным унитарным предприятием - Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона "ГУП НИИЖБ" Госстроя России

ВНЕСЕНЫ Управлением технормирования Госстроя России

ВВЕДЕНИЕ

Настоящий нормативный документ (СНиП) содержит основные положения, определяющие общие требования к бетонным и железобетонным конструкциям, включая требования к бетону, арматуре, расчетам, конструированию, изготовлению, возведению и эксплуатации конструкций.

Детальные указания по расчетам, конструированию, изготовлению и эксплуатации содержат соответствующие нормативные документы (СНиП, своды правил), разрабатываемые для отдельных видов железобетонных конструкций в развитие данного СНиП (приложение В).

До издания соответствующих сводов правил и других развивающих СНиП документов допускается для расчета и конструирования бетонных и железобетонных конструкций использовать действующие в настоящее время нормативные и рекомендательные документы.

В разработке настоящего документа принимали участие: А.И.Звездов, д-р техн. наук - руководитель темы; д-ра техн. наук: А.С.Залесов, Т.А.Мухамедиев, Е.А.Чистяков - ответственные исполнители.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящие нормы и правила распространяются на все типы бетонных и железобетонных конструкций, применяемых в промышленном, гражданском, транспортном, гидротехническом и других областях строительства, изготавливаемых из всех видов бетона и арматуры и подвергаемых любым видам воздействий.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящих нормах и правилах использованы ссылки на нормативные документы, приведенные в приложении А.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящих нормах и правилах использованы термины и определения в соответствии с приложением Б.

4 ОБЩИЕ ТРЕБОВАНИЯ К БЕТОННЫМ И ЖЕЛЕЗОБЕТОННЫМ КОНСТРУКЦИЯМ

4.1 Бетонные и железобетонные конструкции всех типов должны удовлетворять требованиям:

- по эксплуатационной пригодности;

- по долговечности, а также дополнительным требованиям, указанным в задании на проектирование.

4.2 Для удовлетворения требованиям по безопасности конструкции должны иметь такие начальные характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях в процессе строительства и эксплуатации зданий и сооружений были исключены разрушения любого характера или нарушения эксплуатационной пригодности, связанные с причинением вреда жизни или здоровью граждан, имуществу и окружающей среде.

4.3 Для удовлетворения требованиям по эксплуатационной пригодности конструкция должна иметь такие начальные характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях не происходило образование или чрезмерное раскрытие трещин, а также не возникали чрезмерные перемещения, колебания и другие повреждения, затрудняющие нормальную эксплуатацию (нарушение требований к внешнему виду конструкции, технологических требований по нормальной работе оборудования, механизмов, конструктивных требований по совместной работе элементов и других требований, установленных при проектировании).

В необходимых случаях конструкции должны иметь характеристики, обеспечивающие требования по теплоизоляции, звукоизоляции, биологической защите и др.

Требования по отсутствию трещин предъявляют к железобетонным конструкциям, у которых при полностью растянутом сечении должна быть обеспечена непроницаемость (находящихся под давлением жидкости или газов, испытывающих воздействие радиации и т.п.), к уникальным конструкциям, к которым предъявляют повышенные требования по долговечности, а также к конструкциям, эксплуатируемым при воздействии сильноагрессивной среды.

В остальных железобетонных конструкциях образование трещин допускается и к ним предъявляют требования по ограничению ширины раскрытия трещин.

4.4 Для удовлетворения требованиям долговечности конструкция должна иметь такие начальные характеристики, чтобы в течение установленного длительного времени она удовлетворяла бы требованиям по безопасности и эксплуатационной пригодности с учетом влияния на геометрические характеристики конструкций и механические характеристики материалов различных расчетных воздействий (длительное действие нагрузки, неблагоприятные климатические, технологические, температурные и влажностные воздействия, попеременное замораживание и оттаивание, агрессивные воздействия и др.).

4.5 Безопасность, эксплуатационную пригодность, долговечность бетонных и железобетонных конструкций и другие устанавливаемые заданием на проектирование требования должны быть обеспечены выполнением:

- требований к бетону и его составляющим;

- требований к арматуре;

- требований к расчетам конструкций;

- требований по эксплуатации.

Требования по нагрузкам и воздействиям, по пределу огнестойкости, по непроницаемости, по морозостойкости, по предельным показателям деформаций (прогибам, перемещениям, амплитуде колебаний), по расчетным значениям температуры наружного воздуха и относительной влажности окружающей среды, по защите строительных конструкций от воздействия агрессивных сред и др. устанавливаются соответствующими нормативными документами (СНиП 2.01.07, СНиП 2.06.04, СНиП II-7, СНиП 2.03.11, СНиП 21-01, СНиП 2.02.01, СНиП 2.05.03, СНиП 33-01, СНиП 2.06.06, СНиП 23-01, СНиП 32-04).

4.6 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают согласно ГОСТ 27751 полувероятностным методом расчета путем использования расчетных значений нагрузок и воздействий, расчетных характеристик бетона и арматуры (или конструкционной стали), определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик, с учетом уровня ответственности зданий и сооружений.

Нормативные значения нагрузок и воздействий, значения коэффициентов надежности по нагрузке, а также коэффициентов надежности по назначению конструкций устанавливают соответствующими нормативными документами для строительных конструкций.

Расчетные значения нагрузок и воздействий принимают в зависимости от вида расчетного предельного состояния и расчетной ситуации.

Уровень надежности расчетных значений характеристик материалов устанавливают в зависимости от расчетной ситуации и от опасности достижения соответствующего предельного состояния и регулируют значением коэффициентов надежности по бетону и арматуре (или конструкционной стали).

Расчет бетонных и железобетонных конструкций можно производить по заданному значению надежности на основе полного вероятностного расчета при наличии достаточных данных об изменчивости основных факторов, входящих в расчетные зависимости.

5 ТРЕБОВАНИЯ К БЕТОНУ И АРМАТУРЕ

5.1 Требования к бетону

5.1.1 При проектировании бетонных и железобетонных сооружений в соответствии с требованиями, предъявляемыми к конкретным конструкциям, должны быть установлены вид бетона, его нормируемые и контролируемые показатели качества (ГОСТ 25192, ГОСТ 4.212).

5.1.2 Для бетонных и железобетонных конструкций следует применять виды бетона, отвечающие функциональному назначению конструкций и требованиям, предъявляемым к ним, согласно действующим стандартам (ГОСТ 25192, ГОСТ 26633, ГОСТ 25820, ГОСТ 25485, ГОСТ 20910, ГОСТ 25214, ГОСТ 25246, ГОСТ Р 51263).

5.1.3 Основными нормируемыми и контролируемыми показателями качества бетона являются:

- класс по прочности на сжатие ;

- класс по прочности на осевое растяжение ;

- марка по морозостойкости ;

- марка по водонепроницаемости ;

- марка по средней плотности .

Класс бетона по прочности на сжатие соответствует значению кубиковой прочности бетона на сжатие в МПа с обеспеченностью 0,95 (нормативная кубиковая прочность) и принимается в пределах от 0,5 до 120.

Класс бетона по прочности на осевое растяжение соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 (нормативная прочность бетона) и принимается в пределах от 0,4 до 6.

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с требованиями нормативных документов для отдельных специальных видов сооружений (например, для массивных гидротехнических сооружений).

Марка бетона по морозостойкости соответствует минимальному числу циклов попеременного замораживания и оттаивания, выдерживаемых образцом при стандартном испытании, и принимается в пределах от 15 до 1000.

Марка бетона по водонепроницаемости соответствует максимальному значению давления воды (МПа·10), выдерживаемому бетонным образцом при испытании, и принимается в пределах от 2 до 20.

Марка по средней плотности соответствует среднему значению объемной массы бетона в кг/м и принимается в пределах от 200 до 5000.

Для напрягающих бетонов устанавливают марку по самонапряжению.

При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции (СНиП 23-02, СНиП 2.03.11).

Показатели качества бетона должны быть обеспечены соответствующим проектированием состава бетонной смеси (на основе характеристик материалов для бетона и требований к бетону), технологией приготовления бетона и производства работ. Показатели бетона контролируют в процессе производства и непосредственно в конструкции.

Необходимые показатели бетона следует устанавливать при проектировании бетонных и железобетонных конструкций в соответствии с расчетом и условиями эксплуатации с учетом различных воздействий окружающей среды и защитных свойств бетона по отношению к принятому виду арматуры.

Классы и марки бетона следует назначать в соответствии с их параметрическими рядами, установленными нормативными документами.

Класс бетона по прочности на сжатие назначают во всех случаях.

Класс бетона по прочности на осевое растяжение назначают в случаях, когда эта характеристика имеет главенствующее значение и ее контролируют на производстве.

Марку бетона по морозостойкости назначают для конструкций, подвергающихся действию попеременного замораживания и оттаивания.

Марку бетона по водонепроницаемости назначают для конструкций, к которым предъявляют требования по ограничению водопроницаемости.

Возраст бетона, отвечающий его классу по прочности на сжатие и по прочности на осевое растяжение (проектный возраст), назначают при проектировании исходя из возможных реальных сроков загружения конструкций проектными нагрузками с учетом способа возведения и условий твердения бетона. При отсутствии этих данных класс бетона устанавливают в проектном возрасте 28 суток.

Армирование плиты фундамента снип

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ

Concrete and reinforced concrete structures. General provisions

Дата введения 2019-06-20

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - АО "НИЦ "Строительство" - НИИЖБ им.А.А.Гвоздева

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Изменение N 1 внесено изготовителем базы данных

Введение

Настоящий свод правил разработан с учетом обязательных требований, установленных в федеральных законах от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений", и содержит требования к расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений.

Свод правил разработан авторским коллективом АО "НИЦ "Строительство" - НИИЖБ им.А.А.Гвоздева (руководитель работы - д-р техн. наук Т.А.Мухамедиев; д-ра техн. наук , А.И.Звездов, Е.А.Чистяков, канд. техн. наук С.А.Зенин) при участии РААСН (д-ра техн. наук В.М.Бондаренко, Н.И.Карпенко, В.И.Травуш) и ОАО "ЦНИИпромзданий" (д-ра техн. наук Э.Н.Кодыш, Н.Н.Трекин, инж. ).

Изменение N 1 разработано авторским коллективом ОАО "НИЦ "Строительство" - НИИЖБ им.А.А.Гвоздева (руководитель работы - д-р техн. наук Т.А.Мухамедиев; д-р техн. наук Е.А.Чистяков, канд. техн. наук С.А.Зенин, канд. техн. наук Р.Ш.Шарипов, О.В.Кудинов).

1 Область применения

1.1 Настоящий свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, эксплуатируемых в климатических условиях Российской Федерации (при систематическом воздействии температур не выше 50°С и не ниже минус 70°С), в среде с неагрессивной степенью воздействия.

1.2 Свод правил устанавливает требования к проектированию бетонных и железобетонных конструкций, изготовляемых из тяжелого, мелкозернистого, легкого, ячеистого и напрягающего бетонов.

1.3 Требования настоящего свода правил не распространяются на проектирование сталежелезобетонных конструкций, фибробетонных конструкций, сборно-монолитных конструкций, бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений, а также на конструкции, изготовляемые из бетонов средней плотностью менее 500 и более 2500 кг/м, бетонополимеров и полимербетонов, бетонов на известковых, шлаковых и смешанных вяжущих (кроме применения их в ячеистом бетоне), на гипсовом и специальных вяжущих, бетонов на специальных и органических заполнителях, бетона крупнопористой структуры. Проектирование перечисленных выше конструкций выполняют по соответствующим нормативным документам.

2 Нормативные ссылки

В настоящем своде правил использованы ссылки на следующие нормативные документы:

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 24705-2004 Резьба метрическая. Основные размеры

ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый. Сортамент

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 535-2005 Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия

ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8731-74 Трубы стальные бесшовные горячедеформированные. Технические требования

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент

ГОСТ 8736-2014 Песок для строительных работ. Технические условия

ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости. Основные требования*

* Вероятно, ошибка оригинала. Наименование стандарта "Бетоны. Методы определения морозостойкости". - Примечание изготовителя базы данных.

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытания

ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

ГОСТ 12730.0-78 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости

ГОСТ 12730.1-78 Бетоны. Метод определения плотности

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 23732-2011 Вода для бетонов и растворов. Технические условия*

* Вероятно, ошибка оригинала. Наименование стандарта "Вода для бетонов и строительных растворов. Технические условия". - Примечание изготовителя базы данных.

ГОСТ 24211-2008 Добавки для бетонов. Общие технические требования*

* Вероятно, ошибка оригинала. Наименование стандарта "Добавки для бетонов и строительных растворов. Общие технические условия". - Примечание изготовителя базы данных.

ГОСТ 25781-83 Формы стальные для изготовления железобетонных изделий. Технические условия

ГОСТ 26633-2012 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27005-2014 Бетоны легкие и ячеистые. Правила контроля средней плотности

ГОСТ 27006-86 Бетоны. Правила подбора составов

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 33530-2015 Инструмент монтажный для нормированной затяжки резьбовых соединений. Ключи моментные. Общие технические условия

ГОСТ 34329-2017 Опалубка. Общие технические условия

ГОСТ Р 52086-2003 Опалубка. Термины и определения

ГОСТ Р 58386-2019 Канаты защищенные в оболочке для предварительно напряженных конструкций. Технические условия

СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты (с изменением N 1)

СП 14.13330.2014 "СНиП II-7-81* Строительство в сейсмических районах" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, 3)

СП 130.13330.2018 "СНиП 3.09.01-85 Производство сборных железобетонных конструкций и изделий"

Толщина плитного фундамента: Пример как рассчитать толщину плиты

Толщина монолитной фундаментной плиты рассчитывается при помощи СНиП 2.02.01-83 Основания зданий и сооружений. На этом этапе расчетов мы сломали головы и свернули кровь. На запрос «Как рассчитать толщину фундаментной плиты» доблестный Google выдаёт статьи с описанием алгоритма вычислений. Но очень многие из них описаны либо слишком сложным профессиональным языком, в котором трудно разобраться, либо довольно лёгким языком копирайтера, который не разобрался в теме, по пути потерял часть данных, но профессионалов кое-как пересказал.

Расчёт толщины плиты фундамента нужно начать с сопоставления суммарного давления от здания и оптимального значение нагрузки на грунт. Это если по-научному, а если по-свойски, нужно примерно посчитать, насколько тяжёлым будет здание и соотнести это с тем, насколько грунт на вашем участке хорошо справляется с нагрузкой.

Плита должна быть не слишком тяжёлой, чтобы не утяжелять общую конструкцию дома и не продавливать грунт под собой. Но и не слишком лёгкой, чтобы дом не болтался, как поплавок, в особенно мокрые периоды.

Фундаментная плита под дом: расчет толщины

Максимальный вес нашего дома – 70 тонн (вес стен, крыши, стяжки, штукатурки, окон, дверей, возможной снеговой нагрузки и т.д., но без учёта фундамента). Это максимальный-максимальный вес.

Площадь нашего плитного фундамента – 48 метров квадратных.

Чтобы высчитать с какой силой дом будет давить на грунт нужно:

70 тонн / 48 м² = 1,458 тонн/м²

Далее для удобства работы с цифрами переводим тонны в килограммы, а метры квадратные в сантиметры, ибо давление на грунт исчисляется в кг/см²

1,458 тонн/м² = 0, 145 кг/см²

Теперь сравниваем своё 0, 145 кг/см² с оптимальной нагрузкой на грунт. Так как в грузинской деревне с геологами дефицит, профессионально наш грунт никто не оценивал, но мы решили самостоятельно сделать геологию участка и на всякий случай берём коэффициент пористого и текучего суглинка (то есть грунта, который наиболее впечатлительно реагирует на нагрузку). Согласно таблицы 3, приложения 3 к СНиП 2.02.01-83 Основания зданий и сооружений расчетное сопротивление пористого и текучего суглинка составит Ro = 1 кг/см2. Если вдруг сопротивление грунта будет выше в несколько раз, то страшного в этом ничего нет. Дом дольше простоит.

как рассчитать толщину плиты фундамента

Находим разницу между этими величинами :

1 кг/см² – 0, 145 кг/см² = 0, 855 кг/см²

Теперь 0, 855 кг/см² умножаем на площадь фундамента – 480 000 см², чтобы определить вес плиты:

0, 855 кг/см² * 480 000 см² = 410 400 кг

Далее вес нашего фундамента делим на средний удельный вес армированного бетона – 2500 кг/м3, чтобы вычислить оптимальный объём фундамента:

410 400 кг / 2500 кг/м3 = 164,16 м3

Объём фундамента делим на площадь плиты (уже в метрах) и получаем предположительную толщину плиты

164,16 м3 / 48 м² = 3,42 м

Далее рекомендуют округлить до любого ближайшего значения кратного 5-ти, то есть в нашем случае плита может ровняться аж 3 метра 40 сантиметров.

Это не означает, что мы, как сумасшедшие должны лить 3-хметровую фундаментную плиту. Это означает, что наш грунт может вынести, куда большую нагрузку, чем наш дом.

Максимально возможную высоту монолитной плиты фундамента мы определили. Теперь пора выяснить минимальную толщину фундаментной плиты. У нас ведь нет цели закопать в землю, как можно больше бетона?

Если по расчетам толщина плитного фундамента превышает 0,35 м, то это повод задуматься о том, есть ли смысл выбирать именно плиту. Возможно, экономически выгоднее в данных условиях сооружать другой тип фундамента. О том, почему мы, несмотря на расчёты, предпочли плиту ленточному или столбчатому фундаменту, мы пишем в статье «Фундаментная плита своими руками: разметка, земляные работы»

Минимальная толщина плиты фундамента

На профессиональных строительных ресурсах пишут о толщине фундаментной плиты от 10 до 35 сантиметров. Уменьшать высоту плиты не стоит, потому что есть риск раскола плиты под воздействием веса самого здания. Увеличивать – тоже нецелесообразно, потому что это влечёт за собой перерасход материалов, рабочей силы и создаёт излишнюю нагрузку на грунт.

Перекопав массу информации на форумах, мы нашли несколько отзывов о фундаментной плите от самостройщиков, которые живут с таким типом фундамента уже несколько лет, то есть рассказывают, как оно в эксплуатации.

Собрали такую информацию:

  • 30 сантиметров заливают для больших тяжёлых домов, с двумя этажами, бетонным перекрытиями и так далее. Масса такого дома может достигать 700 тонн (для сравнения, наш дом – не больше 70 тонн)
  • 10 сантиметров подходит для сарайчика или небольшой баньки.

Выходит, наш формат – 15-20 сантиметров толщины. Продолжаем анализ.

Минимальная толщина фундаментной плиты допустима:

  1. Если глубина промерзания грунта менее 1 метра. Наш дом строится в южном климате, грунт не промерзает вовсе, не пучинится, значит, нагрузки на излом на фундамент не будет
  2. Если вы используете бетон марки не ниже М300
  3. Если вы строите небольшой одноэтажный дом из лёгких материалов (каркасник, газоблок, керамзитные блоки)
  4. Если заложена щебёночная и песчаная подушка под плиту
  5. Если нагрузка по плите распределена равномерно. Фундамент должен выдерживать нагрузку не только на сжатие, но и на изгиб. Чем больше длина наружных стен, тем выше вероятность раскалывания монолитной плиты. В нашем случае, домик небольшой, а значит переживать за это не стоит. К тому же в планировке дома мы предусмотрели дополнительную, пятую несущую стену, которая проходит в аккурат по центру дома. Это значит, что нагрузка будет максимально равномерно распределена

Таким образом, мы не нашли аргументов в пользу увеличения объёма плиты и остановились на толщине в 15 сантиметров. С учётом 30 сантиметровой щебёночной подсыпки – это должны быть достаточно надёжным основанием для нашего дома.

Задача№ 1. Дано:

Толщина плитного фундамента для дома равна 15 сантиметрам. Площадь плиты 48 метров квадратных. Вес дома (стены, крыша, стяжка, перегородки и т.д.) около 70 тонн. Какое давление на грунт оказывает этот дом?

Решение:

Вычисляем объём фундамента:

15 см * 480 000 см² = 7 200 000 см3 (7,2 м3)

Умножаем объём на средний удельный вес армированного бетона – 2500 кг/м3, чтобы получить вес фундамента:

7, 2 м3 * 2500 кг/м3 = 18 000 кг

Складываем вес дома и вес фундаментной плиты:

70 000 кг + 18 000 кг = 88 000 кг

И делим вес всего здания на площадь основания, чтобы вычислить давление всего сооружения на грунт:

88 000 кг / 480 000 см² = 0, 2 кг/см²

Ответ: Этот дом оказывает давление на грунт 0, 2 кг/см²

Задача№ 2. Дано:

Представим человека, со среднестатистическими показателями: размер стопы – 39-40, вес – 60 килограммов. Какое давление на грунт будет оказывать этот человек, стоя на одной ноге?

Стопа такого человека = 200 см² (примерно, с учётом изгибов, 8 см в ширину и 25 см в длину, измерено опытным путём)

Делим вес человека на площадь стопы, чтобы вычислить давление на грунт:

60 кг / 200 см² = 0,3 кг/ см²

Внимание вопрос! Наш дом или человек давит на грунт сильнее? Пишите в комментариях свой ответ!
Теперь вы знаете, какие задачки мы придумываем дождливыми зимними вечерами.

Читайте также: