Зачем нужен драйвер для светодиодного светильника

Обновлено: 23.04.2024

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:


Пример.Импульсная стабилизация (упрощенно)

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.


Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.


Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.


Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.


Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.


Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Зачем нужен драйвер для светодиода и как подобрать

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Содержание

Назначение

Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

драйвер и резистор 12 вольт 600 мА

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

драйвер 12 вольт и резистор 40 Ом

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер 12 вольт 300 мА и резистор 40 ом

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

драйвер - подключение двух резисторов параллельно

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

формула потребляемой мощности

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

формула расчета максимальной мощности светодиода

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1,25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов, способы подключения

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

  1. У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.
  2. Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Импульсные работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

диаграмма работы светодиодного шим драйвера

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Импульсные драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский светодиодный драйвер

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Ввиду большого количества недостатков эти драйверы пользуются маленьким спросом, но, сегодня в Китае производится огромное количество продукции, многие известные бренды перенесли свое производство в эту страну. В связи с этим, теперь в Китае можно купить и качественные драйверы для светодиодов, например на AliExpress, главное знать, что брать.

Что купить?

Мы проанализировали большое количество отзывов с форумов и самой площадки AliExpress и подготовили для вас свою подборку драйверов, которые подойдут для решения многих задач:

Купить драйвер на AliExpress

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

схема драйвера 10 ватт

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

простой светодиодный драйвер тока

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

сетевой импульсный светодиодный драйвер

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

микросхема lm3404

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

схема светодиодного драйвера max16800

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.


Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.



Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.


Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также будет 300мА, а напряжение упадет в два раза.




При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

где Pmax — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.




Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.



Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.

Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания обойдется вам дешевле, но будет не столь надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют таким драйверам быть в спросе у покупателей. Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной, недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.

Каков срок службы led драйвера?

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

Что такое драйвер led светильника и для чего он необходим?

Светодиодные светильники считаются эффективными источниками искусственного освещения. Экономичность и высокие технические характеристики в большинстве своем являются результатом грамотного выбора питания. Длительная работа, устойчивая яркость зависит от используемого драйвера. В связи с этим в данной статье мы постараемся рассказать о том, как он подбирается, какие нюансы необходимо учитывать и возможные варианты исполнения.

Что такое драйвер led светильника?

Речь идет о стабилизированном источнике, обеспечивающим на выходе постоянный ток и напряжение. От его надежности зависит последующая работа, например, трекового светильника 2700К . Стабильное питание является главным условием высоких технических характеристик светодиодного элемента.

Драйвер может использоваться для следующих элементов:

  • Led линеек;
  • Светодиодных лент;
  • Параллельной системы мощных led диодов.

О блоке питания

Для понимания специфики расчетов приведем следующий пример – необходимо подключить 15 led потолочных светильников на 12 вольт, каждый из которых «берет» 12 Вт. Общая их потребляемая мощность составляет 180 Вт. Исходя из этих условий, необходим блок питания на 12В, рассчитанный на максимальный ток 15 ампер. Все что потребуется, дополнительно отрегулировать выходное напряжение посредством соответствующего резистора.

Драйвер подбирается исходя из величины номинальной нагрузки. Его обычно используют при подключении сложной системы освещения, состоящей из нескольких светодиодов. Номинальный ток в данном случае является ключевым параметром. Напряжение же сборки подбирается в определенном диапазоне. Ровное свечение элемента достигается путем обеспечения прохождения номинального тока через все кристаллы, который везде должен быть одинаковым. А вот ввиду отличия вольт-амперных характеристик led элементов, возможно возникновение незначительного падения напряжения.

О led драйвере

Существуют исполнения, рассчитанные на работу от 12 и 220 вольт. Обычно выходные характеристики драйвера указываются как определенный диапазон номинального тока и напряжения. В частности, устройство, дающее на выходе 40 вольт, 0.6 ампер подойдет для последовательного подключения 4 светодиодных потолочных светильников на шине на 12 вольт, мощностью 5 Вт. Падение на каждом led элементе будет 12В, а общее напряжение в 48В укладывается в рабочие параметры драйвера.

Эффективность универсального блока питания считается достаточно высокой. Необходимо отметить, что мощность сборки, например, светодиодных подвесных светильников, является ключевым критерием. При отсутствии стабилизированного тока ее большая часть будет рассеиваться на резисторах плат. Это отрицательно сказывается на коэффициенте полезного действия устройства. В случае с драйвером необходимость в выравнивающих резисторах отпадает, при этом КПД остается достаточно высоким.

Нюансы подбора драйвера системы освещения

Каждый производитель трековых или линейных светодиодных светильников может использовать драйверы, отличающиеся элементной базой, расчетной выходной мощностью, классом защиты. В основе устройств ШИМ (широтно-импульсная модуляция) преобразователь, расположенный на микросхеме. Он имеет стабилизацию по выходному току и защиту от перегрузки и КЗ. Драйвера могут питаться от переменного тока бытовой сети 220 вольт, или постоянного тока – 12 вольт. Простейшие низковольтные устройства изготавливают на общей небольшой плате. Их недостатком является слабая надежность, что нужно учесть в своем выборе.

Резисторы в драйверах для встраиваемых трековых светильников (на основе led чипов) не устраняют помехи, как и простые схемы с конденсаторами гашения. Проходящие через них скачки напряжения в совокупности с нелинейной вольт-амперной характеристикой чипа однозначно приведут к скачку тока через кристалл. Соответствующее явление для полупроводника считается нежелательным. Не является панацеей и линейные стабилизаторы. К тому же их эффективность работы хуже.

Поэтому в идеале нужно определиться с точным количеством, мощностью, схемой подключения всех светодиодов. В идеале они должны быть одной модели и из одной партии. Зная все это можно смело переходить к выбору драйвера, на корпусе которого должна быть информация о диапазоне выходного, входного напряжения и номинального тока. Этих данных более чем достаточно для правильного подбора драйвера. Исходя из специфики использования, например, потолочного светодиодного трекового светильника, выбирается класс защиты корпуса.

Какой драйвер для светодиода лучше – линейный или импульсный?

Практически каждый, кто имел дело со сверхъяркими светодиодами, знает, что питать их нужно через специальное устройство – драйвер. На сегодняшний день наиболее распространенными являются драйверы, работающие по двум принципам – линейной и импульсной стабилизации. Чем они отличаются и какой из них лучше?

Зачем светодиоду драйвер?

Чтобы разобраться в этом вопросе, необходимо познакомиться с вольт-амперной характеристикой (ВАХ) светодиода.

ВАХ светодиода ВАХ светодиода

Из графика видно, что при постепенном увеличении напряжения ток через светодиод вначале не течет вообще. При достижении определенного значения Uнач появляется ток, и прибор начинает светиться тем ярче, чем выше напряжение. При достижении Uном ток достигнет паспортного значения Iном, а светодиод засветится в полную силу.

Такой режим будет соблюдаться до тех пор, пока напряжение не достигнет значения Uмакс. При дальнейшем его увеличении кривая ВАХ резко поднимается вверх – ток быстро выходит за предельно допустимое значение и полупроводник сгорает. Таким образом, для того, чтобы прибор не вышел из строя и вместе с тем имел максимальную светоотдачу необходимо точно поддерживать режим, при котором ток и напряжение имеют номинальное значение. Для этого, казалось бы, можно обойтись обычным стабилизатором напряжения, поскольку ток напрямую зависит от напряжения.

Но тут появляется новая проблема – ВАХ светодиода не постоянна и зависит от температуры кристалла. Чем выше температура, тем кривая ВАХ сильнее сдвигается влево и становится круче. Но Uном и Uмакс у всех светодиодов находятся практически рядом – окно обычно составляет десятые вольта. Стоит кристаллу чуть прогреться, как граница Uмакс сдвинется влево, полупроводник выйдет из режима.

Смещение ВАХ светодиода при прогреве Смещение ВАХ светодиода при прогреве

Из графика видно, что после прогрева кристалла для поддержания номинального тока нужно уменьшить напряжение, но оно стабилизировано и ток стал критическим.

Из-за этого кристалл нагреется еще сильнее, сопротивление перехода снова упадет, ток повысится. Повышение тока в свою очередь вызовет еще больший нагрев кристалла. Начнется лавинообразный процесс, который закончится тепловым пробоем. По сути, прибор сожжет сам себя.

Таким образом, обычной стабилизацией напряжения вопрос не решить – необходимо стабилизировать ток и держать его на уровне Iном. Для этого и служит драйвер, который, по сути, является стабилизатором тока. Вполне очевидно, что характеристики драйвера, в частности, ток стабилизации, должны совпадать с характеристиками светодиода, которые указаны в паспорте.

Примечательно, что в паспорте указывается не рабочее напряжение светодиода, а его рабочий ток, и теперь это понятно.

Драйверы – какие бывают и чем отличаются

Как было указано выше, драйверы, питающие светодиоды, могут быть двух типов – линейные и импульсные. И те, и другие выполняют одну и ту же задачу – стабилизируют ток, протекающий через светодиод, на заданном уровне. Но принцип стабилизации у них существенно отличается.

Линейные

По сути, такой стабилизатор представляет собой переменный резистор, но движком управляет не рука человека, а электронная схема.

Упрощенная схема линейного стабилизатора тока Упрощенная схема линейного стабилизатора тока

При подаче на вход схемы напряжения Uвх, оно проходит через регулирующий элемент РЭ, схему контроля тока КТ и подается на выход, к которому подключена нагрузка. Узел КТ контролирует ток и в зависимости от его величины изменяет сопротивление РЭ. Ток мал – сопротивление РЭ уменьшается, велик – увеличивается. В результате на нагрузке поддерживается тот ток, на который настроен конкретный КТ.

Регулируется, конечно, не ток, а напряжение на нагрузке, но именно от его величины зависит величина тока.

Стабилизатор, работающий по такому принципу прост в построении, достаточно надежен, при необходимости легко ремонтируется. Стоит он недорого и имеет хорошие массогабаритные показатели. Кроме того, подобная схема осуществляет безобрывную регулировку тока и не создает импульсных помех в цепях питания.

Но есть у этого принципа и существенный недостаток – низкий КПД. Линейный стабилизатор по своей сути - регулируемый делитель напряжения. Нужная часть Uвх подается на нагрузку, остальное бесполезно рассеивается на регулирующем элементе, роль которого обычно выполняет транзистор того или иного типа. Что касается КПД, то его несложно рассчитать, воспользовавшись простой формулой:

КПД = Uвых/Uвх

Импульсные

Принцип работы стабилизаторов этого типа в корне отличается от принципа линейной стабилизации.

Упрощенная схема импульсного стабилизатора тока Упрощенная схема импульсного стабилизатора тока

Здесь регулирующим элементом является ключ К, а схема дополнена дросселем L и диодом. При замыкании ключа дроссель начинает запасать энергию в магнитном поле, а ток через него постепенно возрастает. Диод в это время заперт и в процессе не участвует.

Как только ток достигнет заданной величины, токовый контроллер КТ разомкнет ключ. Откроется диод и дроссель начнет возвращать запасенную энергию в цепь. Постепенно ток начнет уменьшаться и как только он достигнет критически низкого значения, КТ снова замкнет ключ К. Процесс повторится.

Очевидно, что на регулирующем элементе, работающем в ключевом режиме, будет рассеиваться намного меньшая мощность, чем при работе в режиме линейной стабилизации. Именно поэтому, стабилизаторы, работающие по этому принципу, имеют высокий КПД, который при правильно подобранных элементах может достигать 98% даже при больших токах коммутации. При этом регулирующему элементу не понадобится громоздкий радиатор, что существенно улучшит массогабаритные показатели.

Впрочем, улучшит не существенно, так как место радиатора займет дроссель. Он несколько меньше радиатора, но при больших токах коммутации может иметь достаточно большие размеры.

Что касается недостатков, то есть и они. Схема, работающая по такому принципу, много сложнее схемы с линейной стабилизацией и, естественно, стоят дороже. Но самое главное - регулирующий элемент, работающий в ключевом режиме, создает высокочастотные (до мегагерц) помехи, распространяющиеся как по цепям питания, так и в виде радиоволнового излучения. Подобные помехи могут мешать работе радиоприемной, звукоусилительной и другой чувствительной аппаратуры.

Какой драйвер лучше?

Исходя из вышесказанного однозначно ответить на этот вопрос сложно. Линейная схема стабилизации тока оправдывает себя лишь при работе с малыми (до 100 мА) токами или небольшой разницей между входным и выходным напряжениями. Исключение может составлять лишь случай, когда необходимо полное отсутствие помех – в звукозаписывающих студиях, больницах с чувствительным оборудованием и пр.

Импульсные драйвера, хотя и имеют свои недостатки, в большинстве случаев все же предпочтительнее линейных. Именно поэтому на сегодняшний день они практически вытеснили приборы линейного типа, оставив им лишь узкую строго ограниченную нишу.

Что такое драйвер для LED светильников?

Спрос на светодиодные светильники с каждым годом увеличивается. Эти осветительные приборы используются в домах, квартирах, офисах, торгово-промышленных помещениях. Это закономерно, так как споты долго служат, позволяют экономить электроэнергию и создавать индивидуальные сценарии освещения.

Основным элементом LED светильников является светодиод, который будет нормально работать только в том случае, если к нему будет поступать стабильный постоянный ток. Обеспечить подачу стабильного тока к светоизлучающим диодам помогают специальные блоки питания или драйверы, которые преобразуют подаваемый переменный ток в постоянный.

Виды драйверов

Линейные драйверы обеспечивают плавную стабилизацию тока на входе, представляют собой генератор тока с р-каналом. При подстройке не возникает никаких помех, даже если на прибор подается неустойчивое напряжение. Линейные драйверы достаточно просты в исполнении, недорого стоят. Главный недостаток устройств – низкая эффективность и большое количество тепла, выделяемое во время работы. По этой причине, линейные драйверы нецелесообразно использовать в комплексе с мощными LED светильниками .

Импульсные драйверы создают на выходе серию высокочастотных импульсов тока и работают по принципу ШИМ. Как правило, в таких приборах среднее значение выходного тока находится в зависимости от отношения ширины импульсов к периоду их следования (коэффициенту заполнения). Импульсные устройства хороши тем, что имеют небольшой размер, обладают высоким КПД (порядка 95%). Недостаток приборов – электромагнитные помехи, которые негативно влияют на работу других устройств и организм человека.

Диммируемые драйверы

На светотехническом рынке можно купить светодиодные светильники разных модификаций, в том числе и с изменением яркости и цветовой температуры света. Для управления такими приборами необходимы диммируемые драйверы, которые не только стабилизируют ток, но и позволяют вручную или дистанционно настраивать систему освещения под определенные задачи.

Диммируемые драйверы также разделяют на два вида:

  • Первые – позволяют управлять током, который поступает от блока питания на светодиод, при помощи ШИМ.
  • Вторые – объединяют ШИМ-регулирование и управление величиной тока, поступающего на светоизлучающий кристалл. Дают возможность управлять непосредственно источником питания.

Что интересно, при использовании драйверов для светильников на шинопроводе , которые управляют изменением величины тока, можно менять яркость и цветовую температуру осветительных приборов. При использовании диммируемых приборов, работающих на основе ШИМ-технологии, часто наблюдаются световые эффекты, которые негативно влияют на зрение, поэтому их, используют довольно редко.

Читайте также: