Трансформаторы тока проходного типа

Обновлено: 22.04.2024

ТПЛ-НТЗ-10

Трансформаторы тока ТПЛ-НТЗ-10 предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Варианты исполнения трансформаторов:

«К» - с переключением по вторичной стороне.

Расположение вторичных выводов:

«А» - параллельно установочной поверхности;

«В» - перпендикулярно установочной поверхности;

«С» - из гибкого провода параллельно установочной поверхности.

Трансформаторы имеют 4 конструктивных исполнения («1», «2», «3» и «4»), каждое из которых по 2 варианта длины корпуса:

Для конструктивных исполнений «1» и «2»:

«1» - длина корпуса трансформатора 288 мм;

«2» - длина корпуса трансформатора 387 мм;

Для конструктивных исполнений «3» и «4»:

«1» - длина корпуса трансформатора 250 мм;

«2» - длина корпуса трансформатора 290 мм;

ТРЕБОВАНИЯ К НАДЕЖНОСТИ

Для трансформаторов установлены следующие показатели надежности:

- средняя наработка до отказа – 2´10 5 ч.;

- полный срок службы – 30 лет.

Пример условного обозначения проходного трансформатора тока с литой изоляцией: ТПЛ-НТЗ-10-31В-0,2 S Fs 5/10Р10–10/15-600/5 40 кА УХЛ2.

10 - номинальное напряжение;

«3» - конструктивный вариант исполнения;

«1» - исполнение по длине корпуса;

«В» - вторичные выводов расположенных перпендикулярно установочной поверхности;

0,2S - класс точности измерительной вторичной обмотки;

( Fs )5 - коэффициент безопасности приборов вторичной обмотки для измерения;

10Р - класс точности защитной вторичной обмотки;

10 - номинальная предельная кратность вторичной обмотки для защиты;

10 - номинальная вторичная нагрузка обмотки для измерения;

15 - номинальная вторичная нагрузка обмотки для защиты;

600 - номинальный первичный ток А;

5 - номинальный вторичный ток 5 А;

40 - односекундный ток термической стойкости;

«УХЛ» - климатическое исполнения;

2 - категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Технические данные:

Наименование параметра

Значение параметра

Номинальное напряжение, кВ

Наибольшее рабочее напряжение, кВ

Номинальный первичный ток, А

Номинальный вторичный ток, А

Номинальная частота, Гц

Число вторичных обмоток

Номинальные вторичные нагрузки с коэффициентом мощности cosϕ2=0,8, ВА:

- обмоток для измерения

- обмоток для защиты

- обмоток для измерения

0,2 S ; 0,2; 0,5 S ; 0,5

- обмоток для защиты

Номинальный коэффициент безопасности приборов Кбном вторичной обмотки для измерения, не более

Номинальная предельная кратность Кном вторичной обмотки для защиты, не менее

Испытание основной изоляции одноминутным напряжением промышленной частоты:

Разновидности и классификация трансформаторов тока

Июль 26th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_12

В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.

Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди них, необходимо их классифицировать.

Вот сегодня мы и поговорим об их разновидностях и классификации.

Классификация ТТ по назначению

Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.

Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.

Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.

Классификация трансформаторов тока по месту установки

По месту установки трансформаторов тока их можно классифицировать следующим образом:

внутренние встроенные переносные специальные

Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.

На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.

Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.

Вот установка высоковольтного трансформатора тока ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).

transformatory_toka_трансформаторы_тока

Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_25

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_26

Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Переносные ТТ применяются для лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.

Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.

Разделение ТТ по способу установки

По способу установки трансформаторов тока их можно классифицировать следующим образом:

Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания). Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Классификация трансформаторов тока по коэффициенту трансформации

В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?

Трансформаторы тока бывают:

с одним постоянным коэффициентом трансформации (одноступенчатые) с несколькими коэффициентами трансформации (многоступенчатые)

Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.

parametry_transformatora_toka_параметры_трансформатора_тока

У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.

Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.

Классификация трансформаторов тока по первичной обмотке

По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:

с одним витком (одновитковые) с несколькими витками (многовитковые)

Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.

Разделение ТТ по типу изоляции

Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:

  • твердая изоляция
  • вязкая изоляция
  • смешанная изоляция
  • газовая изоляция

Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).

Вязкая изоляция состоит из компаундов различных составов.

Под смешанной изоляцией понимают бумажно-масляную изоляцию.

В качестве газовой изоляции применяется воздух или элегаз.

Классификация ТТ по методу преобразования

Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.

Различают следующие методы преобразования:

электромагнитные оптико-электронные

Классификация трансформаторов тока по классу напряжения

Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:

класс напряжения до 1 (кВ) класс напряжения от 1 (кВ) и выше

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_3

Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.

Выводы

Параметры трансформатора тока

Сентябрь 18th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

parametry_transformatora_toka_параметры_трансформатора_тока

Сегодня мы рассмотрим основные характеристики и параметры трансформаторов тока. Эти параметры будут необходимы нам для правильного выбора трансформаторов тока.

Основные характеристики и параметры трансформаторов тока

1. Номинальное напряжение трансформатора тока

Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока.

Существует стандартный ряд номинальных значений напряжения у трансформаторов тока:

parametry_transformatora_toka_параметры_трансформатора_тока

Ниже смотрите примеры трансформаторов тока с номинальным напряжением 660 (В) и 10 (кВ). Разница на лицо.

parametry_transformatora_toka_параметры_трансформатора_тока
parametry_transformatora_toka_параметры_трансформатора_тока
parametry_transformatora_toka_параметры_трансформатора_тока

2. Номинальный ток первичной цепи трансформатора тока

Существует стандартный ряд номинальных значений первичных токов у выпускаемых трансформаторов тока:

parametry_transformatora_toka_параметры_трансформатора_тока

Прошу обратить внимание на то, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 300, 600, 750, 1200, 1500, 3000 и 6000 (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 320, 630, 800, 1250, 1600, 3200 и 6300 (А). В остальных случаях наибольший первичный ток не должен быть больше номинального значения первичного тока.

Ниже на фото показан трансформатор тока с номинальным первичным током равным 300 (А).

3. Номинальный ток вторичной цепи трансформатора тока

Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А).

parametry_transformatora_toka_параметры_трансформатора_тока

Сам лично ни разу не встречал трансформаторы тока со вторичным током 1 (А). Также по индивидуальному заказу можно заказать ТТ с номинальным вторичным током равным 2 (А) или 2,5 (А).

4. Вторичная нагрузка трансформатора тока

Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи). Это значение измеряется в омах (Ом).

Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе.

parametry_transformatora_toka_параметры_трансформатора_тока

Вот так сложно написал, но просто вчитайтесь в текст внимательнее и все поймете.

И здесь тоже существует ряд стандартных значений номинальной вторичной нагрузки трансформаторов тока, выраженных через вольт-амперы при cos=0,8:

parametry_transformatora_toka_параметры_трансформатора_тока

Чтобы выразить эти значения в омах, то воспользуйтесь следующей формулой:

parametry_transformatora_toka_параметры_трансформатора_тока

К этому вопросу мы еще с Вами вернемся. В следующих статьях я покажу Вам как самостоятельно можно рассчитать вторичную нагрузку трансформатора тока наглядным примером из своего дипломного проекта. Чтобы ничего не пропустить, подписывайтесь на новые статьи с моего сайта. Форму подписки Вы можете найти после статьи, либо в правой колонке сайта.

5. Коэффициент трансформации трансформатора тока

При расчетах коэффициент трансформации разделяют на:

  • действительный (N)
  • номинальный (Nн)

В принципе их названия говорят сами за себя.

Вот примеры коэффициентов трансформации трансформаторов тока:

  • 150/5 (N=30)
  • 600/5 (N=120)
  • 1000/5 (N=200)
  • 100/1 (N=100)

parametry_transformatora_toka_параметры_трансформатора_тока

6. Электродинамическая стойкость

Своими словами, это способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания.

Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости к амплитуде номинального первичного тока I1н.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока. Читайте статью про классификацию трансформаторов тока. По другим типам трансформаторов тока данные о токе электродинамической стойкости можно найти все в том же паспорте.

7. Термическая стойкость

Своими словами, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени.

Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н.

Все данные о токе термической стойкости Вы можете найти в паспорте на трансформатор тока.

Ниже я представляю Вашему вниманию скан-копию этикетки на трансформатор тока типа ТШП-0,66-5-0,5-300/5 У3, где указаны все его вышеперечисленные основные параметры и характеристики.

parametry_transformatora_toka_параметры_трансформатора_тока
parametry_transformatora_toka_параметры_трансформатора_тока

P.S. На этом я завершаю свою статью про основные характеристики и параметры трансформаторов тока. В следующих статьях я расскажу Вам про обозначение выводных концов, принцип работы трансформатора тока, режимы работы, класс точности и другие интересные темы.

Похожие статьи: Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Здравствуйте!Ответьте пожалуйста почему на некоторых трансформаторах тока по 2 конца И1 иИ2

спасибо огромное за статью, помогло!

Вот бы было бы здорово если бы были пояснения без терминов. Попроще чуток! Начинаешь термины изучать вообще голова кругом идёт))).

Здравствуйте !
Не очень понял саму схему трансформаторов тока.
-Он действует по типу токовых клещей ? Наводится напряжение в катушке в зависимости от тока проходящего через сердечник ? Имеет одну катушку ?
-Или всё таки трансформатор тока пропускает весь ток нагрузки через первичную катушку, а через вторичную катушку мы имеем какое то напряжение ? Имеет две обмотки ?

Здраствуйте, статьи по режимам работы еще нету?

Антон, пока нет времени. В будущем обязательно напишу. Если Вас интересует что то конкретное по режиму работы ТТ, то спрашивайте.

Какова периодичность проверки трансформаторов тока?

Михаил, согласно ПТЭЭП конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (К), при текущем ремонте (Т) и при межремонтных испытаниях и измерениях (М), определяет технический руководитель Потребителя, на основании ПТЭЭП и различных межотраслевых руководящих документов.

На нашем предприятии проверку трансформаторов тока мы проводим 1 раз в 3 года.

с вашей статей я сдал на 5 разряд спасибо вам большое

Рвачев Валерий Васильевич :

Огромнейшее спасибо автору за эти статьи!
Я не электрик, а инженер-механик (технология машиностроения), но волею судьбы занимаюсь проектированием и управлением монтажом систем инфракрасного отопления. Поэтому эта информация для меня исключительно важна и полезна.

Рвачев Валерий Васильевич :

Я много лет преподавал инженерные дисциплины и, как преподаватель, могу сказать, что материал на сайте представлен ясно, наглядно, доходчиво и БЛАГОЖЕЛАТЕЛЬНО. Еще раз большое спасибо вам!
Это по-русски! Русский дух чувствуется!

А зачем производят сняти ВАХ вторичных обмоток?

А вот где нагрузка превышает 100 (А), и это не обязательно высоковольтная установка, там нужно применять трансформаторы тока с соответствующим коэффициентом трансформации, например, 100/5, 150/5 и т.д. Пример такой схемы смотрите здесь.

Здравствуйте, если я поставлю ТЫ 100/5 но, не всегдабудут такие высокие значения тока, будет ли счетчик нормально работать?

А что такое предельная кратность первичного тока

подскажите пожалуйста не дурят ли меня при оплаты за электроэнергию, потребляю я примерно 300кВт по 4р. а потом я еще доплачиваю примерно 10000-14 000р за полгода как мне объясняют что у нас трансформатор с коэффициентом 600, и пользуются у на с в садовом товариществе пока 8 чел (всего 54) и типа если бы все пользовались бы было бы по 1000-2000р . Заранее благодарен если вы мне поясние как производитьс я расчет при таких трасформаторах с коэффициентом 600

Вадим, мне не совсем понятно, почему помимо своего счетчика Вы еще дополнительно что-то платите. Чтобы помочь Вам, мне нужна схема электроснабжения Вашего садового товарищества (СНТ). Я так понимаю, что у Вас на участке установлен счетчик и в месяц у Вас выходит около 300 (кВт). Также на вводе в СНТ у Вас установлен вводной счетчик через трансформаторы тока с коэффициентом 600/5, т.е. его показания умножают на 120. И разницу показаний между счетчиками всех участков и вводным счетчиком Вам распределяют на всех. Если так, то с этим вопросом Вам нужно обращаться к председателю СНТ, возможно где-то ошибка в расчетах или вводной счетчик работает с погрешностью, а возможно, что все работает нормально.

Обратимы ли ТТ? Т.е.если подать ток во вторичную цепь для проверки релейной защиты, будет ли что-то трансформироваться в первичную обмотку (шину)?

Тт 400/5 токовая загрузка на вторички 5.3 А. Тт не правильно подобран. Счетчи энергомера се303. ест ли погрешность если да то как расчитать ее при бошем токой загрузке чем номинал. Энергоснабжаюшая органиция хочет актироввть. Но как вычислить правилно сколько квт не было учтено

А можно ли как-либо определить выводы И1 и И2 на тр-ре тока если на нем стерта или отсутствует маркировка?

Спасибо.Не знал даже о таком приборе.батарейку найти легко а гальванометра нету.

Стрелочный тесте на малых пределах тока и будет вам гальванометром.

а сопротивление какое брать? или без него можно?

Подскажите кто знает как провести расчет вторичной нагрузки ТТ.

Здравствуйте, Дмитрий. Спасибо за статью, очень доступно все изложено. Вы упомянули про ТТ со вторичным током 1 (А). А для чего их используют?

Илья, лично я ни разу не встречал трансформаторы тока со вторичным током 1 (А), не считая трансформаторы тока нулевой последовательности. Но насколько я знаю, то номинальный вторичный ток 1 (А) обычно применяют тогда, когда расстояние кабельных линий токовых цепей очень большое и приходится значительно увеличивать сечения проводов из-за возникновения в них потерь, на моей практике вплоть до 10 кв.мм.

Здравствуйте! Подскажите пожалуйста такой вопрос: на генераторной панели для защиты генератора стоит дифференциальное реле тока RMC-131D/2 со значением токового измерения 5А, трансформаторы тока на 3 фазы стоят 3000/1А каждый, можно ли заменить на дифференциальное реле тока со значением токового измерения 1А? Это Возможно?

Роман, да можно. Главное, чтобы ток в первичной цепи не превышал 3000 (А).

Спасибо большое за ответ!

Подскажите пожалуйста, имеется счётчик Меркурий 230 ART-03. Полная потребляемая мощность каждой параллельной цепью данного счетчика равна 7,5 ВА. Правильно ли, что для подключения данного счётчика необходимо взять трансформаторы тока с вторичной номинальной нагрузкой 10 ВА?

подскажите. Если в наше дома 6 трансформаторов и коэф. трансформации Кт= 30,20,1,1,1,1 то значит ли это что при начислении квартплаты нам надо умножить показания эл. счетчиков на эти коэфф.?

Влад, если с коэффициентами 30 и 20 я еще соглашусь, то коэффициентов 1 у трансформаторов тока не бывает. Это значит, что трансформаторов тока нет или же Вы что-то не так указали.

а что скажете про снятие информации с тр-ров и умножение на Кт для выставления счетов для оплаты?

Влад, если счетчик подключен через трансформаторы тока, например, с коэффициентом трансформации 150/5, то его показания и нужно умножать на 30.

Если трансформаторы тока используются для амперметров, нужно ли заземлять И2? Если нет, то дайте ссылку на документ. В ПУЭ написано обобщенно, что надо. На практике большинство производителей НКУ не заземляют обмотку. Где правда?

Андрей, конечно нужно.
ПУЭ, п.1.5.37. Заземление (зануление) счетчиков и трансформаторов тока должно выполняться в соответствии с требованиями гл. 1.7. При этом заземляющие и нулевые защитные проводники от счетчиков и трансформаторов тока напряжением до 1 кВ до ближайшей сборки зажимов должны быть медными.
ПУЭ, п.3.4.23. Заземление во вторичных цепях трансформаторов тока следует предусматривать в одной точке на ближайшей от трансформаторов тока сборке зажимов или на зажимах трансформаторов тока. Вторичные обмотки промежуточных разделительных трансформаторов тока допускается не заземлять.
ПТЭЭП, п.2.6.24. Вторичные обмотки трансформаторов тока должны быть всегда замкнуты на реле и приборы или закорочены. Вторичные цепи трансформаторов тока и напряжения и вторичные обмотки фильтров присоединения высокочастотных каналов должны быть заземлены.

Тут стоит вопрос в электробезопасности, ведь при обрыве цепи во вторичной обмотке трансформаторов тока на его выводах появляется высокое напряжение (высокий потенциал). Также это необходимо для защиты в случае пробоя первичной обмотки на вторичную. Это Ваша безопасность, поэтому заземлять вторичные обмотки ТТ я считаю обязательным независимо от того, что подключено к ТТ, счетчик или амперметр, к тому же это требуют и Правила.

Антон, разница в мощности вторичных обмоток в 2 раза. Можно использовать ту или иную мощность, в зависимости от подключенных ко вторичным обмоткам нагрузок (реле, счетчиков, приборов, различных преобразователей и т.п.). Однозначно трудно сказать, нужно рассматривать конкретный пример и производить расчеты.

Здравствуйте. Но я правильно понимаю, что для учёта и то и другое подойдёт. Коэффициент трансформации в обоих случаях будет одинаков, то есть от мощности он не зависит. Правильно?

1, обычно это ТТ выше 1000В

Автор статьи, сделайте пожалуйста статью о векторах ТТ, в нормальном режиме работы, и при КЗ. И с схемой соединений ТТ, полная звезда, неполная звезда, разность токов, треугольник. Ничего в них не понимаю, а у вас объяснение толково получается.

В статье не хватает методов проверки коэффицента трансформации, проверки рабочей точки характеристики намагничивания, определения одноплярных выводом первичной и вторичных обмоток, ну и определение вторичной нагрузки )

Здравствуйте есть предприятие на подстанции есть данные трансформаторы тока по высокой стороне и есть кофециент 900 может быть такое.


Денис, согласно ГОСТ 7746-89, таких номиналов нет, либо 800 (А), либо 1000 (А).

ТРАНСФОРМАТОР ТОКА – УСТРОЙСТВО И НАЗНАЧЕНИЕ

Трансформатор тока

Обеспечение конечного пользователя электроэнергией требует преобразовании "транспортных" параметров электрического тока в потребительские. Эту задачу, совместно с функцией измерения, решает трансформатор тока (ТТ).

Существует несколько разновидностей таких устройств, классифицируемых по широкому диапазону параметров. В данной статье мы опишем основные характеристики, разновидности и область применения трансформаторов.

Принципиальная конструкция ТТ, независимо от модели, состоит из следующих элементов:

1. Шихтованный сердечник – в качестве материала изготовления может использоваться холоднокатаная электротехническая сталь или аморфные нанокристаллические сплавы. Второй вариант дороже, однако, значительно расширяет рабочий диапазон.

2. Первичная обмотка. Представляет собой один виток или вообще один прямой провод. У некоторых моделей трансформаторов может быть использована шина, пропущенная через окно магнитопровода. Подключается к электроцепи последовательно.

3. Вторичная обмотка – наматывается на сердечник и изолируется. В лабораторных и каскадных моделях ТТ допускается к использованию несколько групп вторичных обмоток. Как правило, к одной группе подключаются приборы измерения и контроля, а к другой - защитные устройства.

К рабочим контактам обязательно необходимо подключить какие-либо устройства потребления - цепь должна быть нагружена. В противном случае напряжение может возрасти до величины способной пробить изоляцию. В случае если катушку разомкнуть, возникнут наведенные некомпенсированная токи, от которых магнитопровод может выгореть.

По тому же принципу функционируют токоизмерительные клещи. Кабель играет роль первичной обмотки, смыкающиеся зубцы клещей оснащены вторичной обмоткой и выполняют функции магнитопровода.

ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Сфера применения преобразующих устройств типа ТТ тесно связана с их основными параметрами и техническими решениями конструкции. В соответствии с ГОСТ 7746-2015 (общие техусловия), различают следующие ключевые параметры.

Номинальное напряжение.

Показатель рабочей величины напряжения в измеряемой электросети.

Номинальный ток.

Различают два типа этого показателя для первичной и вторичной цепи. Они протекают соответственно по первичной и вторичной обмотке устройства. При этом, номинальный рабочий электроток является константой и равен 1 или 5 А.

Вторичная нагрузка.

Показатель суммарного сопротивления всех устройств внешней цепи, подключенной к вторичной обмотке: счетчики электроэнергии, амперметры, устройства релейной защиты, таковые преобразователь. Параметр измеряется в омах (Ом).

Коэффициент трансформации.

Соотношение показателей первичного и вторичного тока. Данный параметр принято разделять на номинальный и реальный (действительный).

Электродинамическая стойкость.

Выражается в виде максимального показателя амплитуды электрического тока при коротком замыкании за единицу времени (как правило, за одну секунду). Обмотки трансформатора тока должны выдерживать указанное значение без пробоев или каких-либо других повреждений.

Показатели электродинамической стойкости не касаются разъёмных, встроенных или шинных ТТ.

Термостойкость.

Максимальное значение силы тока при коротком замыкании за единицу времени (1 сек), при котором нагрев токоведущих частей трансформатора не превышает критических температур и не вызывает повреждений.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ ТОКА

Современные производители предлагают широкую номенклатуру трансформаторов. Чтобы облегчить выбор была разработана система классификации ТТ по нескольким параметрам.

  • измерительные – комплектуются приборами учета, подключенными к вторичной обмотке;
  • защитные – в состав входят разнообразные реле;
  • промежуточные – основная задача, это преобразование параметров тока первичной электросети и приведение этих значений к величинам пригодным для функционирования внешних потребляющих устройств;
  • многоступенчатые – имеют несколько вторичных обмоток, чем обеспечивают более широкие возможности трансформации;
  • лабораторные – повторяют принципиальную конструкцию многоступенчатых, но обеспечивают более высокий класс точности.
ПО МЕСТУ УСТАНОВКИ

Их установка регламентируется стандартами категорий размещения для электрооборудования ГОСТ 15150-69. В зависимости от модели допускается установка, как на открытом воздухе, так и в распределительном щитке открытого типа (ОРУ).

Допускается установка только в закрытом помещении (специализированном или с дополнительно обустроенной вентиляцией по ГОСТ 15150-69) в ЗРУ или КРУ (закрытое или комплектное).

Являются частью конструкции другого электрооборудования. Как правило, для обеспечения дифференциальной защиты общего устройства.

Оборудование для измерений и испытаний электросетей и других электрических устройств. К примеру, лабораторные и измерительные трансформаторы тока.

Используются в качестве электрооборудования на транспорте (морские суда и электровозы) или на производстве (высокочастотные электропечи).

ПО СПОСОБУ УСТАНОВКИ, ТИПУ ОБМОТОК

Такие устройства имеют специфическую конструкцию, позволяющую устанавливать их в стенных проемах или на металлических основаниях. Как правило, такие ТТ используются на старых трансформаторных подстанциях, выполняет функцию проходного изолятора.

Специфика их конструкции состоит в расположении контактов первичной обмотки, один вывод расположен сверху другой снизу.

Монтируются на ровном опорном основании. Отличительной особенностью конструкции является наличие контактов первичной обмотки в верхней части устройства либо по бокам корпуса.

  • одноступенчатые - один коэффициент;
  • многоступенчатые – несколько коэффициентов.
Трансформаторы тока зачастую переделывают (как одно-, так и многоступенчатые), путем изменения числа витков на катушках. Однако при этом существенно снижается коэффициент точности.

По конструкции или наличию первичной обмотки ТТ можно классифицировать на:

Без первичной обмотки: встроенные, шины, разъёмные. Фактически, они состоят из магнитопровода со вторичной обмоткой. Функцию первичной обмотки выполняет стержень высоковольтного ввода электроцепи.

Одновитковые: стержневые и u-образные. Используется на подстанциях промышленных предприятий для подключения устройств учета энергии.

Многовитковые: петлевые, звеньевые. Используются в сложных многофазных сетях для контроля нескольких фаз.

ПО ТИПУ ИЗОЛЯЦИИ

Суть такой классификации состоит определении способа изоляции обмоток.

  1. Твёрдые: фарфор, бакелит, полимерные материалы типа капрона или эпоксидной смолы;
  2. Вязкие - компаунды изоляционных материалов;
  3. Смешанные – бумажно-масляные изоляционные материалы;
  4. Газовые: элегаз или воздух.

Классов трансформаторов тока по напряжению бывает только два - до одного киловатта и более.

МАРКИРОВКА ТОКОВЫХ ТРАНСФОРМАТОРОВ

Условное обозначение устройств отечественного производства осуществляется в соответствии с нормативной документацией и техническими условиями ми (ТУ).

Она имеет следующий вид:

  • Т - первая буква в обязательном порядке "Т" означает, что устройства относятся к трансформаторным;
  • N - конструкционные особенности устройства: проходной (П), опорный (О), с использованием шины в качестве первичной обмотки (Ш), с фарфоровой изоляцией корпуса (Ф);
  • M - материал изоляции обмоток: "М" - масляная (фактически, смешанная бумажно-масляная изоляция), "Л" - литая (эпоксидная смола), "Г" – газовая;
  • Х1 - значение рабочего (номинального) напряжения;
  • Х2 - вариант конструкционного исполнения. Как правило, касается расположения контактов первичной и вторичной обмоток как;
  • Х3 - габаритные размеры корпуса. Чаще всего, эта маркировка применяется для трансформаторов, устанавливаемых в силовых шкафах. Код привязывают к длине корпуса;
  • Х4 - буквенный код определяющий расположение выводов вторичной катушки относительно установочного основания. "А" - параллельно установочной поверхности, "Б" - перпендикулярно относительно установочной поверхности;
  • Х5 - наличие и тип изолирующих барьеров;
  • Х6 – значение точности при передаче данных, внешняя цепь;
  • Х7 - коэффициента безопасности для исходящих катушек (измерительные цепи);
  • Х8 – значение точности для исходящих катушек (измерительные цепи);
  • Х9 - коэффициент кратности;
  • Х10 – рабочее значение нагрузки для устройств измерения;
  • Х11 - рабочее значение нагрузки для устройств защиты;
  • Х12 - значение входящего и исходящего тока;
  • Х14 - максимальное значение силы тока при односекундном воздействии короткого замыкания на пределе термической стойкости;
  • Х15 - климатическое исполнение оборудования.

ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая "схема неполной звезды". К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

ПОДКЛЮЧЕНИЕ ЧЕРЕЗ ТРАНСФОРМАТОРЫ ТОКА РЕЛЕЙНОЙ ЗАЩИТЫ

К примеру, необходимо установить релейную защиту на первичной (входящей) электроцепи с параметрами тока: напряжение 10 кВ и нагрузкой 1 кА. При таких показателях релейная защита не может быть включена в электроцепь напрямую напрямую.

Для подключения рекомендуется использовать трансформаторы тока модель ТПЛ-10 с коэффициентом трансформации 1000/5 при использовании токовых реле и ТТ - НТМИ-10с коэффициентом трансформации 1000/100 для подключения реле напряжения.

Также через этот тип трансформатора допускается подключение электросчетчика.

На отечественных предприятиях и бытовых подстанциях чаще всего встречаются проходные трансформаторы тока с двумя вторичными обмотками, которые используются для учета потребления электроэнергии и установки релейной защиты соответственно.

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

Содержание

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Трансформаторы тока

Орлов Анатолий Владимирович

Орлов Анатолий Владимирович Начальник службы РЗиА Новгородских электрических сетей Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная - замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.
Расположение вторичных выводов:

ТОЛ-НТЗ-10-01 1

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

TОП-066
Опорные трансформаторы тока TОП-0,66

TОП-066 1

presentation

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

Трансформаторы тока проходные

ТПЛ-НТЗ-10

Конструктивно выполнено устройство в виде опорной конструкции катушечного типа в составе которого блок катушек, залитых изоляционным компаундом. Опорой для трансформатора проходного служат угольники, закрепленные в нижней части магнитопровода. Выводы обмоток первичных имеют разное исполнение по току, вторичных – разное буквенное обозначение.

  • Подстанции 6-35 кВ
  • Трансформаторы 6-110 кВ
  • Электрооборудование РУ 6-35 кВ
  • Электрооборудование 0,4 кВ
  • Токоограничивающие реакторы РТСТ
  • Шинопроводы (токопроводы)
  • Электрокабельная арматура
  • Трансформаторы тока
  • Трансформаторы тока нулевой последовательности
  • Трансформаторы тока опорные
  • Трансформаторы тока проходные

Цель компании «ЭНЕРГОПРОМ-АЛЬЯНС» — предложение широкого ассортимента актуальной для российского рынка электротехнической продукции и сопутствующих услуг на постоянно высоком уровне качества.

ТПЛ-НТЗ-10 (с уменьшенным размером фланца)

Трансформатор тока ТПЛ-НТЗ-10 предназначен для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и является комплектующим изделием.

Трансформатор изготавливается в виде проходной конструкции в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69. Рабочее положение трансформатора в пространстве – любое. Трансформатор работает в электроустановках, подвергающихся воздействию грозовых перенапряжений и должны иметь:

- класс нагревостойкости «В» по ГОСТ 8865-93;

- уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Наименование параметра

Значение параметра

Номинальное напряжение, кВ

Наибольшее рабочее напряжение, кВ

Номинальный первичный ток, А

Номинальный вторичный ток, А

Номинальная частота, Гц

Число вторичных обмоток

Номинальные вторичные нагрузки с коэффициентом мощности cosϕ2=0,8, ВА:

- обмоток для измерения

- обмоток для защиты

- обмоток для измерения

- обмоток для защиты

Номинальный коэффициент безопасности приборов Кбном вторичной обмотки для измерения, не более

Номинальная предельная кратность Кном вторичной обмотки для защиты, не менее

Испытание основной изоляции одноминутным напряжением промышленной частоты:

- для уровня изоляции «а», кВ

- для уровня изоляции «б», кВ

- для грозового импульса (полный импульс), кВ

Варианты исполнения трансформатора:

«К» - с переключением по вторичной стороне

Расположение вторичных выводов:

«А» - параллельно установочной поверхности;

«С» - из гибкого провода, расположены параллельно установочной поверхности.

Трансформатор имеет четыре конструктивных исполнения («1», «2», «3»и «4»), каждое из которых 2 варианта по исполнению первичных контактов.

На трансформатор устанавливается прозрачная крышка с возможностью пломбирования, за исключением варианта исполнения «С».

Читайте также: