Заземление как работает физика

Обновлено: 17.05.2024

Что такое заземление, или просто о простом

Давно читаю ресурс, хорошая штука. Решил привнести и я немного ясности в нашу жизнь, а именно — в простую, казалось бы, вещь — заземление.

Навеяно статьей, но после прочтения комментариев у меня закрались сомнения — а всем ли понятно о сути заземления? Захотел добавить кое-что от себя, простыми словами, безо всяких ПУЭ. Ведь заземление — это защита, а стало быть — важно.

Итак:

Заземление — 2 вида по функционированию

Электропроводяшие части корпуса оборудования (шкафы, etc.) соединены с нулем. Это, как правильно подсказывают, называется «занулением». Работает таким образом: корпус оборудования соединен с нулем и при попадании фазы на корпус происходит КЗ и вышибает автомат. Никто не пострадал.

Если есть контур заземления, то электропроводящие части корпуса оборудования и etc., к которым может прикоснуться человек (и любой читатель этого топика), соединены с этим контуром. Как работает? Ток не «утекает» и не «впитывается» в землю, не утекает в среднюю точку обмоток трансформатора, с ним мало чего происходит. При пробое на корпус все, в т.ч. и контур здания становится под тем же напряжением, что и корпус. Контур соединен и с землей (той, по которой ходим), а значит, человека не ударит током — в цепи уравнены потенциалы. Все становится под фазой.
Почему не довольствоваться одними лишь автоматами? Да потому, что время срабатывания не равно нулю у любого суперавтомата. Земля действует быстрее любого УЗО!

Про молниезащиту

Немаловажную роль в этом играет заземление (не буду писать слово «грамотно выполненное по всем ГОСТ» — топик рассчитан на простое понимание основы заземления, а не на изучение нормативов). Здесь цепь выглядит по-другому: в облаках скапливается потенциал по отношению к земле и при достижении определенной величины он разрядится (а вот здесь — да, ток уходит в землю, выравнивая потенциалы неба и земли, ибо такая цепь). Через проводящие материалы. Здесь важно, чтобы не через людей и оборудование. Делают молниеотводы, и их подключают к контуру. Толстыми железяками, чтобы уменьшить сопротивление, чтобы максимум тока потекло через наименьшее сопротивление. Но все равно — на протяженные провода и кабели ток наведется — и не мало вольт. Ток с вольтами могут пожечь все. Здесь помогают УЗИПы. Там стоят разрядники, которые при срабатывании на возросшее напряжение/ток замыкают все жилы кабеля на землю.

Почему земля проводит ток и как работает заземление

Что такое заземление и как оно работает

Итак, вы все прекрасно знаете, что заземление - это преднамеренное соединение металлических корпусов электроприборов или любой точки сети с заземляющим устройством. При этом в электротехнике благодаря заземлению обеспечивают защиту от опасного действия электрического тока путем снижения напряжения прикосновения до вполне безопасных уровней для человека.

Но возникает вполне логичный вопрос: "Так почему же земля является таким хорошим проводником?" Давайте разбираться.

За счет чего земля проводит ток

Безусловно, сама по себе земля - это не изолирующий материал, ведь в ней присутствуют различные жидкости и растворы солей, которые вполне способны проводить электрический ток.

Но такой проводник далеко не идеальный, а при этом все равно прекрасно работает и вот почему.

Бесконечно большое сечение равно нулевому сопротивлению

Давайте рассмотрим вот такую таблицу:

А теперь вспомним вот такую формулу расчета сопротивления:

Так вот, на самом деле нам абсолютно неважно какова длина и удельное сопротивление. Ведь площадь поперечного сечения земли настолько велика, что сопротивление можно считать равным нулю.

Для понимания давайте проведем сравнительный анализ, и возьмем из таблицы выше серебро и такой материал как графит.

Как вы уже поняли из таблицы, серебро гораздо лучше проводит электричество (за счет меньшего удельного сопротивления), чем графит. Но если мы увеличим площадь поперечного сечения графита в миллион раз, то уже сопротивление графита будет существенно ниже сопротивление серебра. Точно такой же эффект срабатывает и в случае с землей.

Вроде с нулевым сопротивлением земли разобрались, и, казалось бы, все просто замечательно, но есть один очень важный момент. Для того, чтобы опасный потенциал уходил именно через заземление, а не стал причиной поражения человека электрическим током, оно должно соответствовать целому ряду требований.

Особенности заземляющего устройства

Итак, для того, чтобы заземление работало так как нужно, оно должно обладать минимальным переходным сопротивлением, а это в свою очередь достигается за счет следующих факторов:

  1. Должна быть обеспечена большая площадь контакта в местах соединения контура. То есть сварочный шов на пластинах должен быть не менее 10 см.
  2. Всю систему электродов нужно обязательно закапывать ниже линии промерзания грунта.
  3. Общее сопротивление заземляющего контура не должно превышать 4 Ом. Если при замерах специальными приборами данное условие не выполняется, тогда необходимо увеличить заземляющий контур, до достижения требуемых параметров.

Вот так заземление выполняет свою защитную функцию по причине того, что земля обладает бесконечно большим сечением. А так как ток протекает только по пути наименьшего сопротивления, то даже в случае пробоя изоляции у электроприбора, корпус которого заземлен, ничего страшного не случится, так как опасный потенциал уйдет через заземляющий контур в землю.

Понравилась статья, тогда ставим палец вверх, пишем комментарии и подписываемся. Спасибо за внимание!

Заземление

В предыдущей публикации я обещал рассказать про заземление. Итак, сегодня пойдёт речь о том что такое заземление, зачем оно нужно, и какие его виды существуют. Рассматриваются только сети с напряжением до 1000В.

Что такое заземление?
Заземление - это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземляющее устройство - это совокупность заземлителя и заземляющих проводников.

Заземлитель - это проводящая часть или совокупность соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду.

Зачем нужно заземление?
В первую очередь заземление используется для защиты человека от поражения электрическим током. В данном случае, при утечке тока с фазного проводника на корпус заземлённого электроприбора, ток начинает течь по цепи фаза-заземление, что в свою очередь может привести к следующим событиям:
1. Срабатывание автоматического выключателя;
2. Срабатывание устройства защитного отключения, если таковое используется;
3. Снижение напряжения прикосновения

Существует 2 варианта срабатывания автоматического выключателя:
1. Срабатывание электромагнитного расцепителя;
2. Срабатывание теплового расцепителя.

Известно, что электромагнитный расцепитель предназначен для защиты сети от токов короткого замыкания. Но здесь не всё так просто, ведь ток короткого замыкания так-же имеет конечную величину. А в автоматических выключателях током короткого замыкания является ток, в 3 и более раз превосходит номинальный ток автоматического выключателя.
Из этого следует, что для срабатывания электромагнитного расцепителя заземление должно обладать следующими характеристиками:
1. Минимальное сопротивление заземляющих проводников. Следовательно провод заземления должен иметь большую площадь поперечного сечения и минимальную длину, а также минимальное удельное сопротивление.
2. Минимум соединений
3. Минимальное сопротивление заземляющего устройства
Всё это обусловлено одной простой истиной: чем больше сопротивление цепи, тем меньше ток короткого замыкания в этой цепи.
Если ток, протекающий по цепи будет меньше уставки срабатывания электромагнитного расцепителя произойдёт срабатывание теплового расцепителя, но здесь следует иметь ввиду тот факт, что тепловой расцепитель может в течении длительного времени выдерживать токи в 1,3 раза превышающие номинальный ток автоматического выключателя.
Совокупность этих факторов влияет на выбор номинального тока автоматического выключателя.

Срабатывание устройства защитного отключения (УЗО) происходит в следствии возникновения утечки тока на проводник, не проходящий через УЗО.

Снижение напряжения прикосновения происходит за счёт утечки тока на землю, при этом значение напряжения прикосновения зависит от сопротивления цепи и тока утечки, протекающего в этой цепи. Это также обуславливает требования к заземлению, указанные выше.

Виды заземления (системы заземления)

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C , TN-S , TN-C-S , TT , IT .

Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

  • система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземлённой нейтрали источника посредством нулевых защитных проводников;
  • система TN-С — система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всём её протяжении;
  • система TN-S — система TN , в которой нулевой защитный и нулевой рабочий проводники разделены на всём её протяжении;
  • система TN-C-S — система TN , в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания;
  • система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
  • система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника.

Первая буква — состояние нейтрали источника питания относительно земли

  • Т — заземлённая нейтраль (лат. terra );
  • I — изолированная нейтраль (англ. isolation ).

Вторая буква — состояние открытых проводящих частей относительно земли

  • Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  • N — открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания.

Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников

  • S — нулевой рабочий ( N ) и нулевой защитный (PE) проводники разделены (англ. separated );
  • С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. combined );
  • N — нулевой рабочий (нейтральный) проводник; (англ. neutral )
  • PE — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов)(англ. Protective Earth )
  • PEN — совмещённый нулевой защитный и нулевой рабочий проводники (англ. Protective Earth and Neutral ).

Наибольшее распространение в России имеет система TN-C-S.
А вот тут то и кроется ещё одна функция заземления - снижение влияния перекоса фаз. Но как?

Дело в том, что в системах TN, TN-C, TN-S и TN-C-S нейтраль источника питания, то есть ноль, имеет непосредственное соединение с землёй. А земля, как известно, имеет нулевой потенциал. Отсюда следует, что при появлении напряжения на нулевом проводнике, что как раз происходит при перекосе фаз, в цепи заземления возникнет ток, а напряжение на нулевом проводнике, измеренное относительно земли, будет прямо пропорционально сопротивлению заземления.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токопроводящих частей с землёй и наглухо заземлённую нейтраль. Для обеспечения связи на участке трансформаторная подстанция — ввод в здание применяется совмещённый нулевой рабочий (N) и защитный проводник (PE), принимающий обозначение PEN. При вводе в здание он (PEN) разделяется на отдельный нулевой (N) и защитный проводник (PE).

  • Также можно наблюдать систему TN-C-S , где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.
  • Достоинства: более простое устройство молниезащиты (невозможно появление пика напряжения между PE и N ), возможность защиты от КЗ фазы на корпус прибора с помощью обыкновенных «автоматов».
  • Недостатки: крайне слабая защищённость от «отгорания нуля», то есть разрушения PEN по пути от КТП к точке разделения. В этом случае на шине PE со стороны потребителя появляется фазное напряжение, которое не может быть отключено никакой автоматикой ( PE не подлежит отключению). Если внутри здания защитой от этого служит система уравнивания потенциалов (СУП) (под напряжением оказывается всё металлическое, и нет риска поражения током при прикосновении к 2 разным предметам), то на открытом воздухе никакой защиты от этого не существует вовсе.

В соответствии с ПУЭ является основной и рекомендуемой системой, но при этом ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN — механическую защиту PEN , а также повторных заземлений PEN воздушной линии по столбам через какое-то расстояние (не более 200 метров для районов с числом грозовых часов в году до 40, 100 метров для районов с числом грозовых часов в году более 40).

В случае, когда эти меры соблюсти невозможно, ПУЭ рекомендуют TT . Также ТТ рекомендуется для всех установок под открытым небом (сараи, веранды и т. д.)

В городских зданиях шиной PEN обычно является толстая металлическая рама, вертикально идущая через всё здание. Её практически невозможно разрушить, потому в городских зданиях применяется TN-C-S .

В сельской же местности в России на практике существует огромное количество воздушных линий без механической защиты PEN и повторных заземлений. Потому в сельской местности более популярна система TT .

В позднесоветской городской застройке как правило применялась TN-C-S с точкой деления на основе электрощита ( PEN ) рядом со счетчиком, при этом PE проводилась только для электроплиты.

В современной российской застройке применяется и «пятипроводка» с точкой деления в подвале, в стояках проходят уже независимые N и PE .

Разделение PEN на РЕ и N проводники, повторное заземление в системе TN-C-S

И При разделении PEN-проводника следует руководствоваться следующими правилами: 1. Необходимо обеспечить неразрывность РЕ-проводника 2, PEN-проводник необходимо соединять либо с зажимом заземляющего устройства, либо с шиной РЕ (п. 1.7.135 ПУЭ) 2. Не допускается подключение PEN-проводника к каким либо коммутационным устройствам.

В соответствии с пунктом 1.7.119 ПУЭ внутри вводного устройства в качестве главной заземляющей шины следует использовать шину PE.

Заземление электроустановок: правила и требования


Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса.

Классификация заземляющих устройств

Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:

  • Виду нейтрали. По наличию соединения с заземляющим устройством:
    • заземленная;
    • изолированная.

    Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:

    Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.

    При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:

    • TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
    • TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
    • TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.

    Реже встречаются следующие системы:

    • TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
    • IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.

    Системы заземления электроустановок

    Технические требования к организации заземления электроустановок

    УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым защитное заземление электроустановки следует выполнять при следующих параметрах:

    • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
    • при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.

    Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

    Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

    Выбор естественных заземлителей

    Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

    • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
    • защитные кожухи кабелей, проложенных под землей;
    • металлические трубы, за исключением газо- и нефтепроводов;
    • железнодорожные рельсы.

    Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

    Нельзя выбирать в качестве естественных заземлителей следующие объекты:

    • трубопроводы горючих и взрывчатых газов и жидкостей;
    • трубы, покрытые антикоррозийной изоляцией;
    • канализационные трубопроводы;
    • трубы централизованного отопления.

    Сопротивление стеканию тока

    Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

    Значения сопротивления заземления для сетей различного назначения:

    Максимальное значение сопротивления, Ом

    Частные дома 220, 380 Вольт

    Источник тока при напряжении 660, 380 и 220 Вольт

    Частный дом при подключении газопровода

    Устройства защиты линий связи

    Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

    • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
    • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
    • Усилить проводимости почвы увлажнением или повышением ее солености.

    Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

    Работа УЗ при нарушении защитной изоляции электрооборудования

    Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

    1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
    2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
    3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
    4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

    Заземление цехового оборудования

    Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:

    • Для типового станочного оборудования.
    • Для электродвигателей и сварочных аппаратов.
    • Для передвижных установок и эксплуатируемых электроприборов.

    Заземление типового станочного оборудования

    Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).

    Система уравнивания потенциалов – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.

    Важно уделить внимание следующим техническим вопросам:

    • Определить расположение контура СУП в рабочей зоне.
    • Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
    • Определить место наложения стационарного заземления.
    • Выяснить какие устройства используются для защиты опасных частей оборудования.

    Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.

    Заземление электродвигателей

    Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.

    Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.

    Заземление электроустановок

    Заземление сварочных аппаратов

    Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.

    Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.

    Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.

    Заземление сварочных аппаратов

    Защита передвижных установок

    Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.

    Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.

    Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.

    Защита электроприборов

    При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:

    • Защитить открытые токоведущие части.
    • Нарастить защитную изоляцию.
    • Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
    • Если позволяет конструкция, можно как меру использовать понижение напряжения.

    Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:

    • Наличие системы заземления.
    • Система уравнивания потенциалов.
    • Усиление изоляции токоведущих частей.
    • В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.

    Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.

    Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.

    Защита с помощью заземления и зануления

    Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.

    При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.

    При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.

    Контроль состояния защитных устройств

    Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.

    Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.

    Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.

    Заземление – что это и для чего нужно


    Тело человека – хороший проводник электрического тока. Самыми высокими показателями электропроводности обладают мышцы и подкожная-жировая клетчатка, то есть как раз те места, которые первыми контактируют с внешним источником тока, будь то оголенный провод или неисправный электроприбор.

    Ток проникает в тело через поры и каналы потовых желез, поэтому очевидно, что сухая кожа отличается более высоким сопротивлением, чем влажная. Так, при контакте с напряжением 220 В значение силы тока, воздействующей на мокрый кожный покров, составляет порядка 220 мА. При такой электротравме смерть наступает мгновенно, учитывая, что опасным для организма считается показатель уже в 15мА, а смертельном опасным – 100 мА.

    Это доказывает необходимость разработки мер, которые предотвращают случайное поражение электрическим током во всех областях человеческой деятельности, как на производстве, так и в быту. Одна из таких мер – установка заземляющих устройств (ЗУ).

    Что такое заземление

    Если говорить простыми словами, это защитная система, которая предотвращает от ударов током при прикосновении к металлическим частям оборудования, находящегося под напряжением. Вся конструкция состоит из следующих частей:

    • Металлический контур
    • Заземляющая шина
    • Разводка проводов заземления

    Контур представляет собой 4-6 штырей (электродов), забитых в грунт и соединенных между собой металлическими полосами. Необходимая глубина заземляющего устройства – 2,5-3 метра, то есть ниже уровня промерзания почвы. Это требуется для того, чтобы даже зимой контур получал доступ к влаге, проводящей ток.

    Вверху одного вертикального электрода располагается «контактная зона» (чаще всего в виде болта с резьбой), от которой берет начало медная шина, ведущая в специальную планку в распределительном щитке.

    От главной заземляющей шины, в свою очередь, расходятся медные жилы к розеткам потребителей. Эти провода, по сути, отвечают за подключение заземления – к примеру, в современных домах разводка от щитка выполняется трехжильным кабелем, где одна из жил – желто-зеленого цвета – отведена «под землю».


    Рис 1. Устройство заземления. а) – заземление в линию; б) – контур заземления

    Требования к заземлению

    Обеспечение безопасности потребителя при работе с электрическими приборами – приоритетная задача производителей и эксплуатантов электроустановок, поэтому в этой сфере действует ряд норм и правил. Отметим основные:

    • Заземлять нужно все, что имеет металлический корпус: котлы, станки, насосы, инструменты, оборудование;
    • Штыри и соединения контура должны отличаться антикоррозионностью и износостойкостью, что обеспечивается правильным выбором материала и диаметра – например, для этих целей нередко используется нержавеющая сталь с поперечным сечением не менее 90 кв. мм;
    • Заземлители должны всегда находиться во влажной почве – для этого нужно учесть географические, климатические и геологические особенности региона и выбрать правильную глубину размещения металлических электродов.

    Почему человека бьет током

    1. В бытовом электрическом приборе, установленном без заземления (к примеру, в стиральной машине), нарушилась целостность проводки. Причины могут быть любые – естественный износ, механические повреждения, вредительство насекомых или грызунов.
    2. В результате на корпусе агрегата скапливается электрический разряд.
    3. Человек прикасается к устройству и получает удар током.

    Важно понимать, что ток при этом движется по замкнутой цепи, где тело человека выступает как одно из звеньев. Если бы мы, скажем, летали по воздуху, то электрические травмы были бы нам практически не страшны – посмотрите на птиц за окном: они спокойно сидят на высоковольтных проводах, не догадываясь о смертельной опасности.

    Однако мы, в отличие от птиц, ходим по земле, которая, в свою очередь, считается идеальной точкой с нулевым потенциалом. Получается, что тело человека выступает как проводник, по которому электрический ток от неисправного электроприбора или оголенного провода устремляется к земле, чтобы уравнять количество заряженных частиц в этих двух точках, как того требуют законы природы.

    Как работает заземление

    Ток движется по пути наименьшего сопротивления. Этот простой принцип лежит в основе работы заземления: наш кожный покров обладает более высоким сопротивлением, чем металлический провод, поэтому при касании поверхности под напряжением ток сразу уходит в землю, не причиняя человеку вреда. Это главное, что нужно понимать о работе ЗУ.

    Есть и еще один фактор, который обеспечивает работу заземления – бесконечно обширное «сечение» грунта. Обратимся к физике: ток, уходя во влажную почву, запускает цепную реакцию ионов, которые передают энергию все дальше и дальше, практически до бесконечности. Чем больше электрически заряженных частиц (ионов) участвует в процессе, тем быстрее передается энергия, рассеивается ток и, следовательно, тем эффективнее работает заземление. Добавим, что здесь немаловажную роль играет и достаточный диаметр металлических электродов, входящих в контур заземляющего устройства.

    Заземление и зануление – в чем отличие

    Кроме установки ЗУ, существует еще один способ, защищающий человека от удара током от неисправных электроустановок. Это зануление (другое название: заземление на ноль). Его суть в том, что при возникновении неисправности возникает короткое замыкание, что приводит к отключению автомата-предохранителя. Технически это реализовано так: корпус электроустановки соединяется с нейтралью источника питания, то есть с заземленной точкой трансформатора.

    Простыми словами, разница между занулением и заземлением в том, что в первом случае питающая цепь отключается из-за превышения токовой уставки автомата, а во втором – опасный ток отправляется в грунт и «растекается» в его влажной среде.

    В многоквартирных высотках заземлять электроприборы технически сложно, поэтому здесь чаще всего используется зануление (наряду с УЗО). В частных домах, наоборот, удобнее всего сделать систему заземления.

    Для чего применяются УЗО и дифавтоматы

    Эксплуатация заземляющих устройств невозможна без дополнительных приборов. К главным из них нужно отнести устройство защитного отключения (УЗО) и дифференциальные автоматы. Несмотря на внешнюю схожесть, они используются для разных задач:

    1. УЗО отключается в момент появления в сети так называемого тока утечки, который может привести, с одной стороны, к возгоранию (при повреждении электропроводки изоляция начинает сильно греться), а с другой – к удару током, если человек дотронется до неисправного оборудования. УЗО всегда работает «в связке» с обычным автоматом.
    2. Дифференциальный автомат соединяет в себе функции устройства защитного отключения и автомата, то есть он защищает систему электропроводки от перегрузок и коротких замыканий, а человека – от электрических травм.

    Таким образом, заземление представляет собой металлический провод, уходящий в почву и предназначенный для «утекания» тока в землю при возникновении неисправности в системе электроснабжения.

    Что такое заземление? Зачем оно нужно?

    Что такое заземление и зачем оно нужно? В кругу специалистов вопрос покажется абсолютно тривиальным, однако для большинства среднестатистических граждан – это загадка то ли природы, то ли техники.
    А тем временем в основе лежат не слишком уж и таинственные физические явления; зато правильно выполненное заземление способно спасти жизнь и здоровье человека при возникновении электроЧП.

    Содержание:

    Немного физики

    Электрический ток протекает между точками, которые имеют разный электрический потенциал – в первом приближении, разную величину электрического заряда. Чтобы ток побежал, эти точки нужно соединить проводящей средой – к примеру, медной проволокой. Такая ситуация в электрической розетке: в одном из её гнёзд ±220 В, а в другом — ровным счётом 0 В. Когда эти гнёзда замыкаются через включённый в розетку прибор, между ними начинает течь ток, который, собственно, и вдыхает жизнь в холодильник, фен, утюг, компьютер и т.д.

    Земля считается абсолютным нулём – её заряд всегда 0 В. Это ключевой факт. А тело человека проводит ток – иногда не хуже, чем медный кабель.

    Риски

    А теперь – нередкая ситуация в квартире.

    Представим обычную стиральную машину в обычной среднестатистической квартире. Ничто в мире не совершенно, а потому в стиральном приборе может повредиться изоляция в одном из многочисленных внутренних проводов. С огромной вероятностью повреждённый проводок, несущий напряжение 220В, коснётся внутренних металлических частей, которые соединены с корпусом машины. Корпус прибора мгновенно окажется под напряжением. Если к этому корпусу прикоснётся человек, то он получит удар током.

    Дело в том, что потенциал корпуса машины равен 220 В, а потенциал поверхности, на которой находится человек – 0 В. Вспомним, что тело человека — среда очень даже проводящая. Потому-то ток ринется с корпуса машины на пол через тело прикоснувшегося – вот и вся схема удара током.

    Говоря по правде, что если человек будет в резиновой обуви на абсолютно сухом полу с абсолютно сухими руками, касание 220-ти вольт не особо повредит ему, поскольку сухость и соотвтетствующая обувь воспрепятствуют движеную тока – но часто ли могут быть выполнены все эти «абсолютно»?

    Конечно, при наличии УЗО электроснабжение будет оперативно отключено… Однако это произойдет уже после удара током, последвствия которого могут быть плачевными.

    Что самое интересное — напряжение может накопиться на корпусе прибора и не по причине неисправности, а из-за статического электричества. Это очень распространенная офисная проблема. Конечно, удар током не будет смертельным, однако вполне способен навредить здоровью. Уже начинаете понимать что такое заземление? Ну во всяком случае, мы продолжаем

    Заземление как панацея

    Казалось бы, явление неизбежно…, и ударят ли током наши любимые электроприборы, решать только им. Ан нет! Серьёзную помощь может оказать заземление, будь оно правильно смонтированным… и вообще будь оно. В описанной ситуации система заземления взяла бы удар током на себя, а человек ощутил бы лишь лёгкое покалывание.

    «Физика и химия»

    Заземление представляет собой процесс соединения металлических частей электроприборов с землёй. Выводятся «на землю» те части, которые могут прямым или косвенным образом грозить ударом током в случае, если по причине мини-ЧП окажутся под напряжением. Цель у заземления одна, но зато какая – обезопасить жизнь и здоровье человека.

    Схема самодельного заземления могла бы выглядеть так. К корпусу электроприбора надёжно прикреплен провод, который выведен на улицу через дверь, окно и любой другой проём или отверстие. В землю вбит металлический штырь (уголок, прут, труба). К этому-то изделию и крепится провод, идущий от корпуса стиральной машины.

    Почему такая схема работает? Начнём с того, что потенциал земли всегда 0 В, а на нашем корпусе может оказаться все 220 В – потому ток потечёт в землю, которая совершенно от этого не пострадает. Зато человек, коснувшийся корпуса, окажется в безопасности, поскольку ток выбирает для своего пути на землю лучший проводник и течёт через него. Если есть заземление, то оно и есть лучшим проводником электричества.

    Идеал заземления

    Но самое надёжное и грамотное заземление – то, которое предусмотрено в устройстве электрической проводки дома или квартиры. В таком случае в проводке помимо двух проводов (фаза и нуль) имеется и провод заземления – то есть кабель получается трехжильным. Третья жила и соединяется с землёй по всем правилам ПУЭ.

    Заземляющая жила ветвится, подходя к каждой розетке. Розетка, в свою очередь, имеет дополнительный контакт – те самые «усики» по бокам гнезда, которые есть у многих современных розеток. Электроприбор, в котором предусмотрено заземление, имеет вилку с дополнительными боковыми контактами и трехпроводный шнур. Третий провод – заземляющий, он соединён с корпусом прибора и другими металлическими элементами, которые могут оказаться под напряжением и быть опасными для человека. Заземляющий провод выводится на боковые контакты вилки, которые, в свою очередь, через «усики» розетки уведут невесть откуда возникшее напряжение в землю. Однако следует иметь в виду, что розетка, имеющая заземляющие контакты, по-настоящему заземлена лишь в случае, если заземление есть и в схеме электропроводки.

    К сожалению, в многоквартирных домах старой постройки подобное явление – большая редкость, как, впрочем, и в частных домах среднего возраста. Однако на первых этажах есть какая-никакая возможность восполнить электрический пробел и смонтировать заземление.

    Заметим, что крайне желателен профессиональный монтаж заземления согласно правилам ПУЭ.

    Нельзя вместо заземления использовать зануление – соединение заземляющего провода с нулевым. Также делают неграмотное заземление на трубы, радиаторы, а это запрещено так же строго, как и курение на бензоколонке.

    Вам также может быть интересно:

    Наш адрес:
    Киев, пр-т Освободителей, 3А, корп. 3, оф. 63

    график работы:
    Пн-Пт . 8:30 - 18:00
    Сб, Вс . выходной

    Мы в соц. сетях

    цены на кабельно-проводниковую продукцию:

    priceXls
    price-pdf

    Уважаемый клиент!

    Убедительная просьба в обращении оставлять подробную информацию:

    • каким образом Вы обращались в нашу компанию: по электронной почте, в телефонном режиме, на странице в социальной сети;
    • какие свои контактные данные Вы оставляли;
    • какие именно сложности у Вас возникли при работе с нашей компанией;
    • Ваша контактная информация для ответа по обращению.

    Ваше мнение очень важно для нас, ведь мы постоянно работаем над улучшением качества обслуживания

    Читайте также: