Подобрать блок питания для светодиодного светильника

Обновлено: 02.05.2024

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Чтобы светодиоды проявляли установленные производителем светотехнические характеристики и срок службы, необходимо подсоединить для них специальный блок питания. Далеко не каждый трансформатор годится в качестве источника питания для лед-светильника.

Нужно понять, какая разновидность устройства подойдет для конкретной схемы, как правильно рассчитать его по мощности и выполнить монтаж своими руками. Рассмотрим более подробно эти и некоторые другие нюансы выбора питающего модуля для led-освещения.

Разновидности блоков питания для светодиодов

Большая часть светодиодных лент и отдельных лед-ламп требуют для питания пониженного постоянного тока – далеко не все могут работать напрямую от сети 220 В. Предназначенные для них блоки питания разделяются по нескольким основным параметрам:

Наибольшее распространение по первому признаку получили блоки питания на 12 В, хотя существуют модификации на 24, 48, 36 и 5 вольт. При выборе подобного устройства для светодиодов, установленных в конкретных условиях, большое значение имеет его внешнее исполнение, уровень защиты, материала и исполнение корпуса.

По этим параметрам модули разделяются на следующие виды:

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Рекомендация! Для подключения светодиодов (лент или набора лампочек) можно использовать блок питания от компьютера – при условии совпадения его по номиналу и мощности. Однако такое устройство не имеет нужной степени защиты по влажности, и как правило, издает посторонний шум во время работы. Поэтому лучше купить специализированный лед-трансформатор.

Какая мощность нужна

Блок питания может работать долго, стабильно и надежно только в том случае, когда будет правильно рассчитан по мощности в соответствии со следующими правилами:

  1. Для начала нужно определиться, сколько и каких светодиодов будет входить в схему. Например, один метр лед-полоски типа SMD 5050 с 60 светодиодами потребляет 14 ватт.
  2. Далее нужно подсчитать общую потребляемую нагрузку. Если всего будет использовано 5 метров такой ленты из светодиодов (из рассмотренного выше примера), то общая мощность составит 14х5 = 70 Вт.
  3. Теперь нужно определить практическую мощность блока питания. Она должен быть на 20% больше. В рассматриваемом случае (70 Вт х 0,2) + 70 Вт = 84 Вт.

При неправильном расчете блока питания светодиоды начнут постоянно перегреваться, что в конечном итоге приведет их к быстрому выходу из строя или ухудшению свечения.

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Драйвер и блок питания для светодиодов – совершенно различные устройства. Первый, как правило, выполняет функцию выпрямления и стабилизации тока на выходе, а второй к тому же понижает его до необходимого значения.

Процедура подключения

После того, как расчет мощности блока питания произведен, можно приступать к монтажу светодиодов, соединению проводки, трансформатора и другого необходимого оборудования (для rgb-ленты потребуется контроллер). В ходе сборки схемы нужно руководствоваться следующими правилами:

  1. Не подключать лед-полоску длиной более 5 м.
  2. Для соединения двух отрезков более пяти метров использовать параллельную сборку.
  3. При соединении контактов светодиодной ленты трансформатором соблюдать полярность.
  4. Для связи светильника с блоком питания можно использовать проводники сечением 1,5 см².
  5. Для подключения rgb-ленты между ней и трансформатором устанавливается контроллер.
  6. При параллельном включении нескольких светильников для экономии можно использовать несколько небольших по мощности блоков питания, чем один большой.

Схема для сборки своими руками

Схема подключения светодиодов через блок питания достаточно проста и доступна любому желающему своими руками. Для этого необходимо приобрести исходные компоненты и подготовить элементарный набор инструмента:

  1. Лед-светильник, ленту, светодиод.
  2. Блок питания (обозначаемый в схеме – БП), подобранный по номиналу и мощности.
  3. Двухжильный провод (четырех- для rgb-полоски, трех- для сети с заземлением).
  4. Электрощуп, набор отверток, монтажный инструмент – для установки светильника.
  5. Коннекторы для соединения контактов.

Далее отдельные светодиоды или лэд-полоска монтируется параллельно или последовательно в соответствии с планом и соединяется через контакты посредством проводников и коннекторов с блоком питания (через контроллер, если установлена трехцветная модель ленты). Затем схема подключается к сети и проверяется на работоспособность.

Основные выводы

Блок питания предназначен для понижения и выпрямления тока из бытовой сети и питания светодиодов на 12-48 вольт. Они могут различаться сразу по нескольким признакам:

  1. Номинальному напряжению.
  2. Мощности.
  3. Уровню влагозащиты.

Негерметичные модули устанавливаются в помещении и имеют хорошее естественное охлаждение. Закрытые блоки предназначены для улицы и влажных помещений. При расчете на большую мощность лучше подбирать алюминиевые модели с хорошим отводом тепла. Полугерметичные модели подойдут для нежилых и неотапливаемых помещений.

При расчете мощности блока питания нужно учитывать суммарную нагрузку всех светодиодов в схеме и добавлять к полученному значению 20 процентов. Подсоединить приборы освещения к ним можно своими руками параллельным или последовательным способом.

Если вы хотите добавить полезную информацию о выборе и монтаже блоков питания для светодиодов и лед-светильников, обязательно напишите в форме для комментариев ниже.

Чем отличается блок питания для светодиодных ламп и электронный трансформатор для галогенных ламп

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?».

Из письма с вопросом одного из постоянных посетителей сайта: « Можно ли заменить галогенные лампы на нормальные светодиоды? Я снимаю квартиру, где основное освещение состоит из примерно 30-40 галогенных ламп по 10 Вт каждая, питаемых от 12 В. Лампочки практически дают мало света, а электричество, безусловно, потребляют больше, чем светодиоды. Не говоря уже о том, что эти галогенные лампочки умирают, как мухи, и их нужно довольно часто менять. И еще они шумят. Можно ли эти лампочки заменить на светодиодные не заменяя всю люстру? »

В данном случае просто заменить старые 12-вольтовые галогенные лампы на светодиодные не получится. Нужно разобраться с источником питания.

Для галогенок чаще всего использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Из этой статьи вы узнаете:

Что такое электронный трансформатор,

Как устроен и работает электронный трансформатор,

Как устроен и работает блок питания для светодиодных ламп 12В ,

В чем отличия блоков питания для LED-лент и ламп от электронных трансформаторов для галогенных ламп.

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Что мы видим на схеме? Первое что бросается в глаза – отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

Принцип работы подобных ИИП мы рассматривали в статье ранее - Схемотехника блоков питания светодиодных лент.

5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Заключение

Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь - В чем отличие блока питания от драйвера для светодиодов

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Как рассчитать и выбрать блок питания для светодиодной ленты 12В

Светодиодная лента позволяет организовать подсветку и освещение. При использовании моделей с питанием 220В для подключения нужен небольшой адаптер с диодным мостом внутри. А вот для подключения низковольтных светодиодных лент на 12В или 24В вам понадобится блок питания. А для многоцветных моделей еще и контроллер. О том, как выбрать и рассчитать блок питания для светодиодной ленты по току и мощности мы и поговорим в этой статье.

Светодиодная лента

Виды

Всё сказанное далее справедливо как для распространенной светодиодной ленты на 12В, так и для моделей с напряжением питания 5В или на 24 вольта.

Прежде чем перейти к расчету мощности блока питания для светодиодной ленты, нужно определиться с тем, где он будет установлен, от этого зависит на какой вариант обратить внимание.

По способу охлаждения различают два вида блоков питания:

С активным охлаждением;

С пассивным охлаждением.

Пассивные БП

Активные БП

Активное охлаждение состоит из радиаторов и вентилятора (кулер, аналогичный тем что устанавливаются в компьютерах). Преимущества этой системы состоит в том, что радиаторы на силовых элементах используются меньших размеров, а значит блок питания будет меньше и легче, чем блок питания с пассивным охлаждением той же мощности.

Однако хорошие массогабаритные показатели блоков питания с активным охлаждением перекрываются существенным недостатком – кулер со временем начинает работать всё громче и громче, из-за механического износа. Поэтому использовать их в жилых помещениях не рекомендуется, поскольку гул во время работы может доставлять дискомфорт пользователю.

Блоки питания с активным охлаждением обычно имеют большую мощность – от 100 ватт и более, в связи с чем отлично подходят для подключения подсветки в больших помещениях, общественных местах или для подключения светодиодной инсталляции большой длины, например, для уличной подсветки (фасада, рекламных щитов и пр.) от одного источника.

БП FP-200-12

Пассивные блоки питания производятся в широком диапазоне мощностей, но наибольшее распространение получили модели мощностью до 100-150 ватт. Их преимущество состоит в том, что они бесшумны в работе. Поэтому их можно не задумываясь устанавливать в спальне или другом жилом помещении. Размеры таких устройств обычно больше чем у активных блоков питания.

На рынке можно встретить изделия отличающиеся классом пылевлагозащищенности (класс IPxx), например, IP22, IP44, IP67. Я же предпочитаю разделить их на два вида:

Герметичные (IP65 и выше) или так называемые «уличные» блоки питания для LED-лент. Их корпус часто напоминает блок питания от ноутбука (черные пластиковый брусок), а герметичные блоки питания высокой мощности выполняются в металлическом кожухе с заглушками по торцам.

Не герметичные. Это те которые выполняются в пластиковом не герметичном корпусе или в металлическом корпусе с перфорацией через которую осуществляется конвекция воздуха при охлаждении элементов.

Незащищенные и защищенные БП

Когда вы определились где будете устанавливать блок, какой класс защиты нужен и в каком диапазоне мощностей продаются эти блоки можно перейти к расчету схемы питания светодиодной ленты.

Как рассчитать блок питания

Для начала ознакомьтесь с таблицей мощности типовой светодиодной продукции.

Мощность светодиодных лент

Здесь указан тип светодиодов и значение мощности для разного количества штук на погонный метр, а также типовые значения светового потока.

По ней вы можете посчитать общую мощность светодиодной ленты в вашей установке. Допустим вы купили отрезок длинной 4 метра со светодиодами SMD 5050 60 шт/м. Мощность 1 метра ленты 14.4 Ватта. Расчет блока питания по мощности производится так:

1. Определяем сколько всего потребляет нагрузка:

14.4Вт/м*4 м=57,6 Ватт

2. Блок питания должен быть на 20-40% мощнее чем подключаемая к нему нагрузка. Запас выбирают исходя из условий его эксплуатации – если он будет хорошо вентилироваться, то достаточно и 20%, если будет стоять в маленьком замкнутом пространстве, то и 40% может не хватить, особенно если рядом будет проходить, например, отопление. Допустим у нас первый случай (берём запас в 20%), то нужно покупать блок питания мощностью не менее:

Округляем до 70 Вт. Можно больше, но не меньше — выбираем ближайшую величину доступную в магазине. Ниже вы видите типовой ряд номинальных мощностей блоков питания с классом защиты IP20 из каталога оптовых поставщиков, кстати под буквой В – обозначен блок питания с активным охлаждением (кулером).

БП для светодиодных лент из каталога

Но иногда случается так, что на этикетке блока питания указана не мощность, а максимальный выходной ток, тогда для расчета по току нужно мощность разделить на напряжение:

69,12 Вт /12 В= 5,76 А

То есть выходной ток должен быть (округлим) не меньше 6 ампер.

Схема подключения

Расчёт достаточно прост. Но есть некоторые особенности в подключении светодиодной ленты большой длинны, что особенно актуально при подсветке потолка по периметру комнаты. Рассмотрим несколько типовых схем подключения и правил, которые нужно учесть.

Главное правило – не подключать больше 5 метров ленты в одну линию. Светодиодные ленты продают в бухтах по 5 метров не просто так. Их токопроводящие дорожки рассчитаны на ток потребления именно этих 5 метров. Если к концу такого отрезка подключить следующие куски ленты, то будут просадки напряжения к концу линию, она будет греться и быстро выйдет из строя.

ОБЩАЯ ДЛИННА ВСЕХ ОТРЕЗКОВ СВЕТОДИОДНОЙ ЛЕНТЫ ПОДКЛЮЧЕННОЙ ДРУГ К ДРУГУ НЕ ДОЛЖНА ПРЕВЫШАТЬ 5 МЕТРОВ.

Если вам нужно подключить больше 5 метров, то есть два варианта:

1. Прокладывайте кабель от блока питания до каждого следующего отрезка.

2. Прокладывать кабель 220В и подключать их к новому блоку питания.

В первом случае нужно учесть, что сечение провода для линии 12В должно быть не меньше 0,75 мм², точно рассчитывается по току. К сведению, 5 метров светодиодной ленты SMD5050 60 шт/м потребляет 72Вт или 6А тока. Приведем несколько типовых схем подключения светодиодной ленты.

К одному блоку питания отрезка общей длины до 5 метров:

Подключение одной ленты к БП

Нескольких лент к одному блоку питания общей длинной больше 5 метров:

Подключение к БП лент длиной более 5 метров

Подключение подсветки большой протяженности к двум блокам питания:

Подключение подсветки большой протяженности к двум БП

Как вы можете убедиться, в выборе блока питания для светодиодной ленты нет ничего сложно. Нужно учесть 3 фактора:

2. Метраж ленты и конечная схема подключения и монтажа.

3. Ток потребляемый лентой.

Таким образом вы можете определить мощность и количество блоков питания, необходимых для организации подсветки или освещения.

Выбор источника питания для светодиодов

Для того, чтобы включить светодиод, можно использовать привычный источник постоянного напряжения - аккумулятор, батарейку, зарядное устройство и пр.

адаптеры.jpg

Для питания светодиодных светильников, также как и для других электроприборов, требуется обычная электрическая сеть, которая присутствует в любой квартире в виде розетки.
Всем известно словосочетание " 220 вольт". Нам больше информации не нужно. Если написано 220В - значит в розетку можно включать.
Для светодиодов тоже есть блоки питания на 220В. Сегодня есть самые разные конструкции светодиодов, которым нужно разное питание. Например светодиодные ленты и модули требуют напряжение постоянного тока 12В или 24В, значит источником может служить любой блок питания, который переменное 220В преобразует в постоянное напряжение 12В. ( как в автомобиле). Такие устройства мы часто встречаем в быту. Они питают разные гаджеты, их еще называют сетевыми адаптерами.
Можно использовать БП от компьютера, предварительно упаковав его в изолированный корпус.


Но мощные растительные светодиоды правильнее и удобнее питать специальными источниками но не напряжения , а источниками тока -драйверами. Название это придуманно маркетологами, это полезно, оно позволяет отличить их от простого блока питания. Внешне их можно отличить от блоков питания только по маркировке (!)
Запомните: драйвер - источник стабильного постоянного тока. (именно тока , а не напряжения!)

Ток светодиода - его важнейший параметр и его нужно обязательно соблюдать. Наши одноваттные светодиоды обычно имеют в паспорте указание о номинальном токе 350мА, 700мА и т.д. Это не значит, что он не может работать при других токах - может. Но если ему дать ток выше номинального -он будет светить намного ярче, но из-за перегрева его срок службы сократится. Планируется появление более мощных светодиодов, у которых номинальный рабочий ток будет другим, намного больше.
Поэтому не надо превышать номинальный ток, а правильнее даже чуть занизить его до 320мА. Это обеспечит сохранение ресурса длительное время 50000часов, за счет неперегрева кристалла.
Простейший драйвер – это резистор, который включается последовательно со светодиодом , ограничивает ток и «гасит» избыток напряжения, преобразуя проходящий ток в тепло. Однако неэкономично!
Мощные светодиоды так подключать можно, но очень неудобно – нужны мощные резисторы. Для них нужно свое место крепления и пр. Если нужна головная боль - используйте резисторы и обычные источники стабилизированного напряжения.
Исправный драйвер ни при каких условиях не выдаст больше тока, чем нужно - как бы вы не подключали диоды .

Но драйверов уже стало много, они похожи на электронные трансформаторы для галогенок и продавцы не всегда компетентны - поэтому надо внимательно смотреть его этикетку- шильдик. Там должны быть указаны параметры входного напряжения и выходного.
Рассмотрим такие этикетки-шильдики.

Например, мы хотим засветить 5 красных светодиода. Если соединим их в цепь - получим суммарное напряжение на концах цепи 5 х 2 = 10Вольт. На нижнем драйвере написано 5-12 штук, а напряжение минимум 15Вольт. Нельзя недогружать драйвер! Маловато 5 штук, еще надо хотя бы 3штуки (8штХ 2В= 16В). Если бы это были синие 5шт, то напряжение цепи5х3 = 15В - подходит.

Именно потому, что светильник состоит из разных по цвету светодиодов - нужно сначала подсчитать суммарное падение напряжения на всей цепи и только тогда выбирать драйвер. Напряжение нашей светодиодной цепи должно быть в пределах выходного напряжения, указанного на этикетке драйвера. Если вы не попадаете в указанные пределы - тогда придется добавить лишние или убавить рассчитанное ранее количество светодиодов. Это в случае, когда нельзя подыскать другой драйвер.

Из практики: если вы правильно все посчитали, а светильник "моргает" светодиодами - значит ему нехватает нагрузки. Придется добавить светик- другой. Я добавляю зеленые - они здорово улучшают восприятие глазом, хотя растениям от этого немного пользы.

Никогда не загружайте драйвер до верхнего предела мощности- это ведет к его перегреву и снижению надежности, ведь внешняя среда непредсказуема. Вдруг жарко станет на кухне от предпраздничной жарки - варки и он перегреется. капут, однако может быть.
Если вам попадется драйвер на больший ток, например 700мА- его можно использовать для светиков на 350мА, но тогда придется сделать две параллельные светодиодные цепи, либо отдельные светики включать попарно. При этом возможны неприятности - если один светодиод сгорит ( не было ни разу), то вторая цепь окажется под удвоенным током, но будет продолжать работать с увеличенной яркостью пока вы не вмешаетесь:

Будьте внимательны - есть драйверы, подключаемые к источникам низкого напряжения 12V, 24V - это указано в этикетке. А выходные напряжения у них могут быть такими же, как и у сетевых.

Дополнение. Кроме одноватных есть и другие светодиоды: 3,5,10 ватт и далее. На драйвере указаны пределы суммарной мощности. Например, верхний драйвер (30-40вТ) может запитать или 30шт одноваттных или 10шт трехваттных и т.п. Главное не уйти за пределы этих параметров.
примечание светодиодные драйвера можно включать параллельно на одну
нагрузку. Это дает возможность быстро увеличивать мощность светового потока
светодиодного светильника за счет увеличения - уменьшения силы тока. (В разумных пределах, конечно.)

Например рассада стала тянуться - увеличиваем ток вдвое через синие
светодиоды. При номинальном токе 350мА (если теплоотвод хороший) , это возможно однако
это уже снижает ресурс долговечности.

Можно для этой цели использовать дополнительный светильник, который
питается дополнительным драйвером только на время интенсивного торможения
рассады томатов.

ПРЕДУПРЕЖДЕНИЯ:

1. включение -выключение драйвера( ов) должно быть только в сетевом проводе
(220В), а не на выходе к светодиодам.
Нельзя коммутировать вторичную цепь драйвера-могут выйти из строя светодиоды.

2. Не забудьте заранее увеличить площадь теплоотвода для светодиодов, при
использовании дополнительного тока. И хорошо "утеплите"
Номенклатура доступных драйверов непрерывно расширяется. Многие
российские заводы начали поставлять "свои" драйвера собранные из китайских
полуфабрикатов - это конечно радует. Но при этом стали попадаться
драйвера по привлекательной цене, в характеристиках которых не указаны очень
важные для электробезопасности сведения. Нам с вами не обязательно знать
электрическую схему драйвера, но степень защиты от поражения электрическим
током зависит именно от нее. Об этом подробнее.

Если в схеме есть трансформатор ( у него две обмотки и более) - то
он гальванически отделяет сеть от светодиодов (нет электрической связи между
проводами 220В и проводами для подключения светодиодов!).
А если вместо трансформатора ( для экономии), стоит дроссель с двумя
обмотками, то никакого гальванического разделения входной и выходной цепей
не будет! На самом деле, для профессионалов, ничего страшного в этом нет.
Такие драйвера можно использовать для светильников, висящих на недоступной
высоте. В таких конструкциях предусматривают невозможность связи
светодиодов с корпусом и есть надежное заземление!

Но использовать такие драйвера для самодельных светильников досветки растений ОПАСНО для
ЖИЗНИ. потому что фазный провод может быть гальванически связан с
металлическим каркасом светильника. И рядом вода, жена и дети!
Поэтому, приобретая драйвера, обязательно интересуйтесь наличием гальванической развязки.

Блок питания для светодиодного светильника

Независимо от того, проектируете ли вы свой собственный светодиодный светильник, модернизируете существующие светильники или приобретаете новые светодиодные светильники, вам нужно будет найти правильный Блок питания для светодиодного светильника. Вам понадобится Блок питания светодиодный драйвер или источник постоянного напряжения (или их комбинация), чтобы ваши светодиоды работали правильно. При выборе Блока питания для светодиодного светильника необходимо учитывать множество факторов. Мы обсудим все факторы и поможет вам выбрать правильный источник питания для ваших светодиодов!

Как выбрать блок питания для светодиодного светильника?

Для большинства светодиодов требуется ограничивающее ток устройство (будь то драйвер или резисторы), чтобы предотвратить превышение тока светодиодов. Этот резистор постоянного тока или резистор с ограничением тока используется для регулирования тока на светодиодах, что позволяет им работать в безопасности и максимизировать их срок службы. Электрические характеристики светодиодов меняются по мере их нагрева(читайте нашу статью про температуру светодиодов); если ток не регулируется, светодиоды будут потреблять слишком много тока с течением времени. Это превышение тока приведет к изменению яркости светодиода, что приведет к высокой внутренней теплоте, что в конечном итоге приведет к сбою светодиода. Если вы строите свой собственный светодиодный светильник или работаете с любым из наших светодиодов компонентов, вам понадобится постоянное устройство в вашей системе. Большинство готовых светодиодных продуктов или светодиодных полосок (которые вы покупаете прямо из магазина) уже имеют драйверы или резисторы, встроенные для регулирования тока. Если вы не уверены, нужен ли вам источник постоянного тока, посмотрите на это полезный пост, чтобы узнать.

Источники постоянного напряжения

Источник питания постоянного напряжения может использоваться для питания светодиодных ламп, которые имеют резисторы или драйверы постоянного тока уже в системе. Эти типы продуктов обычно требуют питание от постоянного напряжения. Вам понадобится Блок питания для светодиодного светильника для преобразования сети переменного напряжения в безопасное постоянное напряжение для ваших источников света. Например, светодиодные ленты (Читайте нашу статью как подключить светодиодную ленту) имеют встроенные ограничители тока (как вы можете видеть встроенный в основании светодиодной ленты). Если вы хотите установить это в своем автомобиле, вам не понадобится блок питания. Батареи автомобилей выделяют 12 В постоянного тока. Питание 12 В от аккумулятора будет полностью адекватным для ваших источников света. Но для того, чтобы включить эти светодиодные ленты в домах, необходим преобразователь переменного тока в постоянный ток, который будет потреблять стандартное бытовое напряжение 220 В переменного тока и преобразовывать его в 12 В / 24 В постоянного тока.

Какими характеристиками должен обладать блок питания для светодиодного светильника?

Таким образом, вам нужен Блок питания для светодиодного светильника на постоянное напряжение, который может преобразовывать ваше бытовое напряжение переменного тока в безопасное постоянное напряжение. Есть много вещей, которые влияют на поиск правильного источника питания для ваших нужд. Во-первых, мы должны заблокировать требуемую мощность от источника питания.

Мощность.

Чтобы начать, узнайте, сколько ватт потребляет ваш светильник. Если вы надеетесь запустить более одного светильнка от одного источника питания, вы должны суммировать мощность, чтобы найти общее количество потребляемых ватт. Удостоверьтесь, что у вас достаточно большой источник питания, давая себе 20% -ный запас над общей мощностью, которую вы рассчитываете на своих светодиодах. Это можно легко сделать, умножив общую мощность на 1,2, а затем найдя источник питания, рассчитанный на эту мощность.

Скажем, например, у нас есть 4 линии светодиодных полосок, которые работают примерно на 12 ватт каждый. Простое их умножение покажет, что наша мощность системы должна быть около 48 Вт. Теперь мы можем добавить 20% рекомендуемую подушку с 48 х 1,2 = 57,6 Вт. Для этого проекта достаточно 60-ваттного (или более высокого) источника питания.

Напряжение / Ток.Блок питания для светодиодного светильника

При создании светодиодного светильника или замене неисправного Блока питания для светодиодного светильника важно сначала убедиться, что выходное напряжение совместимо со светодиодом. Светодиодные продукты со встроенными регуляторами тока обычно будут довольно хорошими в определении того, какое входное напряжение должно использоваться. Например, источник питания 12 В будет использоваться с нашими светодиодными лентами, поскольку это то, что им требуется.

Другим распространенным приложением является использование светодиодов высокой мощности с постоянными токовыми драйверами, для которых требуется входное напряжение постоянного тока. Скажем, у нас есть шесть светодиодов Cree, которые выходят из драйвера. Каждый светодиод работает примерно на 3,1 вольта. С четырьмя из них наше общее напряжение в этой серии будет составлять 18,6 В постоянного тока. Как правило, драйверы низкого напряжения, работают лучше, если у вас есть небольшой запас над требуемым напряжением. Для этой настройки я бы использовал источник питания, выводящий по крайней мере 24 В постоянного тока. Обратите внимание, что вы всегда должны убедиться, что используемый Блок питания для светодиодного светильника низкого напряжения рассчитан на правильное напряжение, которое вы хотите ввести.

Кроме того, убедитесь, что выбранный источник питания может обрабатывать входную мощность, которая у вас есть. Линейное напряжение будет меняться в зависимости от того, где вы находитесь в мире. Убедитесь, что вы знаете, есть ли мощность переменного тока (90-120 В переменного тока) или сетевое питание переменного тока (200-240 В переменного тока). Многие источники питания, такие как продукты Mean Well, будут рассчитаны на весь диапазон, но всегда полезно знать ваш вход переменного тока и следить за тем, чтобы источник питания, который вы используете, подходит для этого.

Регулируемый блок питания для светодиодного светильника

Если вы хотите регулировать яркость, и вы хотите настроить их яркость, убедитесь, что вы выбрали источник питания, который имеет возможности диммирования. В спецификациях источника питания следует указать, является ли Блок питания для светодиодного светильника диммируемым или нет, и какой тип управления диммером он использует. Я кратко рассмотрю два типа управления:

PWM Dimming: также известный как широтно-импульсной модуляции, может использоваться на всех источниках питания. Даже Блок питания для светодиодного светильника не являющийся диммируемым по спецификации, может быть регулируемым через настенные или дистанционные диммеры PWM. Это связано с тем, что диммеры PWM идут в линию с полосками, затемняя на стороне 12 В постоянного тока цепи. Диммеры PWM фактически подают импульсы на высоких частотах, чтобы изменить восприятие света невооруженным глазом. Чем выше частота, тем ярче они будут.

Блок питания для светодиодного светильника

TRIAC Dimming: этот тип затемнения позволяет освещать светодиоды стандартными диммерами. Вы должны убедиться, что источник питания подходит для регулировки яркости переменного тока (TRIAC), проверяя спецификации. Эти источники питания работают путем изменения мощности на стороне переменного тока схемы через диммер TRIAC. Изменение мощности, создаваемой диммером на стороне входа переменного тока, будет варьировать напряжение на выходе постоянного тока и регулировать яркость светодиодов. Диммеры TRIAC можно найти в обычных магазинах. Наиболее популярными / узнаваемыми брендами будут Lutron и Leviton.

Температура и погода

Важным фактором, который нельзя игнорировать при выборе Блока питания для светодиодного светильника, является область и окружающая среда, в которых он будет использоваться. Источники питания работают наиболее эффективно, если они используются в их температурных параметрах. Спецификации Блока питания для светодиодного светильника должны включать безопасный диапазон рабочих температур. Лучше всего работать в этом и не задерживать Блок питания для светодиодного светильника где-нибудь там, где тепло может накапливаться и превышать эту максимальную рабочую температуру. Как правило, это плохая идея вставить блок питания в крошечный корпус без системы вентиляции. Это позволит даже минимальное количество тепла, создаваемого источником, со временем нарастать и в конечном итоге готовить источник питания. Поэтому убедитесь, что область не слишком теплая или холодная, и что тепло не может нарастать до уровня повреждения.

Каждый светодиодный источник питания также имеет рейтинг защиты от проникновения (IP). IP-рейтинги состоят из двухзначного кода, который указывает размер твердых веществ и давление жидкостей, которые могут сопротивляться источнику питания. Первое число относится к размеру твердых веществ, которые может выдерживать устройство, тогда как второе число относится к количеству жидкости, которое может выдерживать устройство.

Эффективность Блока питания для светодиодного светильника говорит о том, какая мощность действительно направлена ​​на то, чтобы светодиод загорелся. Чем выше процентная доля энергопотребления, тем больше энергии вы в итоге сохраняете. Для светодиодных светильников рекомендуется выбрать источник питания с КПД 80% или выше. Ознакомьтесь с источниками питания Mean Well для наиболее эффективного выбора, так как они имеют рейтинги эффективности, хорошо работающие на 90 процентов.

Размер

При выборе Блока питания для светодиодного светильника для вашего светодиодного проекта важно знать, где он должен быть установлен или установлен. Если вы хотите поместить Блок питания для светодиодного светильника внутрь продукта, который вы делаете, он должен быть достаточно мал, чтобы вписаться в предоставленное пространство. Если он находится вне светильника, у него должен быть способ установить соединение. Существуют различные источники питания, предлагаемые в разных размерах и формах в соответствии с вашими потребностями.

Блок питания для светодиодного светильника

Класс 1 или Класс 2?

Легко путать эти два рейтинга, поэтому давайте убедимся, что у нас есть все это сейчас, когда мы приближаемся к пониманию источников питания светодиодов. Источник питания класса 2 соответствует ограниченным уровням мощности, определенным Национальным электрическим кодексом (NEC), и соответствует требованиям стандарта UL 1310. Источники питания класса 2 ограничены 60 В постоянного тока и 100 Вт. Поскольку их мощность ограничена, источники питания класса 2 не могут подавать столько светодиодов, сколько другие за пределами рейтинга. Здесь вы должны определить, хотите ли вы использовать большую мощность от одного источника питания или придерживаться безопасности источника питания класса 2, который защищен от пожара и поражения электрическим током.

Оценка класса защиты от поражения электрическим током II на самом деле просто означает, что входные и выходные провода имеют двойную изоляцию. Блок питания для светодиодного светильника класса II популярнее, так как они не требуют подключения к заземлению.

Найдите лучший Блок питания для светодиодного светильника

Надеюсь, этот пост помог вам найти правильный Блок питания для светодиодного светильника. Существует множество вариантов выбора, поэтому найдите время и выберите тот, который лучше всего подходит для вашей ситуации, и имеет требование безопасности и был рассчитан на длительное время. Если вы ищете место для начала, я бы очень рекомендовал Mean Well Power Supplies , это авторитетный бренд с большим количеством светодиодных Блоков питания для светодиодных светильников и расходных материалов с фантастическими гарантиями.

Читайте также: