Подключение трансформатора тока нулевой последовательности

Обновлено: 16.05.2024

Как работают трансформаторы тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.










Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.


В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.


Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Устройство и принцип действия сетей с глухозаземлённой нейтралью

Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.

Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.

Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напряжение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.

Но основная задача такой системы это не только транспортировка к потребителям напряжений двух значений при разном количестве фаз в одной системе электроснабжения, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:

  • корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
  • металлоконструкции щитовых и распределительных устройств;
  • защитная оболочка кабелей.

Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.

Как работают трансформаторы тока нулевой последовательности

Замыкания на землю — самый частый вид повреждений в сетях 6-35 кВв. Для защиты от замыканий на землю широко применяют токовые защиты нулевой последовательности, которые подключаются к трансформаторам тока нулевой последовательности. Вячеслав Аалександрович Горюнов и Аанатолий Ииванович Щеглов, представившие свой материал на новосибирской конференции по заземляющим устройствам, считают, что зачастую к отказам и излишним срабатываниям этих видов защит приводит несоблюдение правил монтажа трансформаторов тока и вторичных цепей.

Анатолий Щеглов, к.т.н., доцент Вячеслав Горюнов, м.н.с Новосибирский ГТУ

За время внедрения защит от замыканий на землю (ЗНЗ) в кабельных сетях 6(10) кВ накопилась довольно обширная статистика по наиболее частым ошибкам, возникающим при монтаже трансформаторов тока нулевой последовательности (ТТНП), которые приводят к сбоям в работе токовых защит нулевой последовательности. Рассмотрим специфику данного вопроса на примере электрической сети с резистивно-заземленной нейтралью 6(10) кВ. На рис. 1 представлено распределение составляющих тока однофазного замыкания по сети 6(10) кВ. Векторная диаграмма токов представлена на рис. 2. Ток замыкания на землю обусловлен емкостями «фаза-земля» неповрежденных (здоровых) фаз всех элементов сети (в основном это кабельные и воздушные линии электропередачи) и резистором, включенным в нейтраль трансформатора (в схеме он обозначен как нейтралеобразующий). Эти токи по обмоткам трансформаторов сети перетекают на поврежденную фазу и в месте ЗНЗ стекают в землю (см. рис. 1). Из рассмотрения токораспределения, показанного на рис. 1, следует, что в защиту поврежденного присоединения (то есть ТТНП) попадает емкостный ток нулевой последовательности, обусловленный емкостью всей питающей сети (кроме поврежденного элемента), а также ток резистора. Ток, обусловленный емкостью поврежденного элемента, частично вообще не попадает в ТТНП, частично протекает через окно ТТНП дважды в разных направлениях (по поврежденной и по неповрежденным фазам). Таким образом, он не трансформируется во вторичную обмотку. В защиту неповрежденного присоединения, наоборот, попадает только ток нулевой последовательности, обусловленный собственной емкостью фаз относительно земли. На рис. 1 это можно проследить по направлениям токов, обтекающих ТТНП присоединения, связывающего шины данной подстанции с питающей сетью.

Терминал «ТОР 300 РЗТ 52Х»

3I0,ВН – ток нулевой последовательности стороны ВН

UAВ,НН1, UBС,НН1 – линейные напряжения стороны НН1

UAВ,НН2, UBС,НН2 – линейные напряжения стороны НН2

UЭМ1, UЭМ2 – постоянные напряжения электромагнитов

Терминал обеспечивает осциллографирование с частотой дискретизации до 2000 Гц и хранение в энергонезависимой памяти до 200 записей.



Релейная защита и автоматика систем электроснабжения

Обеспечивается действие от сигнальной и отключающей ступеней газовой защиты бака трансформатора и газовой защиты (струйного реле) бака РПН. Реализован контроль изоляции цепей газовой защиты с помощью РКТУ с действием на сигнализацию, предусмотрена возможность блокирования действия на отключение от неисправной газовой защиты. Обеспечивается минимальная длительность отключения от газовой защиты для исключения влияния дребезга контакта.

Отключающая ступень газовой защиты может быть переведена на сигнал с помощью оперативного переключателя, сигнальная ступень – на отключение с помощью программной накладки.

Устройство резервирования отказов выключателя ВН выполнено с контролем по току с использованием реле тока с малым временем возврата (не более 20 мс). При отказе выключателя УРОВ ВН осуществляет действие на отключение смежных выключателей через цепи ДЗШ. Предусмотрена возможность выполнения УРОВ с автоматическим действием на свой выключатель (действие «на себя») для проверки его исправности, или с контролем действия на электромагнит отключения по факту пропадания сигнала РПВ из автоматики управления выключателя.

Токовая защита нулевой последовательности стороны ВН выполнена ненаправленной и действует на отключение через четыре выдержки времени: на отключение смежного трансформатора с разземленной нейтралью, деление ШСВ/СВ, отключение своего выключателя ВН и трансформатора со всех сторон. Предусмотрена ступень для отключения выключателя ВН при работе трансформатора с разземленной нейтралью, ввод данной ступени производится автоматически по факту отсутствия тока нулевой последовательности в нейтрали «своего» трансформатора и наличия его в нейтрали смежного трансформатора, а также пуска реле тока обратной последовательности ВН.

Максимальная токовая защита стороны ВН выполнена с пуском по напряжению сторон СН, НН1 и НН2 и действует на отключение трансформатора со всех сторон. Предусмотрено включение реле тока МТЗ ВН на разность токов фаз. МТЗ ВН имеет до трех ступеней, одна из которых может использоваться в качестве токовой отсечки.



Основные и резервные защиты: мифы и реальность

Автоматика управления выключателем

  • трёхфазное автоматическое повторное включение присоединения и шин с контролем и улавливанием синхронизма;
  • включение выключателя от ключа управления и по логике АПВ;
  • отключение выключателя от ключа управления и от защит (через ЭМО 1 и ЭМО 2);
  • подхват отключения выключателя при протекании тока в ЭМО;
  • подхват включения выключателя при протекании тока в ЭМВ.

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Форма напряжения в трехфазной сети

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.









3.2.109

При оценке обеспечения требований устойчивости, исходя из значений остаточного напряжения по 3.2.108, необходимо руководствоваться следующим:

1. Для одиночной связи между электростанциями или энергосистемами указанное в 3.2.108 остаточное напряжение должно быть проверено на шинах подстанций и электростанций, входящих в данную связь, при КЗ на линиях, отходящих от этих шин, кроме линий, образующих связь; для одиночной связи, содержащей часть участков с параллельными линиями, — также при КЗ на каждой из этих параллельных линии.

2. При наличии нескольких связей между электростанциями или энергосистемами указанное в 3.2.108 значение остаточного напряжения должно быть проверено на шинах только тех подстанций или электростанций, где соединяются эти связи, при КЗ на связях и на других линиях, питающихся от этих шин, а также на линиях, питающихся от шин подстанций связей.

3. Остаточное напряжение должно быть проверено при КЗ в конце зоны, охватываемой первой ступенью защиты в режиме каскадного отключения повреждения, т. е. после отключения выключателя с противоположного конца линии защитой без выдержки времени.

Советуем изучить — Что такое диэлектрические потери и из-за чего они возникают

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650 или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и пусковое реле для возобновления питания.

Файл-архив ›› СПРАВОЧНИК ПО РЕЛЕЙНОЙ ЗАЩИТЕ. Под редакцией Берковича

Справочник определяет основные положения релейной защиты и предназначен для решения основных задач по релейной защите. Справочник включает в себя методические указания по расчетам токов коротких замыканий, электрическим расчетам, расчетам уставок и характеристик релейной защиты, основные сведения по электромеханической релейной аппаратуре и комплектным устройствам защиты и автоматики (большинство реле устаревшие), по автоматам, приводам выключателей, электроизмерительным приборам и электротехническим материалам, типовые схемы релейной защиты, АПВ и АВР и рекомендации по их применению.

Справочник отражает основные принципиальные решения в области релейной защиты, АПВ и АВР.

Справочник рассчитан в основном на инженеров, техников и мастеров, а также квалифицированных рабочих, работающих в области эксплуатации релейной защиты и автоматизации энергосистем и промышленных предприятий, а также на работников проектных и наладочных организаций и студентов средних и высших учебных заведений.

Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трансформатор тока нулевой последовательности

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.


В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.
Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.


Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Схемы соединений обмоток ТТ и реле

В данной статье речь пойдет о типовых схемах соединений обмоток трансформаторов тока (ТТ) и реле.

В трехфазных электрических сетях переменного тока всех классов напряжения ТТ для питания устройств РЗ устанавливаются в двух или в трех фазах: как правило, в сетях 6 и 10 кВ с малыми токами замыкания на землю в двух фазах (А и С), в сетях 35 кВ и обязательно в сетях 110 кВ и выше в трех фазах. Все три фазы оснащаются ТТ и в сетях напряжением до 1 кВ, если они работают с глухозаземленной нейтралью.

При выполнении токовых защит используются следующие четыре схемы соединения вторичных обмоток ТТ и токовых цепей реле тока [Л1, с.41]:

  • полная звезда (трехфазная, трехрелейная);
  • неполная звезда (двухфазная, двухрелейная);
  • неполная звезда с реле в обратном проводе (двухфазная, трехрелейная);
  • включение реле на разность токов двух фаз (двухфазная, однорелейная).

Схемы характеризуются отношением тока в реле lр к вторичному I2 току ТТ, называемым коэффициентом схемы.

Схемы соединений обмоток ТТ и реле

Схема полной звезды ТТ

Схема полной звезды ТТ

В схеме полной звезды (рис. 1, а) в реле проходят вторичные токи измерительных трансформаторов, поэтому коэффициент схемы kcx=1.

Защита может срабатывать при любом виде КЗ. Эта схема применяется обычно в сетях с глухозаземленной нейтралью, в которых могут возникать не только междуфазные, но и однофазные КЗ, сопровождающиеся протеканием тока в одной фазе. В сетях с изолированной (компенсированной) нейтралью (6-35 кВ) схема, как правило, не применяется, так как в этих сетях могут возникать лишь междуфазные КЗ, для фиксации которых достаточно иметь трансформаторы тока в двух фазах. Схема относительно дорогая, так как требует трех ТТ и трех реле тока.

Схема неполной звезды ТТ

Схема неполной звезды ТТ

В схеме неполной звезды (рис. 1, б) в реле тока проходят вторичные токи ТТ, установленных в фазах А и С. Коэффициент схемы kcx = 1. Схема нашла широкое распространение в сетях с изолированной нейтралью, поскольку она обеспечивает отключение любого междуфазного КЗ (двухфазного или трехфазного).

Недостатком схемы является пониженная (в 2 раза по сравнению с предыдущей схемой) чувствительность максимальной токовой защиты при двухфазном КЗ АВ за трансформатором со схемой соединения обмоток У/Д-11, поскольку при этом в реле защиты проходит ток, в 2 раза меньше, чем в схеме полной звезды.

Схема неполной звезды ТТ с реле в обратном проводе

Схема неполной звезды ТТ с реле в обратном проводе

В схеме неполной звезды с реле в обратном проводе (рис. 1, в) через реле 3КА, включенное в обратный провод, проходит сумма вторичных токов фаз А и С или (при междуфазных КЗ) ток фазы В с обратным знаком [Л1, с.42]:

Сумма вторичных токов через реле 3КА включенное в обратный провод

Схема обладает достоинством схемы неполной звезды (использование двух ТТ) и имеет такую же чувствительность при двухфазных КЗ за трансформатором У/Д-11, как и схема полной звезды. Коэффициент схемы kcx = 1.

Схема неполной звезды с реле в обратном проводе или без него нашла широкое распространение в токовых защитах линий напряжением до 35 кВ включительно (т.е. в сетях с изолированной нейтралью).

Схема неполного треугольника ТТ

Схема неполного треугольника ТТ

В схеме неполного треугольника (рис. 1, г) в реле КА проходит ток, равный разности токов фаз А и С, в которых установлены ТТ [Л1, с.42]:

Определение тока в реле при схеме неполного треугольника

Коэффициент схемы (в симметричном режиме работы защищаемой линии) [Л1, с.43]:

Коэффициент схемы при схеме неполного треугольника

Достоинствами схемы являются ее простота и дешевизна: используется только одно реле тока.

Однако схема имеет недостатки, существенно ограничивающие область ее применения:

И напоследок, для проверки своих знаний в части схем соединения обмоток ТТ и реле, можете воспользоваться обучающей программой по релейной защите и автоматике.

1. Измерительные трансформаторы тока и напряжения с литой изоляцией. Часть 1. Киреева Э.А., 2009 г.

Подключение трансформатора тока нулевой последовательности

Замыкания на землю - самый частый вид повреждений в сетях 6-35 кВв. Для защиты от замыканий на землю широко применяют токовые защиты нулевой последовательности, которые подключаются к трансформаторам тока нулевой последовательности.
Вячеслав Аалександрович Горюнов и Аанатолий Ииванович Щеглов, представившие свой материал на новосибирской конференции по заземляющим устройствам, считают, что зачастую к отказам и излишним срабатываниям этих видов защит приводит несоблюдение правил монтажа трансформаторов тока и вторичных цепей.

Анатолий Щеглов, к.т.н., доцент
Вячеслав Горюнов, м.н.с Новосибирский ГТУ

За время внедрения защит от замыканий на землю (ЗНЗ) в кабельных сетях 6(10) кВ накопилась довольно обширная статистика по наиболее частым ошибкам, возникающим при монтаже трансформаторов тока нулевой последовательности (ТТНП), которые приводят к сбоям в работе токовых защит нулевой последовательности.
Рассмотрим специфику данного вопроса на примере электрической сети с резистивно-заземленной нейтралью 6(10) кВ. На рис. 1 представлено распределение составляющих тока однофазного замыкания по сети 6(10) кВ. Векторная диаграмма токов представлена на рис. 2.
Ток замыкания на землю обусловлен емкостями «фаза-земля» неповрежденных (здоровых) фаз всех элементов сети (в основном это кабельные и воздушные линии электропередачи) и резистором, включенным в нейтраль трансформатора (в схеме он обозначен как нейтралеобразующий). Эти токи по обмоткам трансформаторов сети перетекают на поврежденную фазу и в месте ЗНЗ стекают в землю (см. рис. 1).
Из рассмотрения токораспределения, показанного на рис. 1, следует, что в защиту поврежденного присоединения (то есть ТТНП) попадает емкостный ток нулевой последовательности, обусловленный емкостью всей питающей сети (кроме поврежденного элемента), а также ток резистора.
Ток, обусловленный емкостью поврежденного элемента, частично вообще не попадает в ТТНП, частично протекает через окно ТТНП дважды в разных направлениях (по поврежденной и по неповрежденным фазам). Таким образом, он не трансформируется во вторичную обмотку.
В защиту неповрежденного присоединения, наоборот, попадает только ток нулевой последовательности, обусловленный собственной емкостью фаз относительно земли. На рис. 1 это можно проследить по направлениям токов, обтекающих ТТНП присоединения, связывающего шины данной подстанции с питающей сетью.

СЕЛЕКТИВНОСТЬ ЗАЩИТ

На сравнении токов в защите при внутреннем и внешнем замыкании и основана селективность защит от ЗНЗ. В токовых защитах нулевой последовательности сравниваются токи по абсолютным значениям. Селективность обеспечивается, если емкостный ток защищаемого присоединения 3i0Сприсоед значительно меньше тока внешней сети 3i0Свнеш и тока резистора R: |3i0Сприсоед| O (см. рис. 2). При наличии резистора фазы токов могут отличаться менее чем на 180 O , и это должно быть учтено при подборе фазовой характеристики защиты.

Металлическая броня силовых кабелей подлежит заземлению по обоим концам линии и, как следствие, является каналом протекания токов нулевой последовательности.
При неправильном выполнении заземления брони нарушаются рассмотренные выше принципы действия защит. Это иллюстрируется рис. 3 и 4.
На рисунках показано неверное заземление брони кабеля при монтаже ТТНП1. Кабель с металлической оболочкой проходит через окно ТТНП1 и подключен к металлической воронке концевой муфты, которая заземлена.
Рис. 3 иллюстрирует возможность неселективного действия защит
при внешнем замыкании (не на рассматриваемом кабеле). Ток 3i частично (I ' C S внеш) замыкается по броне кабеля и, проходя через окно ТТНП1, трансформируется во вторичную обмотку. Это может вызвать неселективное действие защиты.

ЗАЩИТНЫЕ ЗАЗЕМЛЕНИЯ

Для исключения подобных ситуаций при монтаже ТТНП необходимо придерживаться определенных правил заземления брони кабеля. При наличии у концевой муфты металлической воронки, соединенной с бронёй кабеля, необходимо воронку и броню изолировать от заземленных частей на участке от ТТНП до воронки, а заземляющий проводник присоединить к воронке и пропустить через отверстие магнитопровода ТТНП в обратном направлении [1], как показано на рис. 5а.
Современные концевые муфты выполняются из изоляционного материала, и если кабель с металлической бронёй не проходит через ТТНП, то заземляющий проводник не следует пропускать через окно ТТНП (рис. 5б). В соответствии с Правилами устройства электроустановок [2] присоединение металлических оболочек и брони кабеля к заземляющему устройству должно осуществляться медным проводником сечением не менее 6 мм 2 . Согласно [2], для электроустановок с изолированной нейтралью сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока двухфазного КЗ температура заземляющих проводников не превысила 400 O С (кратковременный нагрев, соответствующий полному времени действия защиты и отключения выключателя). При двойных замыканиях на землю токи немногим меньше токов двухфазных КЗ, но они растекаются по земле от одной поврежденной точки до другой, при этом большая часть токов проходит по оболочкам кабелей и может вызвать перегрев и, как следствие, обрыв заземляющего проводника оболочки кабеля при неправильном выборе сечения проводника.
В цепях вторичных обмоток трансформаторов тока (ТТ) предусматривается защитное заземление для обеспечения безопасности персонала в случае повреждения ТТ при перекрытии изоляции между первичной и вторичной обмотками. Согласно [2], вторичные цепи должны заземляться в одной точке на ближайшей от ТТ сборке зажимов либо на зажимах ТТ. Для защит, объединяющих несколько ТТ, заземление цепей производится также в одной точке [3] (рис. 6), так как в этом случае ток не будет протекать по заземляющему устройству и, наоборот, токи, протекающие в ЗУ, не будут наводить помехи в сигнальном проводе.

ВЫВОД

Необходимо тщательно контролировать монтаж вторичных цепей релейной защиты, а также уделять особое внимание заземлению оболочки кабеля при использовании ТТНП.
При замене кабеля либо при подключении второго кабеля к существующему присоединению после завершения монтажа первичных цепей следует вновь проверять правильность монтажа вторичных цепей и цепей заземления.

ЛИТЕРАТУРА

Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трансформатор тока нулевой последовательности

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

Обозначение трансформатора на схеме


В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.


Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Напряжение короткого замыкания трансформатора

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Читайте также: