Светильник из прожектора своими руками

Обновлено: 17.05.2024

LED светильники своими руками

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».

При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.

Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:

  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).

Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.

Но именно в этой конструкции кроется «засада».

Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.

Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.

Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.

Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.

Есть два основных направления при разработке светодиодных источников света:

1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.

2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.

Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».

  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый

Такое добро продается по 3 рубля пучок на любом радиорынке.

Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.

В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.

Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.

Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя

Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.

После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.

Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.

Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.

Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).

Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.

Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.

Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети - U led) I – полученный ток цепи в амперах

200 – это константа (частота сети 50Гц * 4)

С – емкость конденсатора С1 (гасящего) в фарадах

U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)

Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.

Для удобства можно создать формулу в Exel.

LED светильники своими руками

Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.

Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.

В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.

После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.

Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.

Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.

Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.

Светильник для мастерской на гибком кронштейне своими руками

Сегодня я хочу представить очередную свою самоделку. На этот раз это будет не станок и не инструмент, а, всего-лишь, настольный светильник.


Ранее я уже представил здесь один из вариантов настольного светильника для мастерской. Но, со временем, решил сделать ещё один. Дело в том, что работаю я обычно, в своём подвале, в котором у меня есть верстак. Там и установлен светильник. Но иногда мне удобнее делать что-то, сидя за столом. (Стол в подвале тоже имеется). Я накрываю стол картоном и работаю. А так как мои глаза с возрастом для нормального функционирования требуют всё больше и больше света, приходится прибегать к местному освещению. Пользоваться настольной лампой достаточно неудобно, так как, работая, часто опрокидывал её, зацепив шнуром электроинструмента, или заготовкой. Решил поэтому сделать ещё один светильник на струбцине. Если прошлый раз меня вдохновило на его создание наличие диодной ленты, то сейчас - появление в продаже по относительно низким ценам компактных диодных прожекторов. ))).

Впервые я обратил на них внимание, когда делал сверлильный станок.. Думая над тем, из чего можно сделать подсветку, я увидел в магазине вот такие диодные прожекторы:




Они светят достаточно ярко, благодаря десятиваттной светодиодной матрице, и, в то-же время, достаточно компактны. Обрадовала и цена (около трёх долларов), и я купил тогда два таких. Один - для станка, второй - "чтобы был" ))))
Вот сейчас я решил использовать его в своей самоделке.

Для её изготовления мне понадобились следующие материалы:

1. Светодиодный прожектор мощностью 10 Ватт.
2. Обрезок кожуха от автомобильного троса ручного тормоза.
3. Обрезок листового металла толщиной 1 миллиметр.
4. Струбцина.
5. Шнур со штепсельной вилкой.
6. Термоусадочная трубка.

Итак, начнём. Когда-то один из моих друзей не смог найти в продаже трос ручного тормоза для своего автомобиля американского производства. Он спросил моего совета, и я ему помог - в моей мастерской мы изготовили нужный трос из двух "жигулёвских". С тех пор в моём "нужном хламе" лежит обрезок кожуха от этого троса:


Моё внимание привлекло одно его качество - способность удерживать форму. То есть, если его изогнуть, к примеру, дугой, или "змейкой", то можно, держа за конец, даже размахивать им, и форма изгиба сохраняется!:






Это навело на ассоциацию с лампами, которые установлены на токарных станках. Там "ножка" лампы имеет такие-же свойства, благодаря чему, лампу легко можно направлять в любую сторону. Именно поэтому я решил задействовать этот кожух в качестве держателя для моего прожектора. Осталось придумать, каким образом закрепить на нём прожектор.

Штатную скобу я решил не использовать - она для этого не подходит. (Мне не нужно обеспечивать поворот прожектора в одной плоскости. Мне нужно его жёстко закрепить на конце кожуха). Поэтому скобу я сразу демонтировал. А крепление решил сделать из обрезка металла, толщиной 1 мм, который валялся у меня в "металлоломе".


Из него я вырезал вот такую заготовку:


При этом я использовал уже имеющийся загиб под прямым углом:


Именно посредством получившегося "жёлоба" я собираюсь прижать кожух троса к корпусу прожектора.
Сам кронштейн я собираюсь закрепить, используя гайку гермоввода кабеля. (Прожектор по степени защиты соответствует стандарту IP 65, поэтому провода заведены герметично). Мне для моих целей герметичность не требуется, поэтому я отвернул гайку гермоввода и разделал изоляцию кабеля, освободив провода:


В кронштейне я просверлил отверстие диаметром 12 мм (именно такой диаметр имеет резьбовая часть гермогайки:


Так как мне требуется очень жёстко прижать конец кожуха к корпусу прожектора, я посчитал жёсткость кронштейна недостаточной. (Ведь он выполнен из стали толщиной всего 1 мм.) Чтобы не позволить ему разогнуться, я сделал ещё одну точку крепления, для чего, надрезав одну сторону, изогнул конец кронштейна и просверлил в нём отверстие:






Теперь, посредством этого отверстия, можно закрепить конец кронштейна одним из винтов, которыми раньше крепился штатный кронштейн.
Примерив всё и убедившись в том, что отверстия совпадают, я отрезал всё лишнее, закруглил все углы и зачистил:


Кронштейн готов. Отправляем его пока в покраску. (Возможно, я уже озвучивал свой метод ускоренной покраски металлических деталей. Для тех, кто не знает - подскажу. Нужно перед покраской разогреть деталь при помощи технического фена, и окрашивать "на горячую". Нитроэмаль сохнет в таком случае моментально).


А пока краска сохнет, займёмся электрической частью.
Кожух троса имеет внутренний диаметр 4 мм. Для прокладки внутри кожуха я решил использовать медные провода с моножилой, которые у меня остались после переделки люминисцентного светильника "2 по 36" под светодиодные лампы:




Используя силиконовую смазку, и работая пассатижами, я не без труда вставил пару проводов внутрь кожуха:


Так как заземление в моём светильнике предусмотрено не будет, я отрезал жёлто зелёный провод, а остальные два соединил пайкой с проводами, продетыми сквозь кожух, после чего, изолировал их термоусадочным кембриком:


После чего, используя кембрик большего диаметра, обтянул им провода с заходом на кожух:


Краска на кронштейне высохла, и я закрепил кожух на корпусе прожектора, пропустив жгут сквозь прорезь:




Крепление получилось очень прочным, благодаря тому, что кожух, имеющий поперечные "рёбра", прижался поперёк рёбер охлаждения прожектора:


Вырвать его оттуда невозможно. Для проверки прочности, я несколько раз, держа рукой за корпус прожектора, придал "ноге" несколько разных форм, изгибая её:






Именно этот эффект мне и нужен. Так я смогу легко направлять свет туда, куда мне потребуется.

Теперь нужно придумать удобное крепление лампы к столу. Я сразу отбросил мысль сделать какую-бы то ни было упорную площадку. Светильник для работы не должен занимать место на столе. Наиболее удобный выход - крепить его с помощью струбцины к противоположному краю столешницы. Изначально я думал сделать простейшую струбцину из обрезка уголка, гайки и болта. Но вовремя вспомнил о валяющейся у меня очень давно без дела вот такой струбцине:






Я не знаю, от чего она, и, даже забыл, как она ко мне попала! ))))) Уж больно давно она у меня валяется))). Но она как нельзя лучше подходит для моей цели. Я решил вставить нижний конец "ноги" светильника в канал струбцины. Для того, чтобы выпустить провода, Я, используя УШМ, сделал вырез в нижней части:


После чего, помотав изоленты, с силой "вкрутил" нижний конц кожуха в струбцину:




Порывшись в своих "электрических запасах", я выбрал подходящий шнур с штепсельной вилкой:


(Таких готовых шнуров у меня всегда есть в запасе.)))) Я никогда ничего не выбрасываю, не разобрав. И, даже не вижу ничего зазорного в том, чтобы отрезать шнур от прибора, который выбросили. (Как правило, старые телевизоры/утюги/видики выносят и ставят у мусорных контейнеров)))))). И, при этом не испытываю ни малейшего стыда, или неудобства.))) Просто подхожу и отрезаю шнур.
А стыдно, я считаю - это когда у мужика нет в запасе куска провода, или штепсельной вилки. )))))

Соединив пайкой провода, и заизолировав их термоусадочным кембриком, я, во избежании отрыва при случайном рывке, примотал изолентой место соединения к струбцине:


(Я ведь делаю не красивую, а удобную и (главное) добротную лампу, потому как в мастерской нельзя исключить ни рывков шнура, ни ударов)))).

Никакого выключателя я делать не стал. Дело в том, что стол и верстак у меня оборудованы "управляемыми розетками". (Я закрепляю несколько розеток под столешницей, рядом с каждой - выключатель. Это очень удобно при одновременной работе с разными инструментами, например, с несколькими паяльниками одновременно. "Чтоб не дёргать штепселя" ))))). Вот в одну из них и будет включена лампа.
А если кому-то необходим выключатель, то можно его закрепить на "голове" лампы, или на струбцине. Как наименее удобный, но наиболее легковыполнимый вариант - повесить в разрыве шнура.

Светодиодный светильник своими руками. Подробная пошаговая инструкция.

В данной статье мы расскажем Вам, как из обычного галогенного прожектора можно сделать светодиодный своими руками. Инструменты, которые есть у каждого дома, комплектующие и оборудование для производства светодиодных светильников.

Практически у каждого из нас дома, на даче или в гараже, есть галогенный прожектор мощностью 100-150 ватт. Даже если Вы будете использовать его аккуратно, соблюдая все правила правильно эксплуатации, замена галогенных лап будет происходить как минимум раз в месяц. А если еще и вспомнить, что его потребляемая мощность порядка 150 ватт, то и включать такой прожектор не сильно захочется.

Несомненно, Вы слышали о светодиодном оборудовании хотя бы раз. Светодиодное освещение уже широко используется во всех отраслях нашей с вами повседневной жизни. Потребляемая мощность светодиодного прожектора, при абсолютно идентичной выдаваемой освещенности, будет в 10 раз меньше, поэтому такой светильник максимум через год (в зависимости от частоты его использования). Срок службы светодиодов превышает 50 000 часов, так что можно забыть о замене лампы на очень долгое время.

В данной статье я расскажу Вам, как из обычного галогенного прожектора, можно сделать светодиодный своими руками без каких-либо трудностей. Для этого я использовал инструмент, который есть у каждого дома, комплектующие (более подробно о них будет рассказано ниже), и оборудование для производства светодиодных светильников нашей компании.

Что нам для этого понадобится:

  1. Корпус от галогенного прожектора фирмы Navigator;
  2. Алюминиевое основание, согнутое с по бокам. Предназначено для отвода тепла, выдаваемые светодиодами. Для этого я использовал обычный лист алюминия, толщиной 1 мм. Можно использовать алюминиевый лист, толщиной от 0.8 мм для лучшего теплоотвода;

провод пвс

Провод ПВС 3х0,5 мм 2 ;

хомут-стяжка

Хомут-стяжка 3*60. Можно использовать любой длины, но не менее 40мм;

Так же, нам понадобятся следующие инструменты:

  1. Отвертка крестовая;
  2. Отвертка шлицевая;
  3. Дрель автоматическая;
  4. Паяльник ручной;
  5. Фен строительный;
  6. Заклёпочник ручной;
  7. Бокорезы;

крестовые отвёртки
шлицевая отвёртка
автоматическая дрель
паяльник
фен строительный
заклёпочник ручной
бокорезы

Так же из расходных материалов нам понадобятся старая зубная щетка, заклепки, термоусадочная трубка толщиной 2мм, два провода 1х0.5 мм 2 , флюс, припой, этиловый спирт и небольшое количество герметика.

Теперь же разберем все по шагам.

Шаг №1.
Положите алюминиевую плату 9W на стол или любую другую ровную поверхность. На самой плате необходимо капнуть 1-2 мл флюса на каждый «плюс» и «минус» в места, где будут устанавливаться светодиоды.

Шаг №2.

Аккуратно положив светодиод на тех местах, где у нас есть флюс (для более точной установки мы использовали здесь пинцет). Анод и катод светодиода необходимо установить на плюс и минус платы соответственно. Очень важно на этом шаге соблюдать полярность!

Важно: чтобы светодиоды остались на своих местах во время пайки, рекомендую после установки его пинцетом на плате, сначала припаять катод (или анод, как вам удобнее) на всех светодиодах (рис. 3), а затем уже, после установки всех светодиодов, припаять анод (или катод) (рис. 4).

паять флюс
пайка светодиодов
плата со светодиодами

Шаг №3.
После припаивания всех светодиодов на алюминиевой плате (в нашем случае их было 9), необходимо убрать остатки флюса. Для этого рекомендуется использовать этиловый спирт.

Берем в руки старую зубную щетку. Окунув ее в этиловый спирт, необходимо тщательно прочистить те места, где мы использовали ручную пайку (рис.6).

очистка спайки

Шаг №4.

протереть плату

Остатки спирта необходимо удалить сухой тряпичной тканью (рис. 7).

Шаг №5.
Готовую алюминиевую плату с напаянными светодиодами необходимо закрепить на алюминиевом основании. Для этого, кладем плату на лист алюминия (рис. 8). На каждом из четырёх краёв платы имеются 3мм. отверстия для крепления. Так же, для лучшей стабилизации платы на алюминиевом листе, используем для крепления еще и центральное отверстие.

Используя ручную дрель, делаем в листе алюминия отверстия, совместив их с креплением на алюминиевой плате (рис. 9). Помимо этого, нам необходимо будет сделать отверстие для питания светодиодной платы в нижней части.

Важно: рекомендуется делать отверстия на ДСП или ином материале, чтобы не повредить рабочую поверхность.

отверстия в плате
сверлить плату

Шаг №6.
В этом шаге мы, используя 5 клепок и ручной заклепочник, закрепляем светодиодную плату на алюминиевом основании (рис. 10 и рис. 11).

После установки всех клепок на свое место, у вас должна получиться светодиодная плата, крепко держащаяся на алюминиевом основании (рис.12).

плата с заклепками

Шаг №7.
Сейчас нам нужно подвести питание к нашим светодиодам. Для этого в светодиодном оборудовании используется источник стабилизации тока, или просто «драйвер», который у нас уже имеется.

Сначала, нам нужно нарастить выход питания для светодиодов на драйвере для удобной установки драйвера в корпуса, а так же для удобства последующей пайки. Находим на корпусе драйвера надпись «Output». Эти два провода, «+» и «-», и являются питанием для светодиодов. Надеваем на каждый из проводов по заранее приготовленной термоусадочной трубке (рис. 13).

подготовка проводов

Берем в руки бокорезы и зачищаем с их помощью эти два провода (рис. 14).

бокорезы для проводов

Теперь, кладем к зачищенной части «+» провод 1*0.5 и капаем в будущее место скрепления по несколько миллилитров флюса (рис. 15).

флюс на провода

Аккуратно спаиваем провода между собой, используя ручной паяльник (рис. 16).

спайка проводов

Повторяем точно такие же действия и для «-» на выходе драйвера (рис. 17).

паять провод

Переносим уже приготовленную нами ранее термоусадочную трубку на место пайки (рис. 18) и усаживаем ее при помощи строительного фена (рис. 19).

термоусадочная трубка
строительный фен

Шаг №8.

продеть провод

Продеваем в нижнее отверстие светодиодной платы «+» с выхода драйвера (рис. 20).

Капаем на «+» питания светодиодной платы несколько миллилитров флюса для последующей пайки (рис. 21)

закрепить провод

Аккуратно спаиваем место соединения провода с алюминиевой платой, используя ручной паяльник (рис. 22).

припаять к плате

Важно: обратите внимание на то, что при пайке необходимо соблюдать полярность! Т.е., если вы паяете на драйвере «+», то его нужно соединить именно с «+» на плате. И тоже самое с «-».

Проделываем все те же самые действия и с «-» выхода с драйвера (рис. 23, 24 и 25).

полярность
соблюдать полярность
полярность при пайке

Теперь нам осталось убрать остатки флюса

Берем в руки старую зубную щетку. Окунув ее в этиловый спирт, необходимо тщательно прочистить те места, где мы использовали ручную пайку (рис.26).

убрать флюс

Остатки спирта убираем тряпичной тканью (рис. 27).

вытереть спирт

Шаг №9.
В этом шаге нам нужно соединить провода на вход драйвера с уже имеющими проводами внутри корпуса галогенового прожектора. Для этого, по аналогии с прошлым шагом, соединяем коричневый провод прожектора с «+» входа драйвера, а синий провод – с «-» (рис. 28, 29 и 30). Желто-зеленый же провод оставляем нетронутым.

Шаг №10.

Закрепляем драйвер внутри корпуса прожектора при помощи обычного хомута-стяжки.

Для этого сначала продеваем один из концов хомута через шину внутри корпуса (рис. 31).

подсоединить драйвер

Затем устанавливаем на шину драйвер для светодиодов (рис. 32).

установка драйвера

Важно: при установке драйвер нужно располагать так, что при затягивании хомута-стяжки, драйвер был бы жестко закреплен (рис. 33).

подключение драйвера

После установки драйвера затягиваем хомут-стяжку (рис. 34) и убираем ненужные остатки от хомута (рис. 35).

закрепить драйвер
крепление драйвера

Шаг №11.

Устанавливаем в корпус прожектора алюминиевую плату, с напаянными нами ранее светодиодами (рис. 36 и 37).

установка платы
установить плату

Закрываем защитное стекло прожектора и закручиваем болт для фиксации стекла в закрытом положении (рис 38 и 39). Болт с гайкой должен идти в комплекте с корпусом.

защитное стекло
закрепить защитное стекло

Шаг №12.
Открываем заднюю крышку прожектора. Там мы можем увидеть два провода от драйвера, который мы установили, тройную клеммную колодку с подключенным желто-зеленым проводом и сальник для гермоввода.

Для начала уберем гермоввод, он понадобится нам позже (рис. 40).

убрать гермоввод

Берем в руки клеммную колодку. Закрепляем с ее помощью два провода от драйвера («+» и «-») (рис. 41 и 42).


провода драйвера

Оставляем клеммную колодку пока в висячем положении.

В задней части светильника можно увидеть держатель для провода с двумя болтами. Отвинчиваем их (рис. 43).

держатель провода

Пропускаем в отверстие для гермоввода провод ПВС 3*0.5 (рис. 44).

вставить провод

Закрепляем каждый из проводов ПВС 3*0.5 при помощи клеммной колодки в соответствии с полярностью: желто-зеленый провод нужно соединить с желто-зеленым проводом, коричневый провод – с «+» драйвера, а синий – с «-» (рис. 45 и 46).

цвета проводов
подключить цветной провод

Возвращаем клеммную колодку на своё место (рис. 47).



Закрепляем провод при помощи держателя для провода (рис. 48).

закрепить держателем провода

Аккуратно заливаем в отверстие, где у нас будет установлен гермоввод небольшое количество герметика (рис. 49). После этого, оставляем прожектор на какое-то время для того, чтобы герметик высох (рис. 50).

отверстие гермоввода
герметик высох

Устанавливаем гермоввод. Сначала пропускаем через провод резиновую прокладку (рис. 51), а затем завинчиваем сальник (рис. 52 и 53).

резиновая прокладка
завинтить сальник
закрепить сальник

Закрепляем заднюю крышку при помощи четырех винтов (рис. 54, 55, 56 и 57).

задняя крышка
крепления задней крышки
винты задней крышки
закрутить винты

Вот и все, готово! Вы только что своими руками собрали собственный светодиодный светильник.

Освещение из старых прожекторов

Пару месяцев назад наткнулся на объявление о продаже старых театральных прожекторов.

Состояние их было весьма удручающим, но под слоем ржавчины и старой краски угадывались интересные формы.

Я давно засматривался на торшеры из старых прожекторов в интерьерах в лофт стиле и, недолго думая, решил прикупить эти самые прожекторы.

Отпескоструил их, поменял полностью проводку, сделал новые крепления патронов.

Нашёл 2 практически идентичные деревянные треноги 70-х годов. Зачистил, покрасил в несколько слоев, сделал потёртости, для придания им винтажного вида, и. вот, что получилось:

Делаем LED прожектор на 50W из хлама

Делаем LED прожектор на 50W из хлама своими руками. Руководство как из сломанного блока питания и ещё нескольких деталей за час-два можно сделать полезную вещь - светодиодный прожектор 50 ватт.

Наверняка у многих из вас, как и у меня скопилось несколько не работающих блоков питания, также уже давно лежат десяти ваттные светодиодные матрицы. Наконец пришло время им соединится)))

Для создания этого прожектора нам потребовалось:

- светодиоды 10W 9-11v 9шт.;
- радиатор процессора;
- блок питания компьютера (любой);
- неполярные конденсатор общей ёмкостью 14мкф 400вольт (любые на 400 вольт у меня один пусковой на 12мкф и ещё 2,2 мкф 400вольт пленочный. Можно просто набрать 14мкф любых пленочных на мин 400 вольт);
- Диодный мост (выпаиваем из блока питания);
- Конденсаторы 2 Х 560мкф 200вольт + 2 Х 470мкф 200вольт (выпаиваем из блоков питания);
- Предохранитель (тоже можно выпаять из блока питания).

Процесс изготовления

Схема простейшая, здесь всё с большим запасом прочности и ломаться практически нечему.

Собрать эту схему не составит труда.
И пару слов как это сделано.
Я приклеиваю светодиоды на супер клей цианокрилат, как ни странно, но теплопроводность у него отличная и держится намертво, только в случае замены, конечно, придется попотеть (но мы же заложили большой запас мощности, поэтому это нам не грозит)

Прикручиваем шурупами радиатор и делаем из картона воздуховод к радиатору.

Делаем отражатель и закрываем окно прозрачным пластиком из коробочки сд-диска.

И вот какая мощность у нас получилась.

После прогрева температура не выше 40 градусов Цельсия.

И специально для крутых спецов - испытание на 240 и 250 вольтах.

Ничего не сгорает, и ещё приличный запас по мощности у светодиодов.

Всё надежно - можно повторять.

И конечно имеет смысл, если детали у вас в наличии.
Стоимость светодиодов на ebay примерно 200 руб, а светодиодный прожектор у нас в магазине примерно в 10 раз дороже.

Так что имеет смысл сделать такую подсветку для дома или гаража.

Также рекомендую посмотреть подробный видеоролик по изготовлению прожектора своими руками:

Как сделать из автомобильной фары фонарь (прожектор) на 220 вольт для домашнего хозяйства

Когда пришла идея применить в качестве уличного освещения автомобильную фару – сразу встал вопрос о питании такого освещения.


Использовать «родную» лампочку на 12 вольт оказалось проблематично - трансформатор внутрь фары не влазит! Отдельно городить для этого погодозащищенный корпус и вести от него к фаре провода большого сечения желания не было.


Выходом из сложившейся ситуации явилось применение компактных галогенных ламп напряжением 220 вольт. В продаже нашлись лампы мощностью 35 и 50 Вт. Слышал про 75 Вт, но не смог найти. Применял оба найденных вида – успешно работают.


Все что оставалось- придумать надежный способ крепления ее в фаре, позволяющий производить замену вышедшей из строя лампы без особых сложностей.

Начнем с «разборки» штатной лампы на 12 вольт с целью извлечения крепежных элементов.

Лампа представляет собой собственно лампу и крепежную «юбку» соединенные пайкой.


Отделяем лампу от юбки прогрев хорошенько место пайки на любом доступном оборудовании, в нашем случае это газовая плита.



Затем из фольгированного текстолита вырезаем кусочек, размечаем его по размеру ножек лампочки, сверлим, прорезаем, пропаиваем по периметру и в конце получаем следующее:


Поиск креплений для ножек лампы привел на барахолку. Штыревой разьем «2РМ» (мама) идеально подошел для нашей цели.


Пробуйте, меряйте – обязательно что-нибудь подберете.

Вставляем и припаиваем «ножкодержатели»




Вот и все- лампа готова к установке в фару


В сборе выглядит все так:




Автор самоделки: Ika_tander

Похожие мастер-классы

Как сделать дроссель на лампу ДРЛ 250

Как сделать дроссель на лампу ДРЛ 250

Простой преобразователь для питания энергосберегающих ламп

Простой преобразователь для питания энергосберегающих ламп

Самый простой зарядник для аккумуляторной батареи

Самый простой зарядник для аккумуляторной батареи

Доработка энергосберегающей светодиодной лампы

Доработка энергосберегающей светодиодной лампы

Светодиодная лампа дневного света

Светодиодная лампа дневного света

Самодельная LED лампа на 3 Вт

Особо интересное

Как без усилий отмыть многолетний нагар реально за 10 минут

Как без усилий отмыть многолетний нагар реально за 10 минут

10 рабочих столярных хитростей и советов

10 рабочих столярных хитростей и советов

6 полезных идей для мастерской

6 полезных идей для мастерской

Как сделать, чтобы к алюминиевой или чугунной сковородке ничего не прилипало. Способ из советского журнала

Как сделать, чтобы к алюминиевой или чугунной сковородке ничего

Как сделать бетонную отмостку под фундаментом вечной

Как сделать бетонную отмостку под фундаментом вечной

Как быстро очистить ручки газовой плиты от грязи и засохшего жира

Как быстро очистить ручки газовой плиты от грязи и засохшего жира

Комментарии (3)

«Сделай сам – своими руками» - сайт интересных самоделок, сделанных из подручных материалов и предметов в домашних условиях. Пошаговые мастер-классы с фото и описанием, технологии, лайфхаки - все, что нужно для рукоделия настоящему мастеру или просто умельцу. Поделки любой сложности, большой выбор направлений и идей для творчества.

Светодиодный прожектор своими руками 9000Лм 100W

ФЕРЕКС

Российский производитель светодиодных светильников «ФЕРЕКС» начал серийное производство светодиодного прожектора серии FFL мощностью 300Вт.
Новая модификация получила все преимущества серии FFL. Прежде всего, это высокая надежность и долговечность. Корпус изделия с эффективным теплоотводом выполнен из сплава алюминия с полимерным покрытием. В конструкции отсутствуют пластиковые детали. Гермоввод с клапаном выравнивания давления препятствует попаданию влаги внутрь светильника. В качестве рассеивателя устанавливается сверхпрочное закаленное стекло.
Новинку отличает удобство монтажа и обслуживания. Поворотный кронштейн позволяет регулировать угол наклона прожектора в пределах от 0 до 60⁰. Предусмотрена возможность замены драйвера без демонтажа светильника. Выпускается FFL 11−300−850 в достаточно компактном корпусе с габаритами 445х415х370 мм.
Световая эффективность FFL 11−300−850 с КСС С120 – 135Лм/Вт. Ресурс работы высокоэффективных светодиодов NICHIA – 100 000 часов. Заводская гарантия – 5 лет. Наличие и стоимость новинки уточняйте по телефону: 8 (800) 500 09 16.

light77

Автор: light77

🔥 НЕРЕАЛЬНЫЙ СВЕТИЛЬНИК СВОИМИ РУКАМИ
В данном видео показан полный и максимально подробный процесс разработки и изготовления устройства, а также обзор его возможностей и функций.
Светильник на адресных светодиодах с кучей эффектов, управлением по Wi-Fi и функцией будильник-рассвет!
Железо
Проект собран на базе микроконтроллера ESP8266 в лице платы NodeMCU или Wemos D1 mini (неважно, какую из этих плат использовать!).
Вместо адресной ленты используется гибкая адресная матрица 16×16, что выходит дешевле ленты (матрица 16×16 стоит 1500р, она состоит из 256 диодов с плотностью 100 штук на метр. Лента такой же плотности стоит 1000р за метр (за 100 светодиодов). Для склейки матрицы размером 16×16 понадобится 2.5 метра ленты, то есть 2500р. А готовая матрица стоит на 1000р дешевле!).
Система управляется со смартфона по Wi-Fi, а также “оффлайн” с кнопки на корпусе (сенсорная кнопка на TTP223).
Для прошивки от AlexGyver используется приложение GyverLamp для Android и GyLamp для iOS
Для прошивки от gunner47 используется приложение Led Lamp (.apk) для Android и Arduino Lamp для iOS
Фишки
14 крутых эффектов
Настройка скорости, яркости и “масштаба” для каждого эффекта
Настройка эффектов со смартфона
Работа системы как в локальной сети, так и в режиме “точки доступа”
Встроенный Wi-Fi менеджер для удобной настройки сети
Система получает точное время из Интернета
Управление кнопкой: смена режима, настройка яркости, вкл/выкл
Режим будильник-рассвет: менеджер будильников на неделю в приложении
Корпус
Корпус выглядит очень презентабельно, несмотря на простоту и доступность материалов
Рассеиватель – матовый плафон из Леруа Мерлен
Остальные элементы корпуса – канализационные трубы, в лучших традициях жанра!

lightzoom

Автор: lightzoom

Светодиодная картина с видом на захватывающую звездную часть небосвода!
Эта звездная карта чуть более 2 м в ширину и 1,2 м в высоту. Она весит 12-15кг, имеет около 1500-2000 волоконно-оптических каналов для отображения небольших звезд и 108 светодиодных ярких звезд.

Вы можете использовать технологию, описанную в этой инструкции, для создания менее масштабных звездных карт, и поверьте, они будут выглядеть также замечательно.
Шаг 1: Материалы – оптическое волокно

Читайте также: