Зачем делается повторное заземление нулевого провода

Обновлено: 23.04.2024

Повторное заземление нулевого провода

Повторное заземление нулевого защитного проводника — это заземление, выполненное через определенные промежутки по всей длине нулевого провода. Повторное заземление позволяет снизить напряжение нулевого провода и зануленного оборудования относительно земли при замыкании фазы на корпус как при нормальном режиме, так и при обрыве нулевого провода.

При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

Согласно ПУЭ, проводники зануления должны выбираться так, чтобы при замыкании на корпус или на нулевой провод возникал ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или номинальный ток расцепителя автоматического теплового выключателя, имеющего обратнозависимую от тока характеристику. При защите сети автоматическими выключателями с электромагнитными расцепителями кратность тока принимается равной 1,1; при отсутствии заводских данных — 1,4 для автоматов с номинальным током до 100 А, а для прочих автоматов 1,25. Во взрывоопасных установках кратность тока должна быть не менее 4 при защите предохранителями, не менее 6 при защите автоматами с обратнозависимой от тока характеристикой и аналогично предыдущему при автоматах, имеющих только электромагнитный расцепитель. Полная проводимость нулевого провода во всех случаях должна быть не менее 50 % проводимости фазного провода.

Должна обеспечиваться непрерывность нулевого провода от каждого корпуса до нейтрали источника питания. Поэтому все соединения нулевого провода выполняются сварными. Присоединение нулевого провода к корпусам электроприемников осуществляется сваркой или с помощью болтов.

В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (см. рис.), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли Uк, равным:

где Iк – ток КЗ, проходящий по петле фаза-нуль, А; zPEN– полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом (т. е. участка АВ).

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Напряжение Uк будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE, то (4.3) примет вид:

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rП (на рис. 4.9 это заземление показано пунктиром), то Uк снизится до значения, определяемого формулой:

где Iз – ток, стекающий в землю через сопротивление rп, А; Uав – падение напряжения в нулевом защитном проводнике на участке АВ; r0– сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис. 4.10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iз, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой

При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:

где r0 – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.

Что такое повторное заземление

На обустройство так называемого повторного заземления на вводе в здание всегда обращают внимание инспекторы по Технике Безопасности (ТБ).

Вопросам организации заземляющего контура на стороне потребителя всегда уделяется повышенное внимание, поскольку от правильности его обустройства, в конечном счете, зависит здоровье пользователей электросетей.

Согласно требованиям нормативных документов (ПУЭ, в частности) заземляющий контур, защищающий работающих на электрооборудовании людей, обязателен при любых обстоятельствах. Это объясняется тем, что передаваемая по отдельному защитному проводу функция заземления, устроенного на трансформаторной подстанции, очень ненадежна из-за большой вероятности обрыва нулевой жилы («отгорания» нуля).

Содержание

Для чего нужно повторное заземление

С технической точки зрения повторное заземление (ПЗ) – это специально обустраиваемое на стороне потребителя защитное устройство, гарантирующее безопасность работающих на линии людей. Оно «срабатывает» в случае пропадания связи с подстанцией по нулевому или совмещенному проводу.

что такое повторное заземление

Для обустройства повторного заземления допускается применять так называемые «естественные» заземлители, к которым относят:

  • металлические каркасы конструкций, уже проложенных в почве и имеющих непосредственный контакт с ней;
  • металлические защитные кожуха и броню силовых кабелей, заглубленных в грунт;
  • участки стальных труб (исключение составляют газовые магистрали и нефтепроводы);
  • железнодорожные рельсы.

Обратите внимание: Использование в качестве контура повторного заземления уже уложенных в почве готовых конструкций упрощает монтаж ЗУ и позволяет минимизировать расходы на его обустройство.

Отметим, что их сопротивление никак не контролируется пользователем, поэтому его значение может в любое время непредсказуемо измениться. Чтобы исключить такое положение – в особо ответственных случаях обустраиваются искусственные заземляющие конструкции, имеющие стабильные технические характеристики.

Повторное заземление нулевого провода – один из способов организации искусственной системы, способной продублировать функцию станционного ЗК. Последним объяснением исчерпывается вопрос о том, что такое есть повторное заземление и как его можно обустроить.

Применение повторного заземления в классической системе TN

Повторное заземление является важнейшим элементом комплексной системы защиты от поражения электрическим током. Его используют для заземления нулевого защитного провода РЕ и РЕN электрических сетей до 1000 Вольт в системе ТN с глухозаземленной нейтралью трансформатора.

Классические системы заземления принято различать по состоянию их нейтрали, которая может быть глухо заземленной или изолированной. В соответствие с этим признаком они делятся на две большие группы и обозначаются соответствующим сочетанием английских букв. «Т» означает земля, а «N» – нейтраль, что при их совместном написании символизирует заземленный «нуль». Помимо этого в данных системах предусмотрены проводники и шины, обозначаемые как PE (отдельный заземляемый повод) или же PEN –совмещенная рабочая и защитная шина.

В зависимости от выбранной схемы постоянно заземленный нейтральный провод N может быть как независимым от защитного PE-проводника, а может соединяться с ним, образуя шину PEN. В первом случае получаем систему TN-S («Select» или раздельная прокладка), а во втором – TN-C.

Обратите внимание: Здесь «C» означает «Combined» или комбинированный.

Существует еще один вариант, когда два провода (защитный и нулевой) на стороне подстанции объединены, а при вводе на объект разделяются на защитный проводник PE и функциональную шину N. Подобная организация системы защиты потребителя носит название TN-C-S и также предполагает обязательность заземления нулевого провода.

Применение системы TN-C

Система TN-C широко применялась в распространенных ранее двухпроводных сетях, которые нередко встречаются и сегодня (в основном – в домах старой застройки). С точки зрения рядового пользователя она характеризуется тем, что в этом случае в розетках отсутствует специальный заземляющий контакт.

система TN-C

В сетях, сконструированных на основе этой схемы, нулевой провод заземляется только на станционной стороне (фото выше). Поэтому при его случайном обрыве или так называемом «отгорании» все подключенные к линии электроустановки и приборы оказываются совершенно незащищенными. Это вынуждает пользователей персонально заземлять каждую единицу эксплуатируемого в доме бытового прибора или устанавливать УЗО.

Обратите внимание: Для владельцев частных и загородных домов условия в этом случае более чем выгодные, поскольку они могут организовать повторное заземление, обустроив выносной контур прямо на участке.

В современном строительстве эта системы уже много лет не используется; сегодня ей на смену пришла более эффективная TN-S.

Применение системы TN-S

Система TN-S более совершенна в смысле организации защиты, то есть имеет большую степень электрической безопасности. Это объясняется тем, что в ней имеется «самостоятельный» заземленный проводник, служащий исключительно для этих целей. Правда, за счет использования дополнительного медного материала стоимость системы существенно возросла. В случае трехфазного питания, например, от источника электроэнергии (трансформаторной подстанции) приходится прокладывать кабель, содержащий пять проводов. Это три обязательные фазы A, B и C, а также нейтраль и защитный проводник PE.

система TN-S

При реализации системы TN-C в электрических цепях организация повторного заземления нулевого провода также обязательна. Она производится методом соединения нейтрального проводника с земляной жилой защитного контура, обустраиваемого на стороне потребителя.

Система TN-C-S

Эта схема разработана с целью устранения недостатков системы TN-S и предусматривает использование в качестве общей шины совмещенного PEN-проводника, проложенного только до ввода на объект.

Важно! Непосредственно перед вводом в здание общая шина разделяется на две жилы (на нейтраль N и защитный провод PE).

Эта система представляет собой нечто среднее между двумя уже рассмотренными вариантами защиты. Она не лишена тех же минусов, что и TN-S, так как в случае повреждения проводника PEN на линии от подстанции до объекта, все установленные в нем электроприборы окажутся под опасным напряжением. Для этого случая ПУЭ предписывают дополнительную защиту шины PEN от деформаций и механических повреждений.

система TN-C-S

Для этого на вводе в электроустановку напряжением до 1 кВ или в распределительном шкафу дома провод PEN обязательно «расщепляется» на две шины. Одна из них используется как рабочий нулевой проводник, а вторая – в качестве заземляющей жилы.

Рассмотренный подход к организации ПЗ позволяет исключить занос в силовые цепи дома наведенных токов через эффект, оказываемый э/м полями внешних коммуникаций. Вдобавок к этому оно снижает потенциал на корпусах оборудования и бытовых приборов при случайном обрыве N-проводника.

Воздушные линии электропередач

На опорах линий электропередач (ВЛ) согласно действующим положениям ПУЭ повторное заземление PEN-проводника, прокладываемого от трансформаторной подстанции, делается обязательно. Объяснить это можно потребностью повышения электрической безопасности персонала, работающего на ВЛ, а также созданием условий для надежного срабатывания автоматов защиты.

повторное заземление вл

Обратите внимание: Количество и частота размещения повторных заземлителей вдоль трассы прокладки линий электропередач определяется подготовленным для нее проектом электроснабжения.

ПЗ обязательно обустраивается в следующих местах:

  • На опорах, расположенных в конце ВЛ.
  • На столбах, непосредственно перед вводом «воздушки» на объект.
  • Перед любым ответвлением от трассы, протяженность которого составляет более 200 метров.

Для монтажа заземляющего устройства обычно используется подземная часть ВВ опоры. В случае, когда ее недостает для получениятребуемых характеристик – делается дополнительный контур. Для оформления спуска с вершины столба применяется проволока без изоляции диаметром 6,0 или 8,0 мм. Помимо PEN-провода, обязательно заземляются все элементы конструкции опоры, изготовленные из металлов. Согласно требованиям ПУЭ сопротивление повторного контура не должно превышать 30-ти Ом.

На столбах с приборами уличного освещения обязательному заземлению подлежат не только провода СИП, но также корпуса светильников и другие детали самих опор, изготовленные на основе металла. Для этих целей в городской черте с ограниченными возможностями заглубления вместо типовых вертикальных штырей нередко используются горизонтальные полосы. После их монтажа полагается провести испытание обустроенной системы, проверив реальное сопротивление заземляющего устройства посредством специальных измерительных инструментов. Без повторного заземления самонесущих проводов и опор городского освещения, данный участок трассы приемной комиссией к эксплуатации не допускается.

Применение устройств отключения

защитные проводники в распределительном щите

Чтобы обеспечить полную защищенность работающих на линии людей и рядовых потребителей согласно ПУЭ, помимо повторного заземления рекомендуется применять УЗО или так называемые «дифференциальные» автоматы. Каждое их этих устройств допускается использовать в комбинированной системе ТN-C-S, где PEN-проводник разделен на две жилы (PE и N). Это разделение традиционно организуется на вводном щите с использованием главной заземляющей шины (ГЗШ).

Важно! Совместное использование УЗО с заземляющим контуром значительно повышает уровень безопасности работающих на линии людей, одновременно защищая их от утечек тока.

В электроустановках где для повторного заземления не имеется подходящих условий, допускается ограничиться несколькими УЗО, включенными по схеме со ступенчатой защитой. Такой организацией системы безопасности удается предотвратить удар человека током за счет мгновенного отключения поврежденного участка линии от сети.

В заключение статьи предлагаем Вам посмотреть видео о монтаже повторного заземления:

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Разбираемся с повторным заземлением частного дома

Существует две наиболее распространённых системы заземления — TN и TT. Грубо говоря, в TN заземление берётся при расщеплении проводника PEN на PE и N, а в TT из забитого рядом с домом уголка.

ПУЭ 7, п.1.7.59 гласит, что если условия электробезопасности в системе TN не могут быть обеспечены (т.е. магистральная линия находится в таком плачевном состоянии, что не может обеспечить надёжность проводника PEN), то допускается заземляться по схеме ТТ. К сожалению, ПУЭ не указывает, в каких именно случаях электробезопасность в системе TN не может быть обеспечена, поэтому догадываемся сами.

Согласно тому же пункту, в случае системы TT установка УЗО обязательна, и при этом сопротивление заземления должно рассчитывается таким, чтобы напряжение на корпусе электроприбора при повреждении изоляции никогда не превышало 50 В. Это условие соблюсти очень легко, поскольку дифференциальный ток УЗО равен всего 30 ма, а значит, согласно приведённой в пункте формуле, сопротивление заземления не должно превышать 50 В / 0,03 А = 1667 Ом. Такое большое сопротивление сможет обеспечить любая железка, воткнутая в землю.

Однако, если магистральная линия относительно надёжна, необходимо делать заземление по схеме TN. Давайте рассмотрим этот вариант подробнее, поскольку именно он вызывает много недопонимания.

Схема TN

Если отвод от магистральной линии к дому выполнен кабельной линией , повторное заземление на вводе не обязательно, но рекомендуется (ПУЭ 7 п.1.7.61). Если же отвод воздушный, то повторное заземление обязательно, если в доме используются хотя бы автоматические выключатели, а они в электроустановках домов используются всегда.

1.7.102. . на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника.

Автоматический выключатель является защитной мерой при косвенном прикосновении (не совсем правильная формулировка в ПУЭ, защитная мера от косвенного прикосновения). Если фазный провод замкнёт на корпус, через него пойдёт ток, который может автоматически отключить линию своим электромагнитным расцепителем. Я уж не говорю про работу УЗО, использование которого является хорошей практикой.

То есть, заземление воздушного отвода на вводе должно всегда выполняться. Но вот с сопротивлением этого повторного заземления возникает путаница из-за нечёткой формулировки (ПУЭ 7 п.п.1.7.102- 1.7.103). Есть два толкования. Одни специалисты говорят о 10 омах, другие — о 30 омах. Давайте разбираться.

1.7.103. Общее сопротивление растеканию заземлителей . всех повторных заземлений PEN-проводника каждой BЛ . должно быть не более . 10 . Ом . при линейных напряжениях . 380 . В источника трехфазного тока или . 220 . В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более . 30 . Ом .

Воздушная линия (ВЛ) включает в себя магистраль ВЛ, линейные ответвления и ответвления к вводу, что следует из ПУЭ 7, п.п.2.4.2-2.4.3.

Заземлитель — это один или совокупность соединённых между собой электродов, то есть, подземная часть одного заземления, неважно из скольких, скажем, уголков она сделана (ПУЭ 7, п.1.7.15).

Пункт 1.7.103 гласит, что сопротивление всех повторных заземлений ВЛ должно быть не более 10 Ом. Далее написано, что сопротивление каждого заземления должно быть не более 30 Ом. Другой информации нет. То есть, у ВЛ любое повторное заземление должно быть не более 30 Ом. А общее сопротивление всех заземлений не должно превышать 10 ом.

Согласно этому, сопротивление на вводе в дом должно быть не более 30 Ом. А цифра в 10 Ом вылезает, вероятно, когда за отдельную ВЛ ошибочно принимают её ответвление.

Также цифра в 30 Ом подтверждается ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) Приложение 3.1. Таблица 36. «Наибольшие допустимые значения сопротивлений заземляющих устройств электроустановок», в которой значится цифра 30 Ом.

Также цифра 30 Ом фигурирует в различных электротехнических циркулярах и разъяснениях. По цифре в 10 Ом я не видел ни одного аргументированного объяснения с соответствующими ссылками на конкретные пункты нормативных документов. Значит, не пудрим себе мозги, и делаем на вводе в дом повторное заземление сопротивлением 30 Ом.

Самое подходящее место для такого заземления — вводное устройство, в котором размещена главная заземляющая шина, на которой происходит расщепление PEN на PE и N.

В следующей статье я расскажу о своей программе под Windows, с помощью которой можно довольно точно и очень легко рассчитать сопротивление заземлителя, сформировав настройками его конструкцию. Поэтому, чтобы не пропустить эту статью, подписывайтесь на мой канал. Также, ставьте лайки и пишите ваши замечания в комментариях.

Заземление и зануление: разбираемся в чем разница

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

Повторное заземление в системе TN-C-S. Разбираемся в противоречиях

повторное заземление в системе TN-C-S

Повторное заземление PEN на вводе в частный дом

Во многих обзорах постоянно муссируются какие-то требования ПУЭ, идут споры 10 или 30 Ом, неверно трактуются и берутся выборочные пункты ПУЭ. Поэтому для начала постараемся правильно прочитать и сопоставить пункты ПУЭ, относящиеся к повторному заземлению в системе TN. А далее все ситуации просчитаем и смоделируем в среде программы Electronics Workbench.

Система TN-C-S:

TN-C-S

При применении системы TN рекомендуется выполнять повторное заземление РЕ и PEN проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.

ПУЭ 1.7.102:

На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (смотреть главу 2.4).

Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.

Повторные заземления PEN проводника в сетях постоянного тока должны быть выполнены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Заземляющие проводники для повторных заземлений PEN проводника должны иметь размеры не менее приведенных в таблице 1.7.4.

Прежде чем переходить к главе 2.4, завершим рассмотрение основных пунктов главы 1.7, относящихся к повторному заземлению.

ПУЭ 1.7.103:

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

Здесь все предельно просто. Сопротивление заземлителя повторного заземления PEN проводника не должно превышать 30 Ом. А сумма сопротивлений заземлителей повторных заземлений не должно превышать 10 Ом. То есть для выполнения этого условия достаточно минимум трех повторных заземлений (30 Ом каждое), и в сумме по правилу параллельного соединения резисторов они дадут 10 Ом.

Продолжим, и наконец-то определимся с условием, когда повторное заземление PEN- проводника на вводе к электроустановкам частного дом в системе TN делать не обязательно. Нам нужно узнать, когда делаются более частые заземления по условиям защиты от грозовых перенапряжений, и ответ на это есть в пункте ПУЭ 2.4.46:

Кроме того, заземляющие устройства должны быть выполнены:

Дополнительно для полного понимания следует рассмотреть еще два пункта:

  • ПУЭ 2.4.38. На опорах ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления, защиты от грозовых перенапряжений, заземления электрооборудования, установленного на опорах ВЛ. Сопротивление заземляющего устройства должно быть не более 30 Ом.
  • ПУЭ 2.4.44. Защитные аппараты, устанавливаемые на опорах ВЛ для защиты от грозовых перенапряжений, должны быть присоединены к заземлителю отдельным спуском.

То есть не нужно считать одним и тем же повторное заземление и защиту от грозовых перенапряжений. Но если на опоре выполнено второе, то и первое должно быть выполнено. Именно из-за этой взаимосвязи во втором абзаце пункта 1.7.102 ставилось условие наличия частого заземления по условиям защиты от грозовых перенапряжений.

Отсутствие нормируемого повторного заземление PEN ВЛ свидетельствует о несоответствии системы TN требованиям для населенной местности с одно- и двухэтажной застройкой. В этом случае необходимо выполнить заземление электроустановок частного дома по системе TT.

моделирование ситуаций с повторным заземлением

моделирование ситуаций с повторным заземлением

моделирование ситуаций с повторным заземлением

На третей схеме мы изменили сопротивление нашего заземляющего устройства с 30 Ом на 300 Ом. В результате общее сопротивление возросло на несколько Ом и осталось в пределах нормируемых 10 Ом. Такое изменение привело к незначительному (на несколько вольт) ухудшению показаний по перекосу. Здесь также следует отметить, что при отгорании общего нуля дополнительно происходит вынос потенциала на зануленные корпуса. И чем ниже общее сопротивление заземлителей всех повторных заземлений, тем меньше опасное влияние при данной аварийной ситуации. Поэтому, если у вас нет желания брать на себя работу снабжающей организации по снижению общего сопротивления заземлителей повторного заземления, то делать этого никто не обязывает.

моделирование ситуаций с повторным заземлением

На четвертой и пятой схеме вынос потенциала на зануленные корпуса в вашем доме. В обоих случаях, как при сопротивлении заземлителя 300 Ом, так и 1000 Ом произойдет мгновенной срабатывание автоматических выключателей из-за больших токов короткого замыкания. Здесь ваше повторное заземление никакой существенной работы не выполняет.

моделирование ситуаций с повторным заземлением

На шестой схеме смоделировано отгорание вашего PEN проводника. При этом через какую-нибудь включенную нагрузку может произойти вынос потенциала через место разделения PEN на PE и N на все зануленные корпуса. Ваша система заземления фактически превращается в комбинацию из TT и опасного зануления. При этом никакое УЗО не сработает, так как дифференциальных токов не будет.

моделирование ситуаций с повторным заземлением

Здесь должен отработать расцепитель минимального напряжения (или реле контроля напряжения), так как при обрыве вашего PEN и включенной нагрузке за счет заземления произойдет падение напряжения. Без заземления данные устройства также обесточат сеть при обрыве нуля.

Теперь рассмотрим самую саму худшую ситуацию. Частный дом, человек во дворе босиком касается заземленного корпуса. Расцепителя минимального напряжения нет, а СУП не работает. В этом случае нужно понимать, что на улице нужно использовать оборудование соответствующего класса электробезопасности. В противном случае единственной надеждой будет только заземление, значительно снижающее напряжение прикосновения. И здесь никакие нормы по повторному заземлению PEN проводника не применимы. Самое надежное заземляющее устройство в такой аварийной ситуации то, которое будет иметь наименьшее сопротивление.

Допустим, что до момента отгорания PEN в доме была включена нагрузка с током потребления 2 А. Соответственно сопротивление потребителя 110 Ом. Рассмотрим два варианта с повторным заземлением – 30 Ом и 4 Ом сопротивление заземлителя.

моделирование ситуаций с повторным заземлением

Как видно, при минимальном сопротивлении заземлителя (условно 4 Ом) значительно снижается напряжение прикосновения. Это важно, так как защитное отключение здесь не работает.

Когда и для чего необходимо применять повторное заземление?

При проектировании системы энергоснабжения на объекте потребителя, проектировщики по умолчанию закладывают систему заземления. Система заземления является защитой для людей от поражения током, возникающим при повреждении электрооборудования и бытовых приборов. Существует несколько вариантов их исполнения и у одного из наших читателей возник вопрос о системе заземления типа TN-C.

Вопрос: если в частном доме уже установлена система TN-C, нужно ли устанавливать дополнительное заземление?

Система заземление TN-C

Изображение схемы подключения в системе TN-C

Для ответа немного вспомним о данном способе устройства заземления. Некоторое время назад, данная система широко применялась в многоквартирных домах, а также в сетях уличного освещения. Обозначение букв TN-C означает объединение функционального и защитного нулевых проводников, т.е. нулевой и защитный проводник объединены в один проводник PEN. Проводник PEN соединяет контур заземления, выполненный в трансформаторной подстанции, питающей объект с розетками потребителя, таким образом, создавая защитное заземление. Преимуществом системы является простота и дешевизна монтажа. Явный недостаток — это угроза поражения людей током.

Ответ: данная система устарела и ее необходимо менять. Пункт 1.7.80 запрещает использовать УЗО в системе TN-C, а т.к. без УЗО невозможно обеспечить надлежащую электробезопасноть, то и эта система оказывается под запретом. Систему TN-C нужно модифицировать до TN-C-S, разделив PEN-проводник на два проводника: N - нулевой и PE-защитный. Так как мы рассматриваем случай, когда объект — это частный дом, то рекомендуем выполнить повторное заземление с сопротивлением не более 30 Ом в соответствии с пунктом 1.7.103 ПУЭ 7 изд., установив модульно-штыревое заземление. Заземляющее устройство выполняется из омедненных металлических штырей, установленных в землю, и объединяется с PE-проводником.

В современном мире жизнь человека невообразима без электрических приборов, поэтому важно обеспечить безопасность электросети для вас и ваших близких. Позвоните или напишите нашим техническим специалистам, и они рассчитают подходящую под вашу задачу конфигурацию заземления!

Смотрите также:

Читайте также: