В каком классе точности должны работать трансформаторы тока для устройств релейной защиты

Обновлено: 19.04.2024

Точный учет: трансформаторы тока

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решения для ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ 7746-2001 (1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5-120% для классов точности 0,5 и 0,2, от 1-120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому приведенное выше требование можно смело отнести к обмотке учета измерительного трансформатора. Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис.2).


Рис. 1. Токовая и угловая погрешности ТТ классов точности 0,2; 0,5; 1
Рис. 2. Токовая и угловая погрешности ТТ классов точности 0,2S; 0,5S

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ 7746-2001 диапазон, но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10000 кВА, cos φ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. При заданной нагрузке токовая погрешность составит примерно 0,31% (см. рис.2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 рублей. При погрешности 0,2 эта сумма составила бы 140 160 рублей, т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1. Приведенная таблица применима для любого уровня напряжений — необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S.

Первичный ток,%
номинального значения
Погрешности ТТ
класса 0,2S,%
Удельное количество
неучтенной э/э,
кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20 ±0,2 14,016
100
120

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока. Погрешности этого диапазона регламентируются международным стандартом IEС 60044-1 (3)). В частности, для первичных токов свыше 120% номинального тока, погрешности приравнены к значениям, достигаемым при 120% номинала. Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ 7746-2001 не регламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ 7746-2001 до настоящего времени применяется в неизменном виде.

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо. Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются и встает вопрос размещения их в габаритах корпуса трансформатора а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков). Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Кроме ТТ с расширенным диапазоном, и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками.

В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.



Рис. 3. Отдельно стоящий
трансформатор тока

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200-300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и составляет от 1 до 6, в зависимости от уровня напряжения. С ростом уровня напряжения, увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности. Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ 7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ 7746-2001.



Рис.4. Трансформатор тока,
устанавливаемый на ввод силового
оборудования (встраиваемый ТТ).

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис.3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис.4). В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для отечественных ТТ класс 0,2S достигается только при использовании трансформатора с номинальным первичным током от 600 А, при вторичном токе 5 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50-60 ВА — этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. Не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. Отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.

Используемая литература

Серяков Андрей Александрович,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

ТРЕБОВАНИЯ К ТОЧНОСТИ ТРАНСФОРМАТОРОВ ТОКА, ПИТАЮЩИХ РЗ

Трансформаторы тока, питающие РЗ, должны работать с определенной точностью в пределах значений токов КЗ, на которые РЗ должна реагировать. Эти токи, как правило, превышают номинальные токи ТТ I1 ном,и, следовательно, точная работа ТТ должна обеспечиваться при первичных токах I1 >I1 ном.

Предельные значения I1 max и соответствующие им допустимые Zн из условия 10%-ной погрешности должны давать заводы, изготавливающие ТТ. Предельные значения I1 max обычно даются в виде кратности этого тока по отношению к номинальному первичному току ТТ: К1 тах = I1 max/I1 ном.

Кроме РЗ ТТ питают измерительные приборы. Точность работы ТТ, питающих измерительные приборы, характеризуется классом точности, а РЗ – предельной кратностью первичного тока I10 = I1 max/I1 ном и допустимой нагрузкой Zн.доп, при которых гарантируется, что полная погрешность ТТ е не превысит 10%. Погрешности класса точности устанавливают, исходя из условий точной работы измерительных приборов в диапазоне токов нормальных режимов, а погрешность при предельной кратности тока К10и нагрузке Zн.доп в соответствии с требованиями, предъявляемыми РЗ.

Трансформаторы тока класса Р предназначены для РЗ, и поэтому их погрешности при номинальных токах не нормируются. Работа ТТ с погрешностью, соответствующей классу, обеспечивается при нагрузке вторичной обмотки, не выходящей за пределы номинальной.

При предельной кратности К10 и нагрузке Zн, соответствующей любой точке кривой К10 = f(Zн), ТТ работают на перегибе характеристики намагничивания в точке H (рис.3.4 и 3.6), т.е. вблизи начала насыщения магнитопровода. Соответствующий этой точке ток Iнаc и является указанным выше предельным максимальным током.

На рис.3.5, б приведена характеристика предельной кратности ТТ типа ТФЗМ 110 OБ-IV-5-88 вторичной обмотки класса точности 10Р для разных К10[27].

Аналогичные характеристики заводы, производящие ТТ, представляют и для других классов обмоток. Эти характеристики при необходимости могут использоваться для оценки нагрузки на ТТ и значений токов, при которых погрешность ТТ не превышает 10%.


называемые магнитными ТТ (МТТ). Вторичная обмотка МТТ располагается вдали от токоведущих частей на стальном сердечнике и не требует специальной изоляции от высокого напряжения. Первичный ток, протекая по проводу защищаемого объекта, создает магнитное поле. Часть силовых линий этого поля замыкается по сердечнику МТТ, индуцируя ЭДС Е2. Размеры и стоимость такого устройства значительно меньше, чем у обычных ТТ, но его мощность невелика (примерно 0,5 Вт).

Для уменьшения влияния помех в ОРГРЭС разработаны магнитные ТТ с дифференциальными датчиками типа ТВМ. Подобные ТТ представляют собой стальной сердечник П-образной формы с двумя одинаковыми, соединенными встречно-последовательно обмотками 1 и 2, надетыми на полюсы сердечника (рис.3.24, б).




Проекция провода фазы А, для контроля за которым предназначен изображенный на рис.3.24, б датчик, находится в центре сердечника. Магнитный поток ФА,пропорциональный току IА,проходит по полюсам сердечника в противоположных направлениях. При этом, поскольку обмотки ТВМ соединены встречно, ЭДС обеих обмоток суммируются арифметически: ЭДС ЕАравна удвоенной ЭДС каждой обмотки.

Магнитные потоки, создаваемые токами других фаз (например, Ф'Ви Ф''В,пропорциональные току IB),проходят по полюсам ТВМ в одном направлении, и индуцируемые ими ЭДС в обмотках вычитаются. Благодаря этому уменьшаются помехи, создаваемые в ТВМ токами соседних фаз. Трансформаторы ТВМ устанавливаются на разъединителях или отделителях высокого напряжения и крепятся с помощью фиксаторов из немагнитного материала.

В связи с внедрением микроэлектронных и микропроцессорных РЗ, имеющих очень малое потребление цепей тока и напряжения, разрабатываются ТТ и ТН, в которых информация о значениях тока и напряжения передается с помощью волоконно-оптических каналов. Существует несколько способов выполнения таких измерительных трансформаторов. Один из них основан на установке на потенциале ЛЭП маломощных датчиков тока и напряжения и системы преобразования информации о токах и напряжениях в цифровую форму. Эта информация передается по оптическому каналу, имеющему хорошие изолирующие свойства, на оптико-электронные приемники, расположенные на потенциале земли, где осуществляется обратное преобразование световых импульсов в напряжения, пропорциональные току и напряжению ЛЭП. Такие ТТ и ТН пока не получили широкого распространения, так как в энергосистемах продолжается использование электромеханических устройств РЗ, потребление которых велико, и мощности оптико-электронных ТТ и ТН оказывается недостаточно.


26 Август, 2011 19684 ]]> Печать ]]>

Класс точности — важнейшая характеристика трансформатора тока

3 августа 2013 k-igor

Класс точности трансформатора тока является одной из важнейших характеристик ТТ, которая указывает, что его погрешность измерений не превышает значений, установленных в нормативных документах. Погрешность в свою очередь зависит от многих факторов.


В настоящее время возможно изготовление трансформаторов тока на 6-10кВ с количеством обмоток до четырех, при этом каждая обмотка может быть выполнена со своим классом точности. Например, 0,5/10Р, 0,5S /10Р, 0,2S /0,5/10Р, 0,2S /0,5/5Р/10Р.

Класс точности для каждой обмотки выбирается исходя из ее назначения. Для каждого класса точности предусматривается своя программа испытаний.

Для коммерческого учета, как правило, применяют обмотки с классами точности 0,5S и 0,2S. Буква “S” обозначает, что трансформатор тока проверяется по пяти точкам от 1% до 120% (1-5-20-100-120) от номинального тока. Обмотки классов точности 1, 0,5, 0,2 проверяются лишь в четырех точках: 5-20-100-120% от номинального тока. Для релейной защиты используют обмотки с классами точности 10Р или 5Р и проверяют данные обмотки в трех точках: 50-100-120% от номинального тока трансформатора. Такие обмотки соответствуют классу точности «3».

Более подробно требования к классам точности трансформаторов тока представлены в ГОСТ 7746—2001.

Ниже представлена таблица допустимых погрешностей для различных классов точности:

Допустимые погрешности для различных классов точности ТТ

Допустимые погрешности для различных классов точности ТТ

Требования к классам точности трансформаторов тока представляют собой некий диапазон, в который должны укладываться погрешности трансформатора. Чем выше класс точности, тем уже диапазон.

Разница между классами точности 0,5S и 0,5 (0,2S и 0,2) состоит в том, что погрешность обмотки класса 0,5 не нормируется ниже 5% номинального тока. Видимо поэтому в ПУЭ есть требование, чтобы минимальный ток во вторичной обмотке трансформатора составлял не менее 5%. На мой взгляд, данное требование уже давно устарело, т.к. погрешность трансформаторов тока класса точности 0,5S нормируется начиная с 1%.

Разница между классами точности 0,5S и 0,5

Разница между классами точности 0,5S и 0,5

Применение трансформаторов тока классов точности 0,5S и 0,2S позволяет сократить недоучет электроэнергии в несколько раз при малой загрузке силовых трансформаторов.

Классы точности вторичных обмоток для работы в переходных режимах

Трансформаторы тока, используемые в схемах релейной защиты и противоаварийной автоматики, вследствие насыщения магнитопровода могут искажать передаваемую информацию в установившихся и особенно переходных режимах коротких замыканий. Искажение формы кривой вторичного тока оказывают существенное влияние на работу устройств релейной защиты. Появление тока небаланса между насыщенным и ненасыщенным магнитопроводами может привести как к ложному срабатыванию дифференциальной защиты, так и к полному отказу релейной защиты.

Известны масштабные аварии, произошедшие по причине излишней работы дифференциальной токовой защиты при коротком замыкании вследствие появления тока небаланса в цепях, обусловленного насыщением защитных обмоток трансформаторов тока из-за появления значительной по величине апериодической составляющей в токе короткого замыкания.

Одной из причин возникновения описанных выше аварий являлось отсутствие в нормативно-технической документации Российской Федерации требований о необходимости обеспечения техническими характеристиками трансформаторов тока и подключенных к ним устройств релейной защиты. В ГОСТ 7746-2015 «Трансформаторы тока. Общие технические условия», требования к вторичным обмоткам для защиты предъявлялись только к классам точности 10Р и 5Р. Ни в одном из этих классов не нормируется работа трансформатор9ов тока в переходных режимах — указанные в ГОСТ 7746-2015 погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).С появлением таких стандартов, как ГОСТ Р МЭК 61869-2-2015 и ПНСТ 283-2018 расширились требования, предъявляемые к вторичным обмоткам для защиты, которые отразились в новых классах точности:

Классы точности по ГОСТ Р МЭК 61869-2-2015 – 5P, 10Р, 5PR, 10PR, PX, PXR, TPX, TPY, TPZ.

Классы точности по ПНСТ 283-2018 – 5P, 10Р, 5PR, 10PR, TPY, TPZ.

Отличительные особенности классов точности для защиты приведены ниже.

Классы точности 5Р, 10Р

К данным классам точности не предъявляются требования по точности в переходных режимах и ограничений по остаточной намагниченности. Остаточная намагниченность может достигать более 80% от индукции насыщения.

Классы точности 5PR, 10PR

Дополнительно к требованиям, предъявляемым к классам точности 5Р и 10Р, характеризуются требованием к остаточной намагниченности Kr, которая не должна быть более 10% от потока насыщения. При протекании симметричных токов КЗ такая вторичная обмотка не уйдет в насыщение, а форма тока во вторичной цепи не будет искажена. После отключения трансформатора при токах короткого замыкания, вторичная обмотка не потребует размагничивания, т.к. после прекращения протекания тока в обмотках магнитопровод возвращается в состояние, предшествующее аварийному событию.

Классы точности PX, PXR

К классам точности PX и PXR не предъявляются требования по точности, как в номинальном, так и переходных режимах. Нормируется погрешность коэффициента трансформации. К классу точности PXR дополнительно предъявляются требования по ограничению остаточной намагниченности.

Для классов точности PX, PXR в эксплуатационной документации дополнительно должна быть указана следующая информация:

  • номинальное отношение витков (коэффициент трансформации);
  • номинальная точка перегиба э.д.с. Ek;
  • верхний предел тока насыщения Ie в номинальной точке перегиба э.д.с;
  • коэффициент расширения тока Kx;
  • номинальная резистивная нагрузка Rb.

Кроме этого, к данным классам точности предъявляются дополнительные требования при проведении приемо-сдаточных испытаний:

  • Изоляция вторичной обмотки (при Ek≥2) кВ должна выдерживать одноминутное испытательное напряжение 5 кВ.
  • Номинальное выдерживаемое напряжение межвитковой изоляции должно составлять десятикратное значение от максимального значения нормированной э.д.с в точке перегиба, но не более 10 кВ (пикового значения).

Класс точности TPX

К данному классу точности не предъявляются требования по точности в переходных режимах и ограничений по остаточной намагниченности. Остаточная намагниченность может достигать более 80% от индукции насыщения. Имеет более жесткие требования по пределам допускаемой погрешности по отношению к классу точности 5Р.

Класс точности TPY

Данный класс точности характеризуется не только требованиями к ограничению остаточной намагниченности, аналогично классу точности 5PR, но и требованиями к точности передачи мгновенного значения тока в переходном режиме короткого замыкания с нормированной погрешностью не более 10%. Данный класс вторичной обмотки позволяет измерять значение тока КЗ с учетом апериодической составляющей. Следует отметить, что такая точность работы вторичных обмоток для защиты трансформатора требуется далеко не всегда. Для соответствия данному классу точности, при изготовлении трансформатора необходимо значительно увеличивать сечение магнитопровода, что ведет к увеличению габаритных размеров трансформатора и, как следствие, к увеличению стоимости.

Класс точности TPZ

Данный класс точности характеризуется нормируемой погрешностью трансформации периодической составляющей тока короткого замыкания.

Выводы

Основные требования, предъявляемые к защитным обмоткам в зависимости от класса точности приведены в таблице ниже:

* – допускается согласование Kr более 10 для обмоток с низкими ампервитками;
** – в ГОСТ Р МЭК 61869-2 все пределы погрешности нормированы для температуры вторичной обмотки

Для обеспечения бесперебойной работы современных систем РЗиА в сетях, на смену устаревшим классам точности 10Р и 5Р пришли новые классы точности 10PR, 5PR, TPY, TPZ, исключающие проблемы с насыщением трансформаторов тока из-за высокой остаточной намагниченности. Для обеспечения надежной работы релейной защиты и противоаварийной автоматики в большинстве случаев будет достаточно применение трансформаторов с классами точности защитных обмоток 10PR и 5PR. В случае необходимости измерения токов КЗ с учетом апериодической составляющей следует применять трансформаторы с классом точности TPY. В случае, если требуется нормируемая погрешность трансформации периодической составляющей тока короткого замыкания с нормированием вторичной постоянной времени, тогда следует выбирать трансформаторы с классом точности защитной обмотки TPZ.

Классы точности ТТ для учета и защиты

Трансформаторы тока играют важнейшую роль в обеспечении безопасности и надежности работы электроустановок. Они обладают определенными классами точности. Виды классов точности трансформаторов тока определяются по гост 7746-2001.

Величины сопротивления нагрузки и первичного тока для разных классов точности ТТ для измерений и для защиты приведены в ГОСТ и в таблице ниже.

Для измерительных цепей и цепей релейной защиты классы точности будут разными. Трансформаторы тока для измерений должны соответствовать одному из классов точности, согласно ГОСТ: 0,1, 0,2S, 0,2, 0,5, 0,5S, 1, 3, 5, 10.

Таблица классов точности измерительных ТТ

Трансформаторы тока для защиты имеют классы точности – 5Р и 10Р.

Таблица классов точности ТТ для защит

Точность работы ТТ зависит от вторичной нагрузки и первичного тока.

1) При малом сопротивлении нагрузки, ветвь намагничивания будет практически зашунтирована, и трансформатор тока будет работать в нижней части кривой намагниченности, что будет соответствовать большим погрешностям.

При большом сопротивлении нагрузки, трансформатор тока будет работать в зоне насыщения ТТ, что также будет соответствовать большим погрешностям. Точность различных классов обеспечивается лишь при определенном значении вторичной нагрузки ТТ.

2) Также точность работы ТТ зависит от величины первичного тока, так как одной из его составляющих является ветвь намагничивания. При малых значениях первичного тока, трансформатор будет работать в нижней части кривой намагниченности, при больших значениях – работа ТТ будет происходить в зоне насыщения.

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд - ударный ток короткого замыкания

kу - ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях - 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт - полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф - однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр - сопротивление реле

rпер - переходное сопротивление контактов

rпр - сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди - 57, алюминия - 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета - проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить - а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной - не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений - 0,4; 6,3; 10,5. И последние три столбца - это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы - инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Шабад М.А. Трансформаторы тока в схемах релейной защиты. Часть первая. Экспериментальная и расчетная проверки

Шабад М.А. Трансформаторы тока в схемах релейной защиты. Часть первая. Экспериментальная и расчетная проверки

Шабад М.А. Трансформаторы тока в схемах релейной защиты. Часть первая. Экспериментальная и расчетная проверки

Предисловие

Трансформатор тока – один иэ наиболее распространенных видов электрических трансформаторов – устройств, преобразующих или изменяющих параметры электрической энергии ("Transformo" на латинском языке означает "преобразую").¶

Измерительные трансформаторы тока (ТТ) своей первичной обмоткой включаются последовательно в измеряемую (защищаемую) цепь электроустановки, например, в линию электропередачи. Вторичная обмотка ТТ замыкается на измерительные приборы (амперметры, счетчики электрической энергии) и аппараты релейной защиты практически всех типов.¶

От исправности и точности работы ТТ зависит не только правильный повседневный учет электроэнергии, отпускаемой потребителям, но и бесперебойность электроснабжения потребителей и сохранность самой электроустановки, особенно при коротких замыканиях (КЗ).¶

Точность ТТ характеризуется их полной погрешностью в передаче значения тока и угловой погрешностью в передаче фазы измеряемого тока. Требования к точности различны для ТТ, питающих измерительные приборы, и для ТТ, питающих аппаратуру релейной защиты.¶

Точная работа ТТ, используемых для релейной зашиты, необходима для правильного функционирования большинства типов релейной защиты: максимальных токовых защит и токовых направленных зашит, дистанционных и дифференциальных защит и т.п. Лишь в относительно редких случаях применяется релейная защита, не требующая измерительных ТТ (например, защита минимального напряжения).¶

Читайте также: