Векторная диаграмма напряжений и токов при соединении фаз несимметричного приемника в треугольник

Обновлено: 09.05.2024

Векторная диаграмма напряжений и токов при соединении фаз несимметричного приемника в треугольник

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

где определяется характером нагрузки .

Тогда на основании вышесказанного

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

Тогда для искомых токов можно записать:

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Трехфазные электрические цепи - история, устройство, особенности расчета напряжения, тока и мощности


GeekBrains

Исторически первым явление вращающегося магнитного поля описал Никола Тесла, и датой этого открытия принято считать 12 октября 1887 года, - момент подачи ученым заявок на патенты, касающиеся асинхронного двигателя и технологии передачи электроэнергии. 1 мая 1888 года в США, Тесла получит свои главные патенты - на изобретение многофазных электрических машин (в том числе на асинхронный электродвигатель) и на системы передачи электрической энергии посредством многофазного переменного тока.

Сутью новаторского подхода Тесла к данному вопросу явилось его предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как единую многофазную систему переменного тока, включающую в себя и генератор, и линию передачи, и двигатель переменного тока, который Тесла называл тогда «индукционным».

На европейском континенте, параллельно изобретательской деятельности Тесла, аналогичную задачу решал Михаил Осипович Доливо-Добровольский, работа которого была направлена на оптимизацию способа широкомасштабного использования электроэнергии.

На основе технологии двухфазного тока Николы Тесла, Михаил Осипович самостоятельно разработал трёхфазную электрическую систему (как частный случай многофазной системы) и асинхронный электродвигатель совершенной конструкции — с ротором типа «беличья клетка». Патент на двигатель Михаил Осипович получит 8 марта 1889 года в Германии.

Трехфазная сеть по Доливо-Добровольскому строилась по тому же принципу, что и у Тесла: механическую энергию в электрическую преобразует трехфазный генератор, по линии электропередач к потребителям подаются симметричные ЭДС, при этом потребителями выступают трехфазные двигатели или однофазные нагрузки (такие как лампы накаливания).

Трехфазные цепи переменного тока по сей день служат для обеспечения генерации, передачи и распределения электрической энергии. Данные цепи, как следует из их названия, строятся каждая из трех электрических подцепей, в каждой из которых действует синусоидальная ЭДС. ЭДС эти генерируются общим источником, имеют равные амплитуды, равные частоты, однако смещены по фазе друг относительно друга на 120 градусов или на 2/3 пи (треть периода).

Каждая из трех цепей трехфазной системы именуется фазой: первая фаза – фаза "А", вторая фаза – фаза "В", третья фаза – фаза "С".

Начала этих фаз обозначаются соответственно буквами А, В и С, а концы фаз – X, Y и Z. Данные системы отличаются экономичностью, в сравнении с однофазными; возможностью простого получения вращающегося магнитного поля статора для двигателя, доступностью двух напряжений на выбор — линейного и фазного.

Генератор трехфазного тока и асинхронные двигатели

Итак, трехфазный генератор представляет собой синхронную электрическую машину, предназначенную для создания трех гармонических ЭДС, смещенных на 120 градусов по фазе (по сути - во времени) друг относительно друга.

На статоре генератора для этой цели установлена трехфазная обмотка, у которой каждая фаза состоит из нескольких катушек, причем магнитная ось каждой «фазы» обмотки статора физически в пространстве повернута на треть окружности относительно двух других «фаз».

Такое расположение обмоток позволяет получать он них систему трехфазных ЭДС в процессе вращения ротора. Ротором здесь служит постоянный электромагнит, возбуждаемый током обмотки возбуждения, расположенной на нем.

Турбина на электростанции вращает ротор с постоянной скоростью, магнитное поле ротора вращается вместе с ним, магнитные силовые линии пересекают проводники обмоток статора, в итоге получается система индуцированных синусоидальных ЭДС одинаковой частоты (50 Гц), смещенных друг относительно друга во времени на треть периода.

Амплитуда ЭДС определяется индукцией магнитного поля ротора и количеством витков в обмотке статора, а частота — угловой скоростью вращения ротора. Если принять начальную фазу обмотки А равной нулю, то для симметричных ЭДС трех фаз можно сделать запись в форме тригонометрических функций (фаза в радианах и в градусах):

Кроме того возможна запись действующих значений ЭДС и в комплексной форме, а также изображение множества мгновенных значений в графическом виде (см.рис2):

Векторные диаграммы отражают взаимный фазовый сдвиг трех ЭДС системы, причем в зависимости от направления вращения ротора генератора, направление чередования фаз будет различаться (прямое или обратное). Соответственно, направление вращения ротора подключенного к сети асинхронного двигателя будет разным:

Если нет дополнительных оговорок, то подразумевается прямое чередование ЭДС в фазах трехфазной цепи. Обозначение начал и концов обмоток генератора - соответствующих фаз, а также направление действующих в них ЭДС, показано на рисунке (справа схема замещения):

Схемы подключения трехфазной нагрузки — «звезда» и «треугольник»

Для питания нагрузки через три провода трехфазной сети, к каждой из трех фаз присоединяют как-бы по своему потребителю, или по фазе трехфазного потребителя (так называемого приемника электроэнергии).

Трехфазный источник можно изобразить схемой замещения из трех идеальных источников симметричных гармонических ЭДС. Идеальные приемники представлены здесь тремя полными комплексными сопротивлениями Z, каждое из которых питается от соответствующей фазы источника:

На рисунке для ясности изображены три цепи, не связанные между собой электрически, однако на практике такое включение не используется. В реальности три фазы все же имеют электрические соединения друг с другом.

Фазы трехфазных источников и трехфазных потребителей соединяют друг с другом различными способами, и чаще всего встречается одна из двух схем - «треугольник» или «звезда».

Фазы источника и фазы потребителя могут быть сопряжены между собой разными сочетаниями: источник соединен звездой и приемник звездой, или источник — звездой, а приемник — треугольником.

Именно такие сочетания соединений и применяются чаще всего на практике. Схема «звезда» предполагает наличие одной общей точки у трех «фаз» генератора или трансформатора, такая общая точка называется нейтралью источника (или нейтралью приемника, если речь о «звезде» потребителя).

Соединяющие источник и приемник провода, называются линейными проводами, они связывают выводы обмоток фаз генератора и приемника. Провод, соединяющий нейтраль источника и нейтраль приемника называют нейтральным проводом . Каждая фаза образует своеобразную индивидуальную электрическую цепь, где каждый из приемников присоединен к своему источнику парой проводов - одним линейным и одним нейтральным.

Когда конец одной фазы источника соединяется с началом второй его фазы, конец второй — с началом третьей, а конец третьей — с началом первой, такое соединение фаз источника называется «треугольник». Три провода приемника, присоединенные аналогичным образом между собой, тоже образуют схему «треугольник», и вершины данных треугольников присоединяются друг к другу.

Каждая фаза источника в данной схеме образует собственную электрическую цепь с приемником, где присоединение образовано двумя проводами. Для такого подключения названия фаз приемника записывают двумя буквами в соответствии с проводами: ab, ac, ca. Индексы для параметров фаз обозначают этими же буквами: комплексные сопротивления Zab, Zac, Zca.

Фазное и линейное напряжения

У источника, обмотка которого соединена по схеме «звезда», имеется две системы трехфазных напряжений: фазное и линейное.

Фазное напряжение — между линейным проводом и нейтралью (между концом и началом одной из фаз).

Линейное напряжение — между началами фаз или между линейными проводами. За положительное направление напряжения здесь условно принимают направление от точки цепи с более высоким потенциалом — к точке с более низким потенциалом.

Поскольку внутренние сопротивления обмоток генератора крайне малы, ими обычно пренебрегают, и считают, что фазные напряжения равны фазным ЭДС, поэтому и на векторных диаграммах напряжения и ЭДС обозначают одними и теми же векторами:

Приняв потенциал нейтральной точки за ноль, получим, что потенциалы фаз окажутся тождественны фазным напряжениям источника, а линейные напряжения — разностям фазных напряжений. Векторная диаграмма примет вид как на рисунке выше.

Каждая точка на такой диаграмме соответствует определенной точке трехфазной цепи, и проведенный между двумя точками диаграммы вектор покажет поэтому напряжение (его величину и фазу) между соответствующими двумя точками той цепи, для которой построена данная диаграмма.

В силу симметричности фазных напряжений, симметричны и линейные напряжения. Это видно по векторной диаграмме. Векторы линейных напряжений лишь сдвинуты между собой так же на 120 градусов. А соотношение между фазными и линейными напряжениями легко находится из треугольника на диаграмме: линейное в корень из трех раз больше фазного.

Кстати, для трехфазных цепей всегда нормируются именно линейные напряжения, ибо только при введении нейтрали можно будет говорить еще и о напряжении фазном.

Расчеты для «звезды»

На рисунке ниже изображена схема замещения приемника, фазы которого соединены «звездой», подключенного через провода ЛЭП к симметричному источнику, выводы которого обозначены соответствующими буквами. При расчетах трехфазных цепей решаются задачи по нахождению линейных и фазных токов когда известны сопротивления фаз приемника и напряжения источника.

Токи в линейных проводниках называются линейными токами, их положительное направление — от источника — к приемнику. Токи в фазах приемника — это фазные токи, их положительное направление — от начала фазы — к ее концу, как направление фазных ЭДС.

Когда приемник собран по схеме «звезда», имеет место ток и в нейтральном проводнике, его положительным направлением принимается — от приемника — к источнику, как на ниже приведенном рисунке.

Если рассмотреть для примера несимметричную четырехпроводную цепь нагрузки, то фазные напряжения приемника, при наличии нейтрального проводника, окажутся равны фазным напряжениям источника. Токи в каждой фазе находятся по закону Ома. А первый закон Кирхгофа позволит найти величину тока и в нейтрали (в нейтральной точке n на рисунке выше):

Далее рассмотрим векторную диаграмму данной цепи. На ней отражены линейные и фазные напряжения, также построены несимметричные фазные токи, показан цветом и ток в нейтральном проводнике. Ток нейтрального провода построен как сумма векторов фазных токов.

Пусть теперь нагрузка фаз симметрична и имеет активно-индуктивный характер. Построим векторную диаграмму токов и напряжений, приняв в расчет тот факт, что ток отстает от напряжения на угол фи:

Ток в нейтрально проводе будет равен нулю. Значит при соединении «звездой» симметричного приемника нейтральный провод влияния не оказывает, и может быть в принципе убран. Нет надобности в четырех проводах, достаточно трех.

Нейтральный провод в цепи трехфазного тока

Когда нейтральный проводник имеет достаточно большую длину, он оказывает ощутимое сопротивление прохождению тока. Отразим это на схеме добавив резистор Zn.

Ток в нейтральном проводнике создает падение напряжения на сопротивлении, что приводит к искажению напряжений в фазных сопротивлениях приемника. Второй закон Кирхгофа для цепи фазы А приводит нас к следующему уравнению, и далее — находим по аналогии напряжения фаз В и С:

Хотя фазы источника симметричны, фазные напряжения приемника несимметричны. И согласно методу узловых потенциалов напряжение между нейтральными точками источника и приемника будет равно (ЭДС фаз равны фазным напряжениям):

Иногда, когда сопротивление нейтрального провода очень мало, его проводимость можно принять бесконечной, и значит напряжение между нейтральными точками трехфазной цепи считать равным нулю.

Таким образом, симметричные фазные напряжения приемника не искажаются. Ток в каждой фазе и ток в нейтральном проводнике находятся по закону Ома или по первому закону Кирхгофа:

Симметричный приемник имеет одинаковые сопротивления в каждой из своих фаз. Напряжение между нейтральными точками равно нулю, сумма фазных напряжений равна нулю и ток в нейтральном проводнике равен нулю.

Таким образом для симметричного приемника соединенного «звездой» наличие нейтрали не влияет на его работу. Но соотношение между линейными и фазными напряжениями остаются в силе:

Несимметричный приемник, соединенный по схеме «звезда», в отсутствие нейтрального проводника будет обладать максимальным напряжением смещения нейтрали (проводимость нейтрали нулевая, сопротивление - бесконечность):

Максимальны в этом случае и искажения фазных напряжений приемника. Векторная диаграмма фазных напряжений источника, с построением напряжения нейтрали, отражает данный факт:

Очевидно, при изменении величин или характера сопротивлений приемника, величина напряжения смещения нейтрали варьируется в широчайших пределах, и нейтральная точка приемника на векторной диаграмме может располагаться в самых разных местах. При этом фазные напряжения приемника будут значительно различаться.

Вывод: симметричная нагрузка допускает удаление нейтрального провода без влияния на фазные напряжения у приемника; несимметричная нагрузка при удалении нейтрального проводника сразу ведет к устранению жесткой связи между напряжениями приемника и напряжениями фаз генератора, - на напряжения нагрузки влияют теперь только линейные напряжения генератора.

Несимметричная нагрузка приводит к несимметрии фазных напряжений на ней, и к смещению нейтральной точки дальше от центра треугольника векторной диаграммы.

Нейтральный провод поэтому необходим для выравнивания фазных напряжений приемника в условиях его несимметричности или при подключении к каждой из фаз однофазных приемников, рассчитанных на фазное, а не на линейное напряжение.

По этой же причине нельзя в цепь нейтрального провода устанавливать предохранитель, так как в случае разрыва нейтрального провода на фазных нагрузках возникнет тенденция к опасным перенапряжениям.

Расчеты для «треугольника»

Теперь рассмотрим соединение фаз приемника по схеме «треугольник». На рисунке показаны выводы источника, причем нейтральный провод отсутствует, да и присоединять его здесь некуда. Задача при такой схеме соединения обычно заключается в том, чтобы вычислить фазные и линейные токи при известных напряжении источника и фазных сопротивлениях нагрузки.

Напряжения между линейными проводами — это и есть фазные напряжения при соединении нагрузки «треугольником». Исключая из рассмотрения сопротивления линейных проводов, линейные напряжения источника приравниваем к линейным напряжениям фаз потребителя. Фазные токи замыкаются по комплексным сопротивлениям нагрузки и по проводам.

За положительное направление фазного тока принимают направление соответствующее фазным напряжениям, от начала — к концу фазы, а для линейных токов — от источника — к приемнику. Токи в фазах нагрузки находятся по закону Ома:

Особенность «треугольника», в отличие от звезды, в том, что фазные токи здесь не равны линейным. По фазным токам можно вычислить линейные, воспользовавшись первым законом Кирхгофа для узлов (для вершин треугольника). А сложив уравнения, получим, что сумма комплексов токов линейных равна в треугольнике нулю независимо от симметричности или несимметричности нагрузки:

При симметричной нагрузке линейные (равные фазным в данном случае) напряжения создают систему симметричных токов в фазах нагрузки. Фазные токи являются равновеликими, а отличаются лишь фазами на треть периода, то есть на 120 градусов. Линейные токи — тоже равны между собой величинами, отличия лишь в фазах, что и отражено на векторной диаграмме:

Допустим, что диаграмма построена для симметричной нагрузки индуктивного характера, тогда фазные токи запаздывают по отношению к фазным напряжениям на некоторый угол фи. Линейные токи образованы разностью двух токов фазных (так как соединение нагрузки «треугольник») и при этом симметричны.

Рассмотрев треугольники на диаграмме, легко видеть, что соотношение между токами фазными и линейными имеет вид:

То есть при симметричной нагрузке, соединенной по схеме «треугольник», действующее значение фазного тока в корень из трех раз меньше действующего значения тока линейного. В условиях симметрии для «треугольника» расчет для трех фаз сводится к расчету для единственной фазы. Линейное и фазное напряжения равны между собой, фазный ток находится по закону Ома, линейный ток — в корень из трех раз больше фазного.

Несимметричная нагрузка предполагает различие в комплексных сопротивлениях, что характерно для питания различных однофазных приемников от одной трехфазной сети. Здесь фазные токи, фазные углы, мощности в фазах, - будут различаться.

Пусть в одной фазе имеется чисто активная нагрузка (ab), в другой — активно-индуктивная (bc), в третьей — активно-емкостная (ca). Тогда векторная диаграмма будет иметь вид подобный тому, как на рисунке:

Токи в фазах не симметричны, и для нахождения линейных токов придется прибегать к графическим построениям или к уравнениям для вершин по первому закону Кирхгофа.

Отличительная особенность схемы приемника «треугольник» в том, что при варьировании сопротивления в одной из трех фаз, для оставшихся двух фаз условия не изменятся, поскольку линейные напряжения никак не поменяются. Изменится лишь ток в одной конкретной фазе и токи в передающих проводах, к которым данная нагрузка подключена.

В связи с данной особенностью схема соединения трехфазной нагрузки по схеме «треугольник» востребована обычно для питания несимметричной нагрузки.

В ходе расчета несимметричной нагрузки в схеме «треугольник», первым делом вычисляют фазные токи, затем сдвиги фаз, и только потом находят линейные токи в соответствии с уравнениями по первому закону Кирхгофа или прибегают к векторной диаграмме.

Мощность в трехфазной цепи

Для трехфазной цепи, как и для любой цепи переменного тока, характерны полная, активная и реактивная мощности. Так, активная мощность для несимметричной нагрузки равна сумме трех активных составляющих:

Реактивная мощность — есть сумма реактивных мощностей в каждой из фаз:

Для «треугольника» подставляются фазные величины, как то:

Полная мощность каждой из трех фаз считается так:

Полная мощность любого трехфазного приемника:

Для симметричного трехфазного приемника:

Для симметричного приемника, включенного по схеме «звезда»:

Для симметричного «треугольника»:

Значит и для «звезды», и для «треугольника»:

Мощности активная, реактивная, полная — для любой симметричной схемы приемника:

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Соединение электроприемников звездой


Схема соединения фаз электроприемников «звезда» получила очень широкое распространение в электроэнергетике. Принципиальная схема соединения звездой показана ниже:

soedinenie-faz-elektropriemnikov-v-zvezdu

Из схемы видно, что фазные напряжения приемника Ua, Ub, Uc не равны линейным напряжениям Uab, Ubc, Uca. Если применить к контурам aNba, bNcb, cNac второй закон Кирхгофа получим соотношение для фазных и линейных напряжений:

Если сопротивления нейтрального провода и линейных проводов не учитывать, то можно предположить, что напряжение на клеммах генератора и электроприемника равны. Вследствие указанного равенства векторные диаграммы для источника и приемника электрической энергии будут одинаковы.

Фазные и линейные напряжения приемника, как и источника, будут образовывать две симметричные системы напряжений. Соответственно между фазными и линейными значениями напряжений будет существовать определенная зависимость:

Далее будет показано, что соотношение (2) будет справедливо лишь при определенных условиях, а также в случае отсутствия нулевого провода, то есть в трехпроводной сети.

Исходя из указанного выше соотношения (2) можно сделать вывод, что соединение звездой лучше применять в случае, когда каждая фаза трехфазного электроприемника или однофазные приемники рассчитаны на напряжение в раз меньше, чем номинальное линейное напряжение сети.

Также из схемы соединения звезда (смотри схему выше) видно, что при соединении приемников звездой фазные токи будут равны линейным:

Применив первый закон Кирхгофа можно получить соотношение между токами при соединении электроприемников звездой:

Зная фазные токи с помощью формулы (4) можно вычислить ток нейтрального провода IN. В случае отсутствия нейтрального провода справедливо будет выражение:

Симметричная нагрузка при соединении приемников звездой

Нагрузка считается симметричной тогда, когда реактивные и активные сопротивления каждой фазы будут равны, то есть выполняется равенство:

Условие симметричности также может быть выражено через комплексные сопротивления Za = Zb = Zc.

Симметричная нагрузка в сети возникает при подключении трехфазных электроприемников. Будем считать, что данная система имеет нейтральный провод.

В отношении любой из фаз при симметричной нагрузке будут справедливы все формулы, полученные для однофазной сети, например для фазы А:

Так как в четырехпроводной цепи Ua = Ub = Uc = Uл / , то при симметричной нагрузке:

Векторная диаграмма при симметричной активно-индуктивной нагрузке приведена выше. Из приведенных выражений и векторной диаграммы следует, что при симметричной нагрузке образуется симметричная система токов, поэтому ток в нейтральном проводе будет равен IN = Ia + Ib + Ic = 0.

Отсюда можно сделать вывод, что при симметричной нагрузке отключение нейтрального провода не приведет к серьезным нарушениям работы электроприемников, то есть не произойдет изменение фазных напряжений, углов сдвига, токов, мощностей.

Из сказанного выше следует, что при симметричной нагрузке в нейтральном проводе нет необходимости, и довольно часто в симметричных системах нейтральный провод не применяется.

Мощность трехфазного приемника электрической энергии при симметричной нагрузке можно выразить формулами:

Как правило, для трехфазных приемников электрической энергии в качестве номинальных параметров указываются линейные напряжения и токи. Исходя из этого, целесообразней выражать мощность трехфазной цепи тоже через линейные напряжения и тока, поэтому подставим в формулу (6) линейные значения и получим:

Пример

К трехфазной электрической цепи с линейным напряжением Uл = Uab = Ubc = Uca = 380 В необходимо подключить трехфазный электроприемник, каждая фаза которого рассчитывается на фазное напряжение в 220 В и имеет активное сопротивление rф = 10 Ом и индуктивное сопротивление хф = 10 Ом, которые соединены последовательно. Необходимо определить мощности, углы сдвига между токами и напряжениями (cos φ) и фазные токи.

Решение

Каждая фаза потребителя электрической энергии рассчитана на напряжение в раз меньше номинального, то фазы потребителя нужно соединять в звезду. Поскольку нагрузка в данном случае симметричная, то нулевой провод (нейтраль) к потребителю можно не подводить.

Фазные тока, углы сдвига cos φ, а также полны сопротивления фаз будут иметь вид:

primer-rascheta-trexfaznoj-simmetrichnoj-seti1

Активная, реактивная и полная мощности приемника, а также любой фазы будут равны:

primer-rascheta-trexfaznoj-simmetrichnoj-seti2

Векторная диаграмма для данной системы приводилась выше.

Несимметричная нагрузка при соединении приемников звездой

Нагрузка трехфазной электрической сети будет считаться несимметричной, если хотя бы одно из фазных сопротивлений не равно другим. Проще говоря, сопротивления фаз не равны, например: ra = rb = rc, xa = xb ≠ xc. В общем случае считают, что несимметричная нагрузка возникает при отключении одной из фаз.

Возникает не симметрия чаще всего при подключении к трехфазной сети однофазных электроприемников. Они могут иметь различные мощности, режимы работы, различное территориальное расположение, что тоже влияет на величину фазной нагрузки.

В случае, когда необходимо подключить однофазные потребители электрической энергии, для более равномерной загрузки их делят на три примерно одинаковые по мощности группы.

nesimmetrichnoe-podklyuchenie-elektropriemnikov-zvezdoj

Один вывод однофазных потребителей подключают к одной из трех фаз, а второй вывод подключают к нейтральному проводу. Так как все электроприемники рассчитываются на одно напряжение, то в пределах каждой фазы они соединяются параллельно.

Главной особенностью электрической сети несимметричной нагрузкой является то, что она должна в обязательном порядке иметь нейтральный провод. Это объяснимо тем, что при его отсутствии величины фазных напряжений будут в значительной степени зависеть от величины не симметрии сети, то есть от величин и характера сопротивления каждой из фаз. Поскольку сопротивления фаз могут варьироваться довольно в широких пределах в зависимости от количества подключенных электроприемников, также широко будет варьироваться и напряжения на потребителях электрической энергии, а это недопустимо.

Для иллюстрации выше сказанного ниже приведена векторная диаграмма для трехфазной несимметричной цепи при наличии нейтрального провода:

Ниже приведена приведена векторная диаграмма для этой же цепи, но при отсутствии нулевого рабочего (нейтрального) провода:

Также можно посмотреть видео, где объясняется, что может произойти в электрической цепи при обрыве нулевого провода:

Необходимость нулевого провода станет еще более очевидной, если представить, что вам необходимо подключить однофазного потребителя к одной из фаз, при этом остальные две подключать нельзя, так как приемник рассчитан на фазное напряжение 220 В, а не на линейное 380В, как в таком случае получить замкнутый контур для протекания электрического тока? Только использовать нулевой рабочий проводник.

Для повышения надежности соединения электроприемников в цепь нулевого рабочего проводника не устанавливают коммутационную аппаратуру (автоматические выключатели , предохранители или разъединители).

Фазные токи, углы сдвига, а также фазные мощности при несимметричной нагрузке будут различными. Для вычисления их фазных значений можно применить формулу (5), а вот для вычисления трехфазной мощности формула (6) уже не подходит. Для определения мощностей необходимо пользоваться выражением:

Если существует необходимость определения тока нейтрального провода, то необходимо решать задачу комплексным методом. Если существует векторная диаграмма, то определить ток можно по ней.

Пример

В осветительной электрической сети с напряжением в 220 В в фазе А включено 20 ламп, фазе В – 10 ламп, а в фазе С – 5 ламп. Параметры лампы Uном = 127 В, Рном = 100 Вт. Необходимо определить ток нейтрального провода и каждой лампы.

Решение

Если учесть, что лампы накаливания имеют только активное сопротивление (реактивное слишком мало и им пренебрегают), то по формуле мощности определим ток лампы, а по закону Ома ее сопротивление:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti1

Зная число и сопротивление ламп нетрудно определить сопротивления фаз, а также фазные токи:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti2

Для определения тока в нейтральном проводе IN решим задачу комплексным методом. Так как при сделанных ранее допущениях комплексные напряжения приемника равны комплексным ЭДС источника, получим:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti3

Где комплексные значения фазных сопротивлений будут равны Za = 8,05 Ом, Zb = 16,1 Ом, Zс = 32,2 Ом.

Комплексные значения токов, а также действующее значение тока нейтрального провода будут иметь вид:

Соединение потребителей электрической энергии в треугольник

При соединении фаз электроприемников в треугольник каждая фаза будет подключена к двум линейным проводам, как показано на рисунке ниже:

sxema-soedineniya-faz-priemnikov-v-treugolnik

Поэтому при таком типе соединения, обратно звезде, независимо от характера и значения сопротивления приемника каждое фазное напряжение будет равно линейному, то есть UФ = UЛ. Если не брать во внимание сопротивления фазных проводов, то можно предположить, что напряжения источника и приемника электрической энергии равны.

На основании приведенной выше схемы и формулы можно сделать вывод, что соединение фаз приемников электрической энергии в треугольник следует применять тогда, когда каждая фаза трехфазного или двухфазного потребителя электрической энергии рассчитана на линейное напряжение сети.

В отличии от соединения звездой, где фазные и линейные токи равны, при соединении треугольником они равны не будут. Применив первый закон Кирхгофа к узловым точкам a, b, c получим соотношение между фазными и линейными токами:

Имея векторы фазных токов, используя данное соотношение, не трудно построить векторы линейных токов.

Симметричная нагрузка при соединении приемников треугольником

В отношении любой фазы можно применять формулы, которые справедливы для однофазных цепей:

formuly-dlya-odnofaznyx-cepej-primenimy-k-simmetrichnomu-treugolniku

Очевидно, что при симметричной нагрузке:

formuly-dlya-odnofaznyx-cepej-primenimy-k-simmetrichnomu-treugolniku2

Векторная диаграмма фазных (линейных) напряжений и токов при активно-индуктивной симметричной нагрузке показана ниже:

В соответствии с формулой (1) были построены векторы линейных токов. Также стоит обратить внимание на то, что при построении векторных диаграмм для соединения треугольник вектор линейного напряжения Uab принято направлять вертикально вверх.

Векторы линейных токов часто изображают соединяющими векторы фазных токов, как это показано на рисунке b):

На основании данной векторной диаграммы можно записать: . Такое же соотношение справедливо и для других фаз. Исходя из этого, можно вывести формулу зависимости между фазным и линейным током для соединения фаз потребителей треугольником при симметричной нагрузке .

Пример

Трехфазная сеть имеет линейное напряжение UЛ = 220 В. К ней необходимо подключить трехфазный электроприемник с фазным напряжением в 220 В и содержащим последовательно подключенные активное rф = 8,65 Ом и индуктивное xф = 5 Ом сопротивления.

Решение

Поскольку линейные и фазные напряжения в этом случае будут равны, то выбираем способ соединения обмоток потребителя в треугольник.

Линейные и фазные токи, а также полные сопротивления фаз будут равны:

Активная, реактивная и полная мощности электроприемника любой фазы будут равны:

Векторные диаграммы приведены выше.

Несимметричная нагрузка при соединении приемников треугольником

В случае несимметричного сопротивления фаз, как и при соединении в звезду, для подключения к сети электроприемники разбивают на три примерно одинаковые по мощности группы. Подключение каждой группы производится к двум фазным проводом, у которых есть отличия по фазе:

В пределах каждой группы подключение приемников производится параллельно.

После замены сопротивления нескольких приемников в одной фазе на одно эквивалентное получим такую схему:

Углы сдвига между напряжением и током, мощности и фазные токи можно найти из формулы (2). В случае несимметричной нагрузки (в нашем случае схема выше) фазные мощности, токи, а также углы сдвига (cos φ) не будут равны. Векторная диаграмма для случая, когда фаза ab имеет активную нагрузку, bc – активно-индуктивную, ca – активно-емкостную, показана ниже:

Для определения суммарной мощности всех фаз нужно применять выражение:

Пример

Дана несимметричная электрическая цепь, включенная по схеме выше, с параметрами: UЛ = 220 В, rab = 40 Ом, xLbc = 10 Ом, rbс = 17,3 Ом, xcа = 5 Ом, rCcа = 8,65 Ом. Нужно определить линейные и фазные токи, а также мощности.

Решение

Воспользовавшись выражением для определения комплексных значений получим:

Комплексные значения полных сопротивлений фаз: Zab = 40 Ом, Zbс = 17,3 + j10 Ом, Zbс = 8,65 – j5 Ом.

Читайте также: