В цепи с каким сопротивлением колебания силы тока и напряжения совпадают по фазе

Обновлено: 27.04.2024

§ 32. Активное сопротивление. Действующие значения силы тока и напряжения

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цепи с резистором

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону:

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения (рис. 4.11), а амплитуда силы тока определяется равенством

Колебания силы тока

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (ν = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой


Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

Урок 8. Переменный электрический ток

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.


𝒾 - мгновенное значение силы тока;

m- амплитудное значение силы тока.


– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:



При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.


Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um - амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:


Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону


Согласно данным нашей задачи:


Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:



2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:


Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:


то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Урок 8. Переменный электрический ток

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.


𝒾 - мгновенное значение силы тока;

m- амплитудное значение силы тока.


– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:



При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.


Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um - амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:


Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону


Согласно данным нашей задачи:


Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:



2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:


Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:


то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Урок 8. Переменный электрический ток

Рассмотрим цепь содержащую проводник сопротивлением R.

R – активное сопротивление.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

$i=I_m \cos \omega t$

$i$ – мгновенное значение силы тока,

$I_m$– амплитудное значение силы тока.

$u=U_m \cos \omega t$ – колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулой:

$e=-'=BSN \omega \sin \omega t$, $\varepsilon_m=BSN \omega $,

$U_m$– амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Средняя мощность равна $P=I^2R$.

Конденсатор включённый в цепь переменного тока оказывает сопротивление называемое ёмкостным – $X_С$.

Катушка индуктивности в цепи переменного тока оказывает сопротивление называемое индуктивным – $X_L$.

Если цепь содержит активное сопротивление, катушку и конденсатор соединённые последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Мощность цепи переменного тока:

Величина $cos \varphi$ – называется коэффициентом мощности.

Решение задачи на электромагнитные колебания

В чём преимущество переменного тока в отличие от постоянного?

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. В чём же недостаток постоянного тока? Основная проблема – передача электроэнергии на расстояния. Передача электроэнергии с помощью постоянного тока сопровождалось большими потерями электроэнергии в проводах. Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров.

Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. В 1888 году Тесла представил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Особенно большое развитие получило применение переменного тока после появления выпрямителей, способных преобразовывать переменный ток в постоянный, что стало удобно для всех приёмников.

НАШИ ПАРТНЁРЫ

Минпросвещения России
Российское образование
Рособрнадзор
Русское географическое общество
Российское военно-историческое общество
Президентская бибилиотека

в разработке в разработке

© Государственная образовательная платформа «Российская электронная школа»

Характеристики переменного тока. Переменный ток в цепях, содержащих только активное сопротивление

Генераторы переменного тока, о принципе работы которых говорилось ранее, вырабатывают переменный синусоидальный ток.

Характеристики переменного тока.

Как любая колеблющаяся величина переменный ток характеризуется периодом и частотой.

Периодом переменного тока Т называется промежуток времени, в течение которого сила тока совершает одно полное колебание:

Частотой переменного тока называется число периодов за единицу времени:

Частота переменного тока всех электростанций равна 50 Гц или период промышленного тока равен 0,02 с.

Круговая или циклическая частота переменного тока:

Так как величина и направление мгновенных значений переменного тока всё время меняются, то введено понятие действующего значения тока, путём сравнения теплового действия постоянного и переменного токов.

Действующее значение силы переменного тока численно равно такому постоянному току, который проходя через одинаковое сопротивление, что и переменный, выделяет в нём за время периода одинаковое количество тепла.

Например, если говорим, что сила переменного тока равна 2 А - это значит, что тепловое действие этого переменного тока такое же, как и постоянного тока силой 2 А. За равные промежутки времени они выделяют одинаковое количество теплоты.

Действующие значения силы переменного тока, а также действующие значения ЭДС и напряжения переменного тока связаны с их максимальными ( амплитудными ) значениями, обозначенными с индексом "нуль", следующими соотношениями:

В генераторах, установленных на электростанциях, всегда возникает переменная ЭДС, изменяющаяся во времени по синусоидальному закону. Если принять начальную фазу за нуль, то мгновенные значения ЭДС связаны с её максимальными (амплитудными) значениями следующей зависимостью:

Такая же зависимость существует между мгновенными значениями напряжений на зажимах источника и его максимальным значением:

Если к генератору переменной ЭДС, на зажимах которого существует напряжение

подключить внешнюю цепь, то в ней будет течь синусоидальный ток , мгновенные значения которого связаны с амплитудным значением тока следующей зависимостью:

Здесь угол "фи" есть разность (сдвиг) фаз между током и напряжением.

Разность фаз может быть положительной и отрицательной величиной - это зависит от вида нагрузки во внешней цепи (от того, содержит ли внешняя цепь активное, индуктивное, емкостное сопротивления).

Для цепи только с активным сопротивлением угол "фи" равен нулю , то есть колебания тока и напряжения совпадают по фазе (показано на рисунках ниже).

Какой физический смысл имеет активное сопротивление?

Вспомним электрическую цепь постоянного тока.

К понятию электрического сопротивления и к закону Ома для участка цепи (не содержащего источника тока) пришли через опыты.

А именно, к участку цепи прикладывали постоянное напряжение U и измеряли проходящий по участку ток. Оказалось, что ток всегда пропорционален напряжению.

Коэффициент пропорциональности между ними назвали сопротивлением R участка цепи прохождению по нему тока.

Так опытным путём был получен один из основных законов постоянного тока - закон Ома .

Сопротивление проводника зависит от материала, из которого он изготовлен, от температуры и определяется его размерами.

Для однородного проводника в виде проволоки, трубки, бруска, пластины

Электронная теория сопротивление проводника току объясняет столкновениями упорядоченно движущихся электронов с ионами кристаллической решётки проводника.

При изучении цепей постоянного тока R называли просто сопротивлением.

При переходе к цепям переменного тока его стали называть активным сопротивлением, потому что оно активно (постоянно) потребляет электрическую энергию от источника тока, превращая её в другие виды энергии, преимущественно в тепловую .

Так, при прохождении тока (постоянного или переменного) через нить лампочки накаливания, выделяется тепло, нить накаляется и излучает свет.

В цепях переменного тока, кроме активного сопротивления R , имеют место индуктивное и емкостное сопротивления, которые в отличие от активного сопротивления, не поглощают энергию, а лишь передают её от электрического поля магнитному, и наоборот.

Индуктивному и емкостному сопротивлениям будут посвящены следующие две статьи.

Теперь рассмотрим случай, когда в цепи переменного тока содержится только активное сопротивление:

В цепи, содержащей только активное сопротивление, ток и напряжение колеблются в од инаковой фазе , то есть ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения.

На рисунке ниже показаны кривые зависимости мгновенных значений тока и напряжения от времени за период.

Последовательное соединение активного, индуктивного, емкостного сопротивлений. Резонанс напряжений. Коэффициент мощности

Рассмотренные в предыдущих трёх статьях электрические цепи переменного тока. содержащие только активное , только емкостное и только индуктивное сопротивления были взяты для того, чтобы полнее раскрыть свойства перечисленных сопротивлений.

В реальных электрических цепях присутствуют все перечисленные сопротивления: активное, индуктивное, емкостное.

Сейчас будем говорить о цепях, содержащих последовательно соединённые активное сопротивление, катушку индуктивности и конденсатор.

Нам предстоит найти полное сопротивление показанной на рисунке цепи и разность фаз между действующими значениями тока и напряжения в ней.

Мгновенное значение приложенного к цепи напряжения (на зажимах цепи) складывается из мгновенных значений напряжений на каждом сопротивлении, то есть будет равно сумме мгновенных напряжений на активном, индуктивном и емкостном сопротивлениях:

Но действующее значение напряжения на зажимах цепи U не будет равно алгебраической сумме напряжений на каждом участке цепи из-за разности фаз между током и напряжением U на каждом сопротивлении (активном, индуктивном, емкостном).

Для нахождения связи между перечисленными напряжениями удобно пользоваться векторной диаграммой.

Векторная диаграмма - это графическое изображение значений периодически изменяющихся величин и соотношений между ними при помощи направленных отрезков - векторов .

Например, мы знаем, что напряжение на зажимах цепи переменного тока меняется по синусоидальному закону, то есть колебания напряжения сети изображается синусоидой .

Мгновенные значения напряжения внешнего источника можно рассматривать ещё как проекции вектора напряжения U (вектора ОВ) на вертикальную ось при равномерном вращении этого вектора против часовой стрелки.

Точно также векторами можно изобразить переменный ток в цепи, переменные напряжения на активном сопротивлении, на емкостном и индуктивном сопротивлениях.

Колебания перечисленных величин имеют одну частоту , но сдвинуты по фазе относительно друг друга.

Их взаимное расположение со временем не меняется. Тогда все перечисленные вектора можно показать на одной диаграмме.

Действующее значение вектора напряжения внешнего источника U будет равно геометрической сумме векторов напряжений на каждом сопротивлении цепи.

Такое сложение векторов значительно проще сложения синусоид, поэтому векторные диаграммы применяют очень часто.

Ниже рассказано как построена диаграмма, изображённая на рис. 15, которая решает задачу нахождения полного сопротивления рассматриваемой электрической цепи и нахождения сдвига фаз между током и напряжением.

Как видим из формулы закона Ома, полное сопротивление цепи не равно простой сумме активного R и реактивного сопротивлений.

Индуктивное и емкостное напряжения имеют разные знаки - они направлены навстречу друг другу.

Итак, полное сопротивление цепи переменного тока:

На рис 15 прямоугольный треугольник векторной диаграммы составлен следующими векторами: вектором активного напряжения,

вектором индуктивного напряжения

вектором емкостного напряжения:

и вектором действующего напряжения U стороннего источника .

Из диаграммы, применив закон Пифагора, получим выражение для действующего напряжения:

Если каждое из этих напряжений (рис. 15) разделить на ток, то получим такой же треугольник , составленный сопротивлениями.

Прилежащий к углу катет даёт активное сопротивление цепи R , противолежащий катет - общее реактивное сопротивление цепи X , а гипотенуза треугольника даёт полное сопротивление цепи Z , состоящей из последовательно соединённых активного, индуктивного и ёмкостного сопротивлений..

Из представленного треугольника сопротивлений получаем соотношение:

то есть сдвиг фаз (угол фи) между током и напряжением в цепи определяется отношением реактивного сопротивления цепи к её активному сопротивлению.

Возможны следующие случаи :

Когда индуктивное сопротивление больше емкостного, то есть когда в цепи преобладает индуктивность , то ток отстаёт от напряжения на угол "фи".

Когда индуктивное сопротивление меньше емкостного, то есть когда в цепи преобладает емкостное сопротивление, то ток опережает напряжения на угол "фи".

Из треугольника сопротивлений получаем ещё такое выражение:

определяется отношением активного сопротивления цепи к её полному сопротивлению. Его называют коэффициентом мощности .

Значение коэффициента мощности определяет активную (полезную) мощность цепи.

Посмотрим, как получают выражение для мощность цепи переменного тока.

Мгновенное значение мощности равно произведению мгновенных значений напряжения и силы тока, которые выражаются формулами:

Взяв произведение мгновенных значений тока и напряжения и проанализировав полученное выражение, придём к выводу, что мощность может быть как положительной (когда энергия от источника поступает в цепь), так и отрицательной (когда уходит из цепи в источник).

Практически важно знать среднюю за период мощность, так как только средняя мощность характеризует энергию, потребляемую цепью за единицу времени.

После математических преобразований получается следующее выражение для средней мощности , которую можно называть просто мощностью цепи:

то есть мощность электрической цепи переменного тока равна произведению действующих значений напряжения и силы тока на косинус угла между током и напряжением ,

Косинус сдвига фаз между током и напряжением назвали коэффициентом мощности .

Видим, что коэффициент мощности оказывает очень большое влияние на мощность электрической цепи.

Коэффициент мощности достигает максимального значения, равного единице, при угле "фи" (сдвиге фаз) равном нулю или когда индуктивное сопротивление равно емкостному сопротивлению:

При этом условии цепь переменного тока имеет минимальное сопротивление, равное активному сопротивлению цепи.

Ток же в цепи в этом случае достигает максимального значения (явление резонанса ).

Приложенное к цепи напряжение U равно активному напряжению (напряжению на активном сопротивлении R ).

Но при этом есть и индуктивное напряжение и равное ему по модулю, но противоположное по направлению (сдвинутое по фазе на половину периода) емкостное напряжение.

Причём они могут достигать достаточно больших значений, гораздо больших, чем напряжение сети U. Реактивные напряжения (индуктивное, емкостное) будут превышать напряжение сети U во столько раз, во сколько раз реактивные сопротивления (индуктивное, емкостное) будут больше активного сопротивления R .

Поэтому рассмотренное явление резонанса называется резонансом напряжений .

При резонансе мгновенные мощности в реактивных участках цепи (в катушке индуктивности и конденсаторе) равны и противоположны по знаку. Это значит, что увеличение энергии магнитного поля в катушке индуктивности происходит в результате уменьшения электрической энергии запасённой в конденсаторе, и наоборот, а энергия генератора расходуется только на активном сопротивлении.

Для электрической цепи промышленного тока резонанс вреден , так как может привести к пробою изоляции катушки и конденсатора.

По этой причине коэффициент мощности на предприятиях поднимают до 0,9 - 0,95, чтобы получить большую мощность, но чтобы не получить явление резонанса.

Какие меры применяются для повышения коэффициента мощности на промышленных предприятиях будет сказано позднее.

В цепь переменного тока (120В, 50 Гц) последовательно включены катушка с активным сопротивлением 3 Ом и индуктивным сопротивлением 4 Ом и конденсатор. При какой ёмкости конденсатора наступит резонанс напряжений? Какими будут при этом ток в цепи, активное, индуктивное и емкостное напряжения?

Читайте также: