Требования к болтовым соединениям заземления

Обновлено: 27.03.2024

Заземление в комплекте: как надежно защитить себя и оборудование

Комфортную загородную жизнь в собственном капитальном доме невозможно представить без солидного набора инженерных систем и большого количества энергозависимого оборудования и бытовой техники. При этом то ли в силу менталитета и незыблемой веры в «Авось», то ли еще по каким причинам, отношение к различным защитным системам у нас весьма своеобразное. Вроде бы как делать их желательно, но и не то, чтобы обязательно – чай и без ливневой канализации и теплой отмостки фундамент не лопнет, да и без заземления люди живут, а если его и делать, то «пойдет» самое примитивное. Может и пойдет, и никогда ничего не случится, а вдруг нет, и последствия будут от легкого и среднего поражения током до самого страшного исхода. А ведь чтобы не рисковать ни здоровьем близких, ни дорогостоящим оборудованием, есть готовое эффективное решение практически на все случаи жизни – безмуфтовый комплект заземления ОБО Беттерманн.

Содержание


Зачем нужно заземление?

Сложное современное оборудование энергозависимое – не только насосные станции, стиральные и посудомоечные машинки, микроволновки и электрические котлы, но и любой газовый котел под завязку напичкан электроникой. Вкупе с тучей полезных функций и неоспоримым удобством, все эти приборы являются потенциально опасными. Никто не дает 100% гарантии, что в один далеко не прекрасный момент ни случится пробой. Те, кто позаботился об эффективном заземлении, ничего не почувствуют, просто сработает УЗО, а вот для тех, кто не воспринял проблему всерьез, вряд ли все закончится только ремонтом техники, а человека починить значительно сложнее. Заземление – это важнейшая защитная система, работающая в нескольких направлениях:

  • Предотвращение поражения электрическим током через корпус электроприборов или элементы инженерных коммуникаций при возникновении неисправностей;
  • Обеспечение оптимального рабочего режима и защита дорогостоящего оборудования и бытовой техники;
  • Организация молниезащиты.


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Как правило, проблематике заземления объекта у нас уделяется недостаточно внимания. Заземление встречается нечасто, хотя – это обязательное мероприятие. Согласно ПУЭ 1.7.101 для электрооборудования 220-380 В необходим заземлитель с сопротивлением не более 30 Ом! Система заземления защищает человека от напряжения при прикосновении в результате поломки электроприбора и отводит опасный потенциал в землю через очаг заземления. Также при эксплуатации газовых котлов необходимо соблюдать сопротивление системы заземления не более 10 Ом! Если это значение превышено или система заземления вообще отсутствует, то газовое оборудование будет работать с нарушениями или не работать вовсе!


Почему арматура не подходит в качестве заземлителя?

Один из повсеместно распространенных способов устройства заземления частного дома, модульно-штырьевой, с применением обычных арматурных прутов. Но и по ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011 Электроустановки Низковольтные, введенному 1 января 2015 года, и по вступившему в силу с 1 января 2021 года, ГОСТ 58882-2020 «Заземляющие устройства. Системы уравнивания потенциалов. Заземлители. Заземляющие проводники», сталь для этих целей не подходит. Для электроустановок напряжением до 1 кВ система заземления может выполняться только из устойчивых к коррозии материалов:

  • нержавеющая сталь;
  • оцинкованная сталь (покрытие методом горячего цинкования или электролитическое покрытие, с минимальной толщиной слоя цинка 1 мкм);
  • сталь, покрытая медью (минимум 70 мкм радиального покрытия медью с содержанием меди 99,9%);
  • медь.

Учитывая, какое у нас отношение к различным нормативам даже со стороны профи, не говоря о самостройщиках, при выборе материала для заземлителей стоит отталкиваться и от целесообразности. Да, арматура доступна и даже сейчас, когда она подорожала в несколько раз, затраты будут минимальными. Однако устраивается заземление не на год, не на пять, и даже не на десять и двадцать – в идеале, навсегда. В фундаменте арматурный каркас защищен слоем бетона, который предотвращает прямой контакт с влагой, в земле сталь ничем не защищена и вряд ли продержится даже десятилетие. Тогда как специализированный комплект прослужит значительно дольше.


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Согласно ГОСТу Р 50571.5.54-2013/МЭК 60364-5-54:2011, часть 5-54 «Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов», нельзя использовать черный металл для заземления. И самое главное, черный металл сгниет в земле через 2-5 лет. Срок службы комплекта заземления ОБО Беттерманн до 50 лет! Установка специального заземлителя гарантирует хорошие характеристики заземления.


Как сделать эффективную систему заземления

Способов организации заземления несколько, профильных тем десятки, на сотнях страниц, что, зачастую, только усложняет выбор. Вот и возникают такие типовые вопросы.


mikle77 Участница FORUMHOUSE

Подскажите, кто знает, как правильно сделать заземление дома? Кто-то говорит, что нужно закапать металлическую полосу и приварить ее к арматуре ленты фундамента, другие говорят, что приваривать ничего не нужно. А как правильно сделать?


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Заземление можно сделать несколькими способами:

  1. Кольцевой заземлитель, как правило, в виде полосы 40х4 мм либо проволоки 10 мм укладывается в траншею 0,5-0,7 метров в глубину, на расстоянии 1 метр от фундамента здания. Дополнительно комплектуется вертикальными стержнями для обеспечения хорошего сопротивления заземления. Желательно не более 10 Ом.
  2. Фундаментное заземление. Делается при заливке фундамента путем укладывания полосы на рабицу и с обязательным соединением арматуры (через каждые 5 м согласно ГОСТ Р 58882-2020)

Вывод: Если соединять фундамент с заземлителем, то в фундаменте должен быть надежный электрический контакт по всей площади. Соединение обычно выполняется болтовым способом. Использование сварки влечет нарушение защитного слоя проводника (цинка) и является местом появления коррозии и повышения переходного сопротивления.

Для частного домостроения мы рекомендуем использовать готовый комплект заземления, с помощью которого можно организовать качественный очаг заземления в одной точке.

С фундаментным заземлением возникают свои сложности.


vova3232 Участник FORUMHOUSE

А как приварить полосу к фундаменту, если фундамент из армированного бетона, а по правилам устройства таких фундаментов арматура не должна выступать из бетона, дабы не ржавела?


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Соединения полосы и арматуры можно осуществить специальными арматурными соединителями ОБО Беттерманн, например 5313015- 259 A-FT, которые могут соединять проводники диаметром до 22 мм и полосу шириной до 50 мм. Соединение происходит перед заливкой бетоном. Если фундамент уже готов, рекомендуем сделать кольцевое заземление или использовать глубинные заземлители.


В случае с заземляющим устройством важнейшее значение имеет результат – сопротивление.


ГриняС Участник FORUMHOUSE

Читаю, как сделать заземление. Есть думка забить по периметру дома штыри или уголки по 2 м (больше не забить, лежит пласт известняка на 2,4 м) с расстоянием 2-3 м. И все эти штыри приварить к ленте по периметру дома. Дом примерно 13×11 м. Вот и думаю – это не чрезмерно будет? Дом газобетон с плитами перекрытия. Будет, как и заземление, и СУП.


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Основной показатель достаточности или нет заземления – это замер контура заземления с помощью специального поверенного прибора (например, Sonel MRU-101, TE-30). Согласно ПУЭ 1.7.101 для электрооборудования 220-380 В необходим заземлитель с сопротивлением не более 30 Ом, а по новому ГОСТ Р 58882-2020 пункт 7.7.3.7 Сопротивление ЗУ по ГОСТ Р МЭК 62305-4 должно быть менее 10 Ом (измеренное на низкой частоте).

Если вы используете вертикальные заземлители 2 м, то расстояние между этими заземлителями должно быть от 2 м и более, согласно СО- 153 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» Пункт 3.2.3. Заземлители. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.

Одно решение всех проблем – готовый комплект заземления

Про заземление мало кто задумывается еще до закладки фундамента, да и в процессе его заливки далеко не всегда, поэтому чаще всего выбирают именно модульно-штырьевой способ. Но при применении подручных «комплектующих» возникает несколько проблем:

  • Слабый контакт с грунтом – достаточная длина штырей достигается за счет соединения муфтами, из-за большего их диаметра сам штырь в лунке «гуляет» и не может полноценно работать в качестве проводника.
  • Повреждение муфт – при забивке кувалдой или перфоратором муфты откручиваются или повреждаются.
  • Сложности с заглублением – грунт разный, чем он тверже, тем сложнее установить стержень четко вертикально, а то и забить в принципе.

Да и как бы то ни было, а специализированный комплект заземления, разработанный с учетом специфики применения и требований нормативов, всегда выигрывает и по качественным характеристикам, и по простоте монтажа, и по надежности. Не нужно ничего «колхозить», все уже придумано и реализовано.

Готовый комплект заземления представляет собой набор из четырех полутораметровых стержней из оцинкованной стали, которые соединяются встык без муфт и применения токопроводящей пасты (со временем может вымыть грунтовыми водами). Плюс, необходимые «доборы».


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

В состав комплекта входят 20 мм стержни заземления со слоем цинка 130 мкм, превышающим значение ГОСТ Р МЭК 62561-2 в 2 раза и позволяющим обеспечить долгосрочную эксплуатацию до 50 лет. А также:

  • наконечник для заглубления стержней и прохождения камней;
  • болтовой соединитель с проводником, наконечник для забивания кувалдой;
  • изоляционная лента, которая служит дополнительной защитой от коррозии и наматывается на соединитель с проводником;
  • подробная инструкция по эксплуатации заземлителя.


Комплект полностью готов к монтажу, его стоимость на фоне общестроительного бюджета и с учетом эффективности и долговечности получаемого устройства заземления, вполне доступна для всех домовладельцев. Инженерное электрооборудование и бытовая техника стоят в разы больше, а благополучие домочадцев никакими деньгами не измерить.

Монтаж комплекта заземления


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Для монтажа заземления с помощью готового комплекта потребуется только кувалда и проводник (например, ПВ-1, круглый или плоский горячецинкованный проводник) для соединения заземления с системой уравнивания потенциалов дома, или напрямую в щит электроснабжения.

Весь процесс проходит в несколько этапов.

  • Снять предохранительную зажимно-уплотняющую втулку со стартового стрежня, посредством кувалды или перфоратора углубить его в землю.
  • Надеть втулку на второй стержень, вставить в первый, забить оба стержня.
  • Повторить с третьим и последующими стержнями, до достижения необходимого значения сопротивления.
  • Соединить вертикальный проводник с горизонтальным заземляющим устройством посредством крестового зажима, заизолировать.


Кроме эффективности, долговечности и простоты применения готового безмуфтового комплекта, к его достоинствам относится универсальность. Устроить качественную систему заземления можно и по окончанию строительства, когда уже и двор в плитке, и на ландшафтный дизайн потратились. Например – в подвале дома.


Gendolf52rus Участник FORUMHOUSE

Подскажите, пожалуйста, так и не увидел единого мнения – можно ли делать заземление в подвале дома? Чисто теоретически – это лучше, т. к. суше и дополнительная защита от промерзания, типа постоянство параметров, но смущает близость к стенам. Не знаю, насколько там идет заглубление. Тут писали, что нужно не ближе 0,5 метра.

Планирую делать так: есть коридор, шириною 2 метра и длиною 8 метров. Вскрываю стяжку, копаю траншею, забуриваюсь ручным буром на глубину 1-1,5 метра, т. к. высота подвала 2,2, а длина уголка 3 метра. Забиваю 3 уголка в линию, с шагом между ними 3 метра. Потом соединяю их полосой. Засыпаю, трамбую. Расстояние до стен получается как раз около метра. Смущает как раз расстояние до стен (они из ФБС если что) и то, что часть грунта будет не материкового, а засыпного. Что подскажете?


Геннадий Чебатарёв Технический специалист компании ОБО Беттерманн

Да, можно в подвале. Очаг заземления рекомендуем сделать с помощью стержней заземления (рабочая длина 6-9 метров), максимально близко к распределительному щиту дома. Использование глубинного заземления позволяет сделать заземление с помощью одной лунки, а длина заземлителя дает возможность обеспечить низкие показатели сопротивления и пройти полосу промерзания грунта. Соединение с щитом и системой уравнивания потенциалов допустимо с помощью полосы, либо с помощью провода, например ПВ-1 10 мм (по меди) согласно пункту 7.6.6.8 ГОСТ Р 58882-2020 «Заземляющие устройства. Системы уравнивания потенциалов. Заземлители. Заземляющие проводники».


Если подвала нет, вполне реально подыскать даже на облагороженном участке подходящее место под глубинное заземление и обойтись без лишних земляных работ.

Готовый безмуфтовый комплект – простой, но вместе с тем эффективный способ устройства заземляющего устройства, которое десятки лет будет надежно защищать и жителей дома, и оборудование, обеспечивающее их комфорт.

Правила технической эксплуатации электроустановок потребителей

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.7. Заземляющие устройства

2.7.1. Настоящая глава распространяется на все виды заземляющих устройств, системы уравнивания потенциалов и т.п. (далее — заземляющие устройства). ¶

2.7.2. Заземляющие устройства должны соответствовать требованиям государственных стандартов, правил устройства электроустановок, строительных норм и правил и других нормативно-технических документов, обеспечивать условия безопасности людей, эксплутационные режимы работы и защиту электроустановок. ¶

2.7.3. Допуск в эксплуатацию заземляющих устройств осуществляется в соответствии с установленными требованиями. ¶

При сдаче в эксплуатацию заземляющего устройства монтажной организацией должна быть предъявлена документация в соответствии с установленными требованиями и правилами. ¶

2.7.4. Присоединение заземляющих проводников к заземлителю и заземляющим конструкциям должно быть выполнено сваркой, а к главному заземляющему зажиму, корпусам аппаратов, машин и опорам ВЛ — болтовым соединением (для обеспечения возможности производства измерений). Контактные соединения должны отвечать требованиям государственных стандартов. ¶

2.7.5. Монтаж заземлителей, заземляющих проводников, присоединение заземляющих проводников к заземлителям и оборудованию должен соответствовать установленным требованиям. ¶

2.7.6. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления с помощью отдельного проводника. Последовательное соединение заземляющими (зануляющими) проводниками нескольких элементов электроустановки не допускается. ¶

Сечение заземляющих и нулевых защитных проводников должно соответствовать правилам устройства электроустановок. ¶

2.7.7. Открыто проложенные заземляющие проводники должны быть предохранены от коррозии и окрашены в черный цвет. ¶

2.7.8. Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования (Приложение 3). ¶

2.7.9. Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным. ¶

При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов. ¶

Результаты осмотров должны заноситься в паспорт заземляющего устройства. ¶

2.7.10. Осмотры с выборочным вскрытием грунта в местах наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово-профилактических работ (далее — ППР), но не реже одного раза в 12 лет. Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населенной местности — см. п.2.7.11), определяется решением технического руководителя Потребителя. ¶

2.7.11. Выборочное вскрытие грунта осуществляется на всех заземляющих устройствах электроустановок Потребителя; для ВЛ в населенной местности вскрытие производится выборочно у 2% опор, имеющих заземляющие устройства. ¶

2.7.12. В местности с высокой агрессивностью грунта по решению технического руководителя Потребителя может быть установлена более частная периодичность осмотра с выборочным вскрытием грунта. ¶

При вскрытии фунта должна производиться инструментальная оценка состояния заземлителей и оценка степени коррозии контактных соединений. Элемент заземлителя должен быть заменен, если разрушено более 50% его сечения. ¶

Результаты осмотров должны оформляться актами. ¶

2.7.13. Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться: ¶

  • измерение сопротивления заземляющего устройства;
  • измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
  • измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;
  • измерение удельного сопротивления грунта в районе заземляющего устройства.

Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населенной местности. ¶

Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты — в период наибольшего промерзания грунта). ¶

Результаты измерений оформляются протоколами. ¶

На главных понизительных подстанциях и трансформаторных подстанциях, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11. ¶

2.7.14. Измерения параметров заземляющих устройств — сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами — производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой. ¶

При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных. ¶

2.7.15. На каждое, находящееся в эксплуатации, заземляющее устройство должен быть заведен паспорт, содержащий: ¶

  • исполнительную схему устройства с привязками к капитальным сооружениям;
  • указана связь с надземными и подземными коммуникациями и с другими заземляющими устройствами;
  • дату ввода в эксплуатацию;
  • основные параметры заземлителей (материал, профиль, линейные размеры);
  • величина сопротивления растеканию тока заземляющего устройства;
  • удельное сопротивление грунта;
  • данные по напряжению прикосновения (при необходимости);
  • данные по степени коррозии искусственных заземлителей;
  • данные по сопротивлению металлосвязи оборудования с заземляющим устройством;
  • ведомость осмотров и выявленных дефектов;
  • информация по устранению замечаний и дефектов.

К паспорту должны быть приложены результаты визуальных осмотров, осмотров со вскрытием грунта, протоколы измерения параметров заземляющего устройства, данные о характере ремонтов и изменениях, внесенных в конструкцию устройства. ¶

2.7.16. Для проверки соответствия токов плавления предохранителей или уставок расцепителей автоматических выключателей току короткого замыкания в электроустановках должна проводиться проверка срабатывания защиты. ¶

2.7.17. После каждой перестановки электрооборудования и монтажа нового (в электроустановках до 1000 В) перед его включением необходимо проверить срабатывание защиты при коротком замыкании. ¶

2.7.18. Использование земли в качестве фазного или нулевого провода в электроустановках до 1000 В не допускается. ¶

2.7.19. При использовании в электроустановке устройств защитного отключения (далее — УЗО) должна осуществляться его проверка в соответствии с рекомендациями завода-изготовителя и нормами испытаний электрооборудования (Приложение 3). ¶

2.7.20. Сети до 1000 В с изолированной нейтралью должны быть защищены пробивным предохранителем. Предохранитель может быть установлен в нейтрали или фазе на стороне низшего напряжения трансформатора. При этом должен быть предусмотрен контроль за его целостностью. ¶

И1.03-08 п.2.2

2.2.1. При невозможности использования естественных заземлителей, а также в случаях, когда токовые нагрузки на естественные заземлители превышают допустимые значения (см. гл. 1.7 ПУЭ) или естественные заземлители не обеспечивают безопасных значений напряжения прикосновения, в дополнение к естественным заземлителям необходимо сооружать искусственные заземлители. Искусственные заземлители не должны иметь окраски.

2.2.2. Заземляющие электроды рассматриваются как заглубленные (как правило, вертикальные), когда они установлены на глубине более 0,5 м. Установка вертикальных электродов изображена на рис. 4. Длина вертикальных электродов определяется проектом, но не должна быть менее 1 м.


Рис. 4. Установка вертикальных заземлителей

2.2.3. Заземляющие электроды рассматриваются как поверхностные (горизонтальные), когда они установлены на глубине не более 0,5 м. Горизонтальные заземлители используют для связи вертикальных заземлителей или в качестве самостоятельных заземлителей. Глубина прокладки горизонтальных заземлителей обычно составляет порядка 0,5 м. Меньшая глубина прокладки допускается в местах их присоединений к оборудованию, при вводе в здания, при пересечении с подземными сооружениями и в зонах многолетнемерзлых и скальных грунтов. Горизонтальные заземлители из полосовой стали следует укладывать на дно траншеи вертикально (рис. 5).

2.2.4. Поверхностные горизонтальные заземлители в местах пересечения с подземными сооружениями, железнодорожными путями и дорогами, а также в других местах возможных механических повреждений следует защищать металлическими или асбоцементными трубами.


Рис. 5. Прокладка горизонтальных заземлений в траншее (а) и совместно с кабелем (б):

1 - полоса; 2 - мягкий грунт; 3 - грунт; 4 - силовые кабели;

5 - контрольные кабели

Прокладку заземлителей параллельно кабелям или трубопроводам следует выполнять на расстоянии не менее 0,3 м, а при пересечениях не менее ОД м.

Траншеи для горизонтальных заземлителей должны быть заполнены сначала однородным грунтом, не содержащим щебня и строительного мусора, с утрамбовкой на глубину 200 мм, а затем местным грунтом.

2.2.5. Материалы и размеры заземляющих электродов должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий.

2.2.6. Минимальные размеры заземляющих электродов из наиболее распространенных материалов с точки зрения коррозионной стойкости и механической прочности, проложенных в земле, приведены в табл. 2;

2.2.7. Сечение заземляющих проводников должно соответствовать расчетным формулам п. 1.7.126 ПУЭ, при этом ожидаемые токи повреждений не должны вызывать недопустимых перегревов.

2.2.8. Минимальное сечение заземляющих проводников в системе защитного заземления TN может быть принято равным 6 мм 2 Си, 16 мм 2 А1, 50 мм 2 Fe при условии, что протекание существенных токов повреждения (превосходящих допустимый ток заземляющего проводника) не ожидается.

2.2.9. Минимальные поперечные сечения заземляющих проводников, проложенных в земле, приведены в табл. 3;

2.2.10. При использовании заземляющего устройства для установки выше 1 кВ с изолированной нейтралью (с нейтралью, заземленной через дугогасящий реактор или резистор) и одновременно для установки до 1 кВ с глухозаземленной нейтралью, например на трансформаторных подстанциях 10(6)/0,4 кВ, сечение заземляющего проводника, соединяющего сторонние проводящие части установки с заземлителем, следует принимать с учетом расчетного тока замыкания в электроустановке выше 1 кВ с изолированной нейтралью.

2.2.11. Соединения заземляющих электродов, заземляющих и защитных проводников в соответствии с требованиями п. 1.7.139 ПУЭ должны выполняться по второму классу соединений по ГОСТ 10434 «Соединения контактные электрические. Общие технические требования» (см. приложение).

2.2.12. При соединении элементов заземляющих устройств, выполненных из различных материалов, следует предусматривать меры по защите от электрохимической коррозии.

2.2.13. Соединения элементов заземляющих устройств рекомендуется выполнять с использованием специальных соединителей, при использовании сварки должны быть выполнены мероприятия по восстановлению антикоррозионного покрытия.

Таблица 2 - Минимальные размеры заземляющих электродов из наиболее распространенных материалов, удовлетворяющих требованиям коррозионной стойкости и механической прочности, проложенных в земле

Соединение элементов заземляющих устройств в земле

Соединение элементов заземляющих устройств в земле

При обустройстве заземления приходится соединять между собой провода, а также проводники и штыри, устанавливаемые под землей. Такие соединения должны быть устойчивыми к действию коррозии, а также не требовать обслуживания в течение длительного периода времени. В настоящее время используются три основных способа соединения проводов заземлений — опресовка, сварка и винтовой зажим. В этой статье будет дано краткое описание каждого из методов и проведено сравнение их преимуществ и недостатков.

Нормативная база

Соединение проводов заземления регулируется ГОСТ Р 50571.5.54-2013 (МЭК 60364-5-54:2011) «Электроустановки низковольтные». Часть 5-54, пункт 542.2.8: «Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено экзотермической сваркой, опрессовкой, зажимами или другим разрешённым механическим соединителем».

Другим документом, регламентирующим соединение проводов заземления, является ПУЭ. П. 1.7.139, 7-е издание ПУЭ, в частности, гласит: «Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов должны быть надёжными и обеспечивать непрерывность электрической цепи… Соединения должны быть защищены от коррозии и механических повреждений. Для болтовых соединений должны быть предусмотрены меры против ослабления контакта».

Кроме этого, параметры соединения проводов заземления винтовыми зажимами регулируются ГОСТ 10434 «Соединения контактные электрические. Общие технические требования». Если нет агрессивной среды (земля к ней, как правило, не относится), то соединения должны относиться ко 2 классу. К нему относятся контактные соединения цепей, сечения проводников которых выбраны по стойкости к сквозным токам, потере и отклонению напряжения, механической прочности и защите от перегрузки. Допускает зажимное соединение и циркуляр 11/2006 ассоциации «Электромонтаж», если соединяемые элементы выполнены не из чёрных металлов.

Опрессовка

Соединение проводов посредством опрессовки — самый простой и технологичный способ. Провода вставляются с двух сторон в гильзу и опрессовываются специальным устройством, именуемым кримпером. Однако, такой способ непригоден для соединения провода со штырём заземления. К тому же, если соединение опрессовкой находится под землей, то гильза и провода покрываются слоем окиси, что повышает сопротивление контакта. Применяется герметизация такого соединения, но в итоге такая герметизация представляет собой сложное и ненадёжное решение. По сути, не могут полностью быть соблюдены нормы ПУЭ. Вот почему опрессовка не может быть применяться для соединения, находящегося под землей.

Сварка

В настоящее время ГОСТ не упоминает в числе методов, допустимых для соединения проводов заземления дуговую сварку

В настоящее время ГОСТ не упоминает в числе методов, допустимых для соединения проводов заземления дуговую сварку

Набор для экзотермической сварки проводников

Набор для экзотермической сварки проводников

Вместо дуговой сейчас для соединения проводов заземления применяют так называемую экзотермическую (иногда её ещё называют термитной) сварку. При экзотермической сварке для нагрева металла используется так называемый термит — порошкообразная смесь алюминия или магния с железной окалиной (либо окисью меди). Применительно к контуру заземления обычно используется термит на основе алюминия и оксида меди. Место соединения заформовывают огнеупорным материалом, туда засыпают порошкообразный термитный состав, который затем поджигают. В результате сгорания термита образуется жидкая медь, которая имеет хорошую адгезию со свариваемым материалам. Температура расплава превышает 3000°C. Экзотермическая сварка соответствует нормам как ГОСТ Р 50571.5.54-2013, так и ПУЭ.

Посмотреть, как осуществляется экзотермическая сварка, можно на видео:

Выпускаются готовые комплекты для экзотермической сварки, для использования которых не требуется специальной подготовки. Тем не менее, при прочих равных условиях, применение экзотермической сварки всё же сложнее, чем соединение проводов винтовыми зажимами. Естественно, к винтовым зажимам, пригодным для соединения проводов заземления, предъявляются особые требования.

Винтовые зажимы

Для того, чтобы реализовать преимущества готовых наборов для заземления ZANDZ, а, именно, предельную простоту сборки и установки, есть смысл использовать винтовые зажимы. Если при сборке допущена ошибка, можно разобрать и потом правильно собрать. Но даже если ваши квалификация и опыт позволяют сразу сделать всё правильно, всё равно с винтовыми зажимами работать проще, чем применять сварку.

Но у винтовых зажимов есть два недостатка, которые, впрочем, преодолимы. Во-первых, при соединении ими омеднённого штыря заземления и провода из обычной стали, либо оцинкованной стали, возникает электрохимическая реакция, приводящая к коррозии. Во-вторых, со временем может происходить ослабление затяжки винтов, на что особое внимание обращено в ПУЭ.

Требования к болтовым соединениям заземления

ГОСТ Р 58882-2020

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА. СИСТЕМЫ УРАВНИВАНИЯ ПОТЕНЦИАЛОВ. ЗАЗЕМЛИТЕЛИ. ЗАЗЕМЛЯЮЩИЕ ПРОВОДНИКИ

Grounding devices. Equation potentials systems. Grounders. Grounding conductors. Technical requirements

Дата введения 2021-01-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Научно-производственная фирма. Электротехника: наука и практика" (ООО "НПФ ЭЛНАП")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 336 "Заземлители и заземляющие устройства различного назначения"

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на заземляющие устройства для объектов электроэнергетики (электрические станции и подстанции, линии электропередачи, распределительные пункты, переходные пункты и др.), электроустановок промышленных, жилых и административных зданий и сооружений, объектов связи и транспорта и устанавливает технические требования к системам выравнивания и уравнивания потенциалов, заземлителям и заземляющим проводникам, а также классификацию и типы заземляющих устройств.

Настоящий стандарт не распространяется на заземляющие устройства объектов связи и железнодорожного транспорта, если эти объекты не расположены на общей территории с электроустановками.

Настоящий стандарт обязателен к применению всеми организациями, осуществляющими проектирование, изготовление, приемку, испытания и эксплуатацию заземляющих устройств.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.030 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление

ГОСТ 12.1.038 Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов

ГОСТ 10434 Соединения контактные электрические. Классификация. Общие технические требования

ГОСТ 21130 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 24291 Электрическая часть электростанции и электрической сети. Термины и определения

ГОСТ 30331.1 (IEC 60364-1:2005) Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения

ГОСТ Р 50571.5.54/МЭК 60364-5-54:2011 Электроустановки низковольтные. Часть 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов

ГОСТ Р 57190 Заземлители и заземляющие устройства различного назначения. Термины и определения

ГОСТ Р 58344 Заземлители и заземляющие устройства различного назначения. Общие технические требования к анодным заземлениям установок электрохимической защиты от коррозии

ГОСТ Р МЭК 60715 Аппаратура распределения и управления низковольтная. Установка и крепление на рейках электрических аппаратов в низковольтных комплектных устройствах распределения и управления

ГОСТ Р МЭК 62305-1 Менеджмент риска. Защита от молнии. Часть 1. Общие принципы

ГОСТ Р МЭК 62305-4 Защита от молнии. Часть 4. Защита электрических и электронных систем внутри зданий и сооружений

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 24291, ГОСТ 30331.1, ГОСТ Р 57190, а также следующие термины с соответствующими определениями:

3.1 вынос потенциала: Появление на коммуникациях, выходящих за пределы электроустановки, напряжений (по отношению к земле) выше допустимых значений.

3.2 гальваническая связь: Электрическое соединение двух объектов металлическим проводником с незначимо малым сопротивлением.

3.3 импульсный потенциал на заземляющем устройстве: Напряжение между какой-либо точкой заземляющего устройства и точкой на поверхности грунта, расположенной не ближе 20 м от рассматриваемой точки.

Примечание - Наибольший импульсный потенциал имеют точки, в которые вводится импульсный ток.

3.4 термическое воздействие: Нагрев заземляющих проводников и заземлителей протекающим по ним током электроустановки.

4 Сокращения

В настоящем стандарте применены следующие сокращения:

ВЛ - воздушная линия электропередачи;

ГЩУ - главный щит управления;

ЗУ - заземляющее устройство;

КЗ - короткое замыкание;

КЛ - кабельная линия электропередачи;

КРУ - комплектное распределительное устройство;

КРУЭ - комплектное распределительное устройство с элегазовой изоляцией;

ЛР - линейный разъединитель;

ОРУ - общеподстанционнное распределительное устройство;

ОПУ - общеподстанционный пункт управления;

РЗА - релейная защита и автоматика;

РПН - регулирование под нагрузкой;

РУ - распределительное устройство;

РЩ - релейный щит;

СИП - самонесущий изолированный провод;

ТСН - трансформатор собственных нужд;

ТН - трансформатор напряжения;

ТП - трансформаторная подстанция;

ТТ - трансформатор тока;

ЭС - электрическая станция;

ЭМС - электромагнитная совместимость.

5 Классификация и типы заземляющих устройств, заземлителей и заземляющих проводников

5.1 ЗУ классифицируют по следующим признакам:

а) по назначению:

- ЗУ электроустановок напряжением до 1 кВ;

- ЗУ электроустановок напряжением выше 1 кВ;

- ЗУ взрыво- и пожароопасных объектов;

- ЗУ высоковольтных испытательных лабораторий;

- ЗУ электрохимической защиты;

б) по выполняемым функциям:

- защитное заземление - для обеспечения электробезопасности;

- помехозащитное заземление - для обеспечения электромагнитной совместимости оборудования;

- молниезащитное заземление - для отвода в грунт токов молнии;

- рабочее заземление - для обеспечения требуемых режимов и надежной работы электроустановки, системы или оборудования.

5.2 Заземлители классифицируют по следующим признакам:

а) по типу исполнения:

- искусственные и естественные;

б) по конструктивному исполнению:

- продольные и поперечные горизонтальные;

- вертикальные (или наклонные);

5.3 Заземляющие проводники классифицируют по назначению:

- проводники системы уравнивания потенциалов;

6 Общие технические требования

6.1 В случае противоречий требований настоящего стандарта требованиям нормативных документов, указанных в разделе 2, приоритетными являются требования настоящего стандарта.

6.2 ЗУ должно изготовляться в соответствии с требованиями настоящего стандарта и стандартов или технических условий на ЗУ конкретного типа по технологической документации, утвержденной в установленном порядке.

Читайте также: