Причина изменения напряжения на вторичной обмотке трансформатора при увеличении тока нагрузки

Обновлено: 14.05.2024

Советы электрика

Регулирование напряжения у силовых трансформаторов

В этой статье я хочу рассказать вам как регулируется напряжение у силового трансформатора 110/10 кВ- под нагрузкой.

Для тех кто вообще не в теме объясняю о чем вообще идет речь.

Эти трансформаторы понижают напряжение (в моем примере до 10 000 Вольт) и передают электроэнергию дальше, но уже на более короткое расстояние- в пределах 10-40км до следующего понижающего трансформатора, который преобразует уже высокое напряжение 10 кВ в низкое трехфазное напряжение 400 Вольт, которое и идет по проводам к нам в дома.

Так вот, к трансформатору 110/10 кВ, установленному на подстанции, присоединяется очень много нагрузки- это может быть целый сельский район или часть большого города.

Нагрузка в течении дня и в течении времен года постоянно меняется и очень сильно.

Например в зимний период многие сельские жители обогреваются электрокотлами , поэтому потребляемый ток гораздо больше чем летом.

Или есть утренние и вечерние часы максимума нагрузок когда люди просыпаются или наоборот приходят с работы, включают электроприборы- потребление электроэнергии сильно возрастает. В течении дня нагрузка снижается и иногда даже в разы меньше чем утром или вечером.

Что происходит с понижающим трансформатором при увеличении нагрузки

А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.

На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.

Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).

На самом деле это совсем не так.

В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ

И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.

И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))

Почему изменяется напряжение

А изменяется напряжение от нагрузки, от того, какая мощность подключена к трансформатору.

Кто дружит с физикой тот знает- чем больше мощность, тем больше ток. В свою очередь увеличение значения электрического тока приводит к тому, что увеличивается падение напряжения в проводниках электрического тока.

Это обмотки трансформатора, провода воздушной линии электропередачи, силовые кабеля и т.п.- на них происходит основное падение напряжения.

Что это такое падение напряжения

Говоря упрощенно и что бы было понятнее- это энегрия(причем активная!) выделяемая в виде тепла.

Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм подключить одн офазный электротел мощностью 9 кВт с потребляемым током 9000:220=41 ампер, то провод очень сильно будет греться.

Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току.

По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода.

Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер.

Тогда на проводе напряжение составит U=R*I= 41 Вольт

Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт

А это целый электрообогреватель мощностью 1,7 кВт.

Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен.

В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер.

Из всего вышесказанного следует:

При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и потери энергии в проводах

А сейчас самое важное!

Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение.

Как регулируется напряжение


Как можно изменять вторичное напряжение на понижающем трансформаторе? Можно изменять напряжение, подводимое к первичной обмотке- тогда на вторичной оно будет изменяться прямо пропорционально.

Но этот вариант не подходит, так как у трансформаторов, подключенных к сети 110 кВ разная загруженность- у одних может быть 100% нагруженность, у других- 20-50% и т.д.

А трансформаторов подключено не просто много- а очень много!

Поэтому применяют другой способ.

Напряжение регулируется изменением коэффициента трансформации самого трансформатора

Изменяется количество витков первичной обмотки трансформатора.

А почему именно в первичной?

В принципе можно было бы изменять и на вторичной обмотке- коэффициенту без разницы, он все равно будет изменяться, так как будет меняться соотношение витков первичной к вторичной обмотками.

Однако изменяют именно на высокой стороне- где выше напряжение. Почему?

Все очень просто. Где выше напряжение- там меньше величина электрического тока.

А так как регулировка напряжения происходит под нагрузкой- то есть трансформатор не отключают, то при изменении витков обмотки- при коммутации- появляется электрическая дуга в месте переключения контактов.


Кстати значения тока между первичной и вторичной обмотками различается очень значительно. Например на вторичной нагрузке ток в 300 ампер вполне допустим, а для первичной максимальный ток является 25-30 ампер.

Думаю не надо объяснять что переключать контакты при токе в 300 ампер гораздо сложнее чем при 30, согласитесь)))

А где находятся эти контакты? В баке трансформатора сделаны отводы от первичной обмотки для изменения коэффициента трансформации и выведены в отдельный отсек, где и происходит переключение с помощью специального механизма.

Снаружи на баке трансформатора прикреплен привод этого механизма, называется он

Привод РПН

РПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д.

Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН контролируется автоматикой РПН.


Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение.

А у нас в доме- в розетке- 220)))


Автоматикой РПН управляют специальные электронные блоки:


В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки.

И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически.


Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта.

Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора.

Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история)))


Обьясните пожалуйста (Электротехника) Причины и характер изменения напряжения вторичной обмотки при изменений нагрузки..

Как и в любой замкнутой цепи, замкнутая на нагрузку вторичная обмотка тр-ра подчиняется законам ома. При повышении нагрузки увеличивается ток протекающий по вторичной обмотке. а как известно падение напряжения на участке цепи прямо пропорционально току. Обмотка тр-ра имеет свое сопротивление (комплексное Z для переменного тока). С увеличением тока произведение IxZ=U будет расти . U и есть та величина напряжения на которую и падает выходное напряжение. В действительности, процессы происходящие в тр-ре сложнее и связано с еще большим падением в первичной обмотке (при условии, что тр-р понижающий) . т. к. две обмотки связаны электромагнитным полем. Обычно, для расчета падения напряжения на тр-ре пользуются паспортным значением Uk% для тр-ра. (напряж. корот. замыкания)

Как изменяется вторичное напряжение трансформатора с увеличением тока нагрузки?Что является причиной этого изменения?

Уменьшится. Причина- сопротивление обмотки и соответственно падение напряжения на ней.

Остальные ответы

не совсем верно задан вопрос, какие изменения напряжения на вторичной обмотке трансформатора, она имеет определенное внутреннее сопротивление и при увеличении тока напряжение будет уменьшатся

так не бывает сначала увеличится нагрузка на вторичную обмотку то и на вторичной увиличится а причина индукция

Влияние величины и характера нагрузки на выходное напряжение трансформатора. Объяснить причину изменения напряжения.

Физически влияние величины нагрузки на вторичное напряжение объясняется изменением (увеличением) падения напряжения на соп­ротивлениях обмоток трансформатора при увеличении тока нагрузки I2 (или I2’).

Логическая цепочка этого процесса такова:



При возрастании тока увеличивается и ток I1 вызывая увеличение падения напряжения в сопротивлениях первичной обмотки. Поскольку:


то это приводит к некоторому снижению ЭДС E1, и соответствующему изменению магнитного потока взаимоиндукции, а это влечет за собой уменьшение . В свою очередь падение напряжения на сопротивлениях вторичной обмотки создают дополнительные изменения напряжения .

Реактивная мощность, необходимая для создания магнитного поля взаимоиндукции определяется, главным образом, реактивным сопротивлением рассеяния xk. При активно-емкостной нагрузке эта реактивная мощность может забираться от нагрузки и при определенной величине емкости в нагрузке избыток реактивной мощности отдается в первичную сеть. При этом растет ЭДС:


что приводит к перевозбуждению трансформатора, т.е. к возрастанию потока и увеличению напряжения .

Изменение вторичного напряжения

При изменении нагрузки трансформатора происходит и изменение его вторичного напряжения. Изменением вторичного напряжения называется алгебраическая разность значений вторичного напряжения при х.х. U20 и нагрузке U2 в процентах от напряжения при х.х. U20:

А так как при х.х. практически отсутствуют падения напряжения в обмотках, то и при номинальном значении:


Рис. 2.23. Упрощённая векторная диаграмма

На практике изменение вторичного напряжения выражают через составляющие напряжения короткого замыкания. Для определения изменения вторичного напряжения воспользуемся упрощённой векторной диаграммой (рис. 2.23), построенной согласно упрощённой схеме замещения (рис. 2.18).

Из диаграммы следует, что ввиду малости угла можно приближённо за модуль вектора принять его проекцию на направление вектора , т.е. отрезок ОА, тогда

или через проекции падений напряжения получим:

Изменение вторичного напряжения в относительных единицах:

Изменение вторичного напряжения в процентах:

Данное выражение позволяет определить изменение вторичного напряжения от режима холостого хода только до номинальной нагрузки, т.е. при . При необходимости расчёта для любой нагрузки введём коэффициент нагрузки:

Из данного выражения следует, что, при заданном значении коэффициента нагрузки, величина зависит от величины угла , т.е. от типа нагрузки. При чисто активной нагрузке (= 0) величина > 0 невелика. При активно-индуктивной – возрастает (т.е. вторичное напряжение при увеличении нагрузки уменьшается, что говорит о размагничивающем действии нагрузки), а при активно-емкостной – даже может быть < 0 (т.е. вторичное напряжение при увеличении нагрузки увеличивается, что говорит о подмагничивающем действии нагрузки).

Работа трансформатора при нагрузке

При подключении нагрузки с сопротивлением Zн к зажимам вторичной обмотки трансформатора появляется ток I2 (рис. 1.10). Одновременно ток в первичной обмотке достигает значения I1, а магнитный поток в магнитопроводе, созданный м.д.с. первичной обмотки, будет равен Ф1.


Рис. 1.10. Схема однофазного трансформатора в режиме нагрузки

здесь х2 – индуктивное сопротивление рассеяния вторичной обмотки.

Магнитный поток вторичной обмотки в соответствии с законом Ленца направлен навстречу потоку первичной обмотки , который вызвал э.д.с. Е2 и ток I2. То есть суммарный поток в магнитопроводе будет равен

Появление магнитного потока Ф2 в первый момент времени вызовет существенное уменьшение суммарного потока Ф, которое в свою очередь приведет к уменьшению э.д.с. Е1. В соответствии с выражением (1.14) это приведет к увеличению тока I1:

Из-за увеличения тока I1 магнитный поток Ф1 увеличится и практически полностью компенсирует увеличение потока Ф за счет возникновения потока Ф2. Время этого переходного процесса определяется электромагнитной постоянной трансформатора, которая в свою очередь определяется индуктивностями и активным сопротивлением первичной и вторичной обмоток.

Таким образом, магнитный поток трансформатора при нагрузке Ф примерно равен потоку холостого хода Ф0. При изменении тока I2 поток Ф практически не изменяется:

Представим ток первичной обмотки в виде суммы тока холостого хода и приращения идущего на поддержание магнитного потока сердечника неизменным:

Умножая обе части этого равенства на w1, получим уравнение м.д.с:

Исходя из закона сохранения энергии, увеличение м.д.с. первичной обмотке . равно по величине и противоположно по направлению м.д.с. вторичной обмотки:

С учетом (1.26) уравнение (1.25) примет вид:

Поделив обе части (1.27) на w1, получим уравнение трансформатора:

Второй член правой части уравнения (1.28) называют током вторичной обмотки, приведенным к числу витков первичной обмотки, обозначают как:

Почему увеличение тока во вторичной обмотке приводит к изменению напряжения на выходе трансформатора?

ЭДС самоиндукции первичной и вторичной обмотки не зависит от тока нагрузки (магнитные потоки от тока нагрузки в обмотках взаимо компенсируются. ЭДС зависит от основного магнитного потока, который в свою очередь пропорционален току намагничивания или холостого хода) и является величиной постоянной. Для ЭДС применима формула E = Ir +IRн,
Ir - падение напряжения внутри трансформатора. Значить уменьшится напряжение на выходе IRн.

Рыбка Золотая

Ток во вторичной цепи создаёт тоже ЭДС, как и ток в первичной цепи. Эта ЭДС, препятствует наведению магнитной индукции во вторичной цепи из-за чего снижает мощность передаваемой энергии через трансформатор путём снижения напряжения.

Как же все таки работает трансформатор? Или немного о мифах и парадоксах.

Если кратко, автор той статьи утверждал, что магнитный поток не принимает участия в передаче энергии через трансформатор, поскольку теория говорит, что он постоянен. Общий магнитный поток в трансформаторе, идеальном, действительно не зависит от тока нагрузки. В реальном трансформаторе общий магнитный поток имеет некоторую зависимость от тока нагрузки. Поэтому говорят, что он почти не зависит. Тем не менее, магнитный поток принимает самое непосредственного участие в работе трансформатора.

О том, как работает трансформатор, написано много статей. Но чаще всего трансформатор описывается с точки зрения электротехники. Я же опишу его работу с точки зрения и электротехники, и физики. Начнем с самого начала, хоть оно и кажется элементарным.

Электрический ток в направленное движение заряженных частиц. Это могут быть, например, электроны или ионы. А движение заряженных частиц порождает магнитное поле. Магнитное поле характеризуется двумя величинами, вектором напряженности магнитного поля Н и вектором магнитной индукции В. Эти величины связаны между собой

J это магнитный момент, или вектор намагниченности среды в данной точке Мы не будем принимать во внимание какие либо внешние магнитные поля и эффекты, поэтому J=0. μ это относительная магнитная проницаемость среды, а μ0 это магнитная постоянная. Для вакуума μ=1. Если μ не зависит от напряженности магнитного поля, то такую среду называют изотропной. Мы будем рассматривать именно такую среду, а про анизотропность поговорим позднее. Число в скобках это номер формулы, что бы было удобнее ссылаться на них в тексте.

Теперь переходим к рассмотрению катушки с током. Начнем с одного витка, или контура. Текущий по контуру ϒ электрический ток создает в каждой точке пространства r0 магнитное поле с индукцией (для вакуума)

Это закон Био-Савара-Лапласа. Здесь r это положение точек самого контура. Для примера, магнитная индукция поля катушки, длина которой намного больше ее диаметра, намотанная проводом, диаметр которого много меньше диаметра катушки, через которую течет постоянный ток хорошо известна и вовсе не столь устрашающая (с учетом магнитной проницаемости среды)

Обратите внимание на те условия, для которых эта формула применима. Именно эти ограничения позволяют формуле быть такой простой. Теперь введем понятие магнитного потока Ф, который является потоком вектора индукции В через через поверхность S.

При изменении магнитного потока, пронизывающего какой либо контур, в контуре наводится ЭДС. Эта ЭДС прямо пропорциональна скорости изменения потокосцепления контура ψ

Потокосцепление равно алгебраической сумме всех пронизывающих контур потоков. Если все витки обмотки w пронизываются потоком Ф, то ψ=wФ. Нужно отметить, что ψ это полное (результирующее) потокосцепление контура (обмотки). Оно создается не только внешним, по отношению к данному контуру потоком, но и собственным потоком пронизывающим контур при протекании по нему электрического тока.

Наведение ЭДС в контуре при изменении тока протекающего через этот контур называют самоиндукцией. Наведенную ЭДС называют ЭДС самоиндукции.

Формулу (4), с учетом того, что поверхность S у нас не изменяется, и заменив поток на потокосцепление, можно выразить как ψ=Li. Здесь L это коэффициент пропорциональности между ψ и i, который называют индуктивностью. Подставив это в формулу (5) получим

Следовательно, ЭДС самоиндукции в катушке пропорциональна скорости изменения тока в этой катушке. Если ток не меняется, то ЭДС самоиндукции равна 0. Минус означает, что ЭДС самоиндукции препятствует изменению тока в катушке.

Теперь возьмем вторую катушку и расположим ее так, что бы их магнитные потоки частично пересекались. Такие катушки называются магнитно связанными. Теперь у нас изменяющийся магнитный поток первой катушки, при изменении тока в ней, будет наводить ЭДС во второй. А изменяющийся магнитный поток второй катушки, при изменении тока в ней, будет наводить ЭДС в первой. Наведение ЭДС в каком либо контуре при изменении тока в другом контуре называют взаимоиндукцией. А наведенную ЭДС называют ЭДС взаимоиндукции.

Поток Ф1, создаваемый током первой катушки, частично замыкается (Ф11) не проходя через вторую, частично проходит через нее (Ф12). При этом Ф1=Ф11+Ф12. Аналогично для потока второй катушки Ф2=Ф22+Ф21. Полное потокосцепление катушек будет

Если поток взаимоиндукции для катушки направлен согласно потоку самоиндукции, то в формулах (7) ставят знак плюс. При встречном направлении, знак минус. При этом ψ21 пропорционально току i2, а ψ12 пропорционально току i1.

Коэффициенты пропорциональности численно равны друг другу М12=М21=М. Коэффициент М называют взаимной индуктивностью катушек. Полная ЭДС, индуцируемая в катушках будет суммой ЭДС самоиндукции и ЭДС взаимоиндукции.

Взаимная индуктивность М зависит только от взаимного расположения катушек, числа их витков, геометрических размеров и магнитной проницаемости среды.

Я назвал катушки магнитно связанными. Введем понятие коэффициента связи k

Коэффициент связи равен 1 только в том случае, когда весь поток создаваемый первой катушкой, сцепляется со второй, и наоборот.

Собственно говоря, две магнитно связанные катушки это и есть трансформатор. И мы получили все формулы, которые описывают его работу. А теперь рассмотрим частный случай использования трансформатора для передачи энергии из первичной цепи во вторичную. Да, это именно частный случай, но, обычно, трансформатор так и используется.

Мы рассматривали две катушки без сердечника, это так называемый воздушный трансформатор. Но большинство трансформаторов имеют сердечник. Мы, для упрощения, будем рассматривать сердечник магнитная проницаемость которого не зависит от напряженности магнитного поля. Фактически, в нашем случае, сердечник просто концентрирует магнитное поле внутри себя позволяя считать коэффициент связи, формула (10), равным 1.

К первой катушке, называемой первичной обмоткой, прикладывается напряжение u1, а вторичная обмотка (вторая катушка) подключается к нагрузке Z2 с, в общем случае, комплексным сопротивлением. Работа трансформатора описывается уже знакомыми нам формулами (9). При этом обмотки (катушки) включены встречно, то есть, в формулах будет стоять знак минус. Кроме того, вспомним второй закон Кирхгофа. Получим систему уравнений описывающих работу трансформатора

Приложенное к первичной обмотке напряжение вызывает в ней протекание тока i1, который вызывает сцепленный с ней поток Ф1 Этот поток индуцирует в ней ЭДС самоиндукции, а во вторичной обмотке ЭДС взаимоиндукции. ЭДС взаимоиндукции вторичной вызывает протекание в ней тока нагрузки i2. Протекающий по вторичной обмотке ток вызывает сцепленный с ней поток Ф2, который наводит в ней ЭДС самоиндукции, а в первичной обмотке ЭДС взаимоиндукции. Уравнения (11) отражают именно это. Суммарная ЭДС в каждой обмотке является алгебраической суммой ЭДС самоиндукции и ЭДС взаимоиндукции. То есть именно так, как мы ранее и видели. Однако, вместо двух потоков, Ф1 и Ф2, мы можем рассматривать суммарный поток, или общий, магнитный поток Ф равный алгебраической сумме потоков Ф1 и Ф2. С учетом их встречного направления Ф=Ф1-Ф2.

В трансформаторе работающем в установившемся режиме под нагрузкой ЭДС в обмотках индуцируются именно этим общим потоком.

Теперь посмотрим, что будет, если у нас изменится сопротивление нагрузки, например, уменьшится. При этом у нас увеличится ток i2, что вызовет увеличение магнитного потока Ф2 сцепленного с вторичной обмоткой. Это вызовет увеличение ЭДС взаимоиндукции для первичной обмотки, что приведет к увеличению тока i1 в первичной обмотке. Увеличение тока i1 в первичной обмотке вызовет увеличение сцепленного с ней потока Ф1. Если внимательно посмотреть на уравнения (11) и формулу (6), то будет видно, что увеличение потока Ф1 будет равно увеличению потока Ф2. То есть, общий поток у нас не изменится. Это одно из основных свойств трансформатора. Однако, обратите внимание, что не изменится именно общий, суммарный поток. Само изменение тока в цепи первичной обмотки было вызвано взаимоиндукцией, через изменение сцепленных с обмотками потоков. То есть, оба потока, и Ф1, и Ф2, увеличились, а вот их алгебраическая сумма осталась прежней. Нельзя считать, что общий поток это и есть сцепленный с каждой из обмоток поток, которые не меняются. Общий поток это лишь абстракция позволяющая описать установивший режим работы трансформатора, когда напряжение, подаваемое на первичную обмотку, когда неизменно сопротивление подключенной к вторичной обмотке нагрузки. То есть, только для случая постоянства протекающих по обмоткам токов. Это очень важный момент. И именно в этом допустил ошибку автор критикуемой мной статьи.

Чему же равен этот общий поток? Давайте рассмотрим работу трансформатора с не подключенной к вторичной обмотке нагрузке. Это называется режимом холостого хода. В этом случае вторичная обмотка не оказывает влияния на ток первичной обмотки, так как ток в ней отсутствует. Ток холостого хода первичной обмотки будет определяться формулой (6). Общий магнитный поток идеального трансформатора будет равен магнитному потоку холостого хода. И, для установившегося режима, не будет зависеть от тока нагрузки.

Изменение вторичного напряжения и внешняя характеристика трансформатора. Потери и КПД.

Если подключить первичную обмотку трансформатора к источнику номинального неизменного напряжения, а ток вторичной обмотки изменять от нуля до номинального значе­ния, то вторичное напряжение U2 будет снижаться по мере увеличения тока нагрузки. Снижение это происходит, во-пер­вых, в силу очевидного увеличения падения напряжения на полном сопротивлении вторичной обмотки по мере увеличе­ния ее тока, во-вторых, из-за некоторого снижения ЭДС пер­вичной и вторичной обмотки при увеличении нагрузки. В са­мом деле, как следует из основных уравнений трансформатора, при увеличении нагрузки должен возрасти ток вторичной об­мотки, и, следовательно, ток первичной обмотки. А это про­изойдет при неизменном номинальном первичном напряжении лишь при уменьшении ЭДС Е1.

Алгебраическая разность между вторичным напряжением холостого хода U20 и вторичным напряжением U2 при нагрузке будет представлять собой изменение вторичного напряже­ния при переходе от холостого хода к нагрузке.

Обычно определяют относительное значение изменения:

Отношение текущих значений тока вторичной обмотки I2 к его номинальному значению 1гн называют коэффициентом загрузки трансформатора:

Для упрощенной схемы замещения может быть построена векторная диаграмма (рис. 2.15,б). В этой диаграмме вектор I1RK представляет собой результирующее активное падение напря­жения в приведенном трансформаторе, вектор jI1XK — результирующее реактивное падение напряжения, а вектор jI1ZK — результирующее полное падение напряжения. При этом:





Рис. 2.15. Упрощенная схема замещения (а) и векторная диаграмма (б) для определения изменения напряжения трансформатора

Спроектировав векторы активного и реактивного падений напряжений на отрезок АВ и сложив их, получим:

Обозначим: I1RK = UH /100 и I1ХК = /100, тогда выражение (2.34) примет вид:



Зависимость напряжения вторичной обмотки от тока на­грузки при неизменном номинальном напряжении первичной обмотки при неизменных значениях коэффициента мощности и частоты называется внешней характеристикой трансфор­матора. Эта зависимость может быть выражена формулой:



Рис. 2.17. Внешние характеристики трансформатора при различном характере нагрузки

На рис. 2.17 представлены внешние характеристики транс­форматора при данном uк для различных характеров нагрузки.

Для стабилизации выходного напряжения трансформато­ров малой мощности в цепи их вторичных обмоток иногда включают конденсаторы.

Внешние характеристики трансформаторов одинаковой мощности при одинаковых коэффициентах мощности с раз­личными uK приведены на рис. 2.18.



Рис. 2.18. Внешние характеристики трансформаторов при одинаковых коэффициентах мощности и разных значениях uK

В соответствии с ГОСТ 11677-85 допускается параллель­ное включение трансформаторов с uK, отличающимися от сред­него значения не более чем на ±10%, и коэффициентами трансформации, отличающимися от среднего значения не бо­лее чем на ±0,5%. Это еще раз указывает на важность пара­метра ик, который как указывалось выше, приводят в паспорте трансформатора в числе других номинальных параметров.

Изменение напряжения трансформатора при изменении нагрузки — нежелательное явление. Для его уменьшения стремятся уменьшить величину активного сопротивления об­моток. Заметим, что у мощных трансформаторов оно и без того пренебрежимо мало в сравнении с индуктивным сопро­тивлением рассеяния. Чтобы уменьшить потоки рассеяния, пер­вичные и вторичные обмотки располагают на одних и тех же стержнях, и по возможности приближают одну обмотку к дру­гой, что ведет к уменьшению потоков рассеяния. Однако ми­нимальное расстояние между обмотками зависит от элект­рической прочности изоляционного промежутка. По этой при­чине высоковольтные трансформаторы, в которых изоляцион­ный промежуток между обмотками и магнитопроводом больше, чем у низковольтных, имеют относительно большие потоки рассеяния и соответственно большие напряжения короткого замыкания, чем низковольтные трансформаторы.

Читайте также: