Почему трансформатор тока работает в режиме короткого замыкания

Обновлено: 16.05.2024

в каком режиме работает трансформатор тока? почему?

Трансформаторы тока состоят из сердечника и двух обмоток: первичной и вторичной. Первичную обмотку, которая содержит небольшое количество витков, включают последовательно с нагрузкой, в цепи которой необходимо измерить ток, а к вторичной обмотке, с большим числом витков, подключают амперметр. Т. к. сопротивление амперметра мало, то можно считать, что трансформатор работает в режиме короткого замыкания, при котором суммарный магнитный поток равен разности потоков, созданных первичной и вторичной обмотками. Измеряемый ток, протекая по первичной обмотке, создаёт в ней небольшое падение напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значительно больше, чем у первичной, то на ней получается значительно большее напряжение при меньшем токе.

Остальные ответы

В режиме короткого замыкания. Потому, что при размыкании вторичной обмотки ТТ первичный ток равен току намагничивания, что приводит к нагреву ТТ и его выходу из строя (обычно нарушение изоляции вторички и возникновение межвиткового замыкания) , при замкнутой вторичной обмотке ток первичный трансформируется во вторичный (за вычетом небольшого тока намагничивания для создания магнитного потока).

Режим короткого замыкания трансформатора


GeekBrains

Режим короткого замыкания трансформатора

Режимом короткого замыкания трансформатора называется такой режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (ZH = 0). Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора, при котором накоротко замыкают зажимы вторичной обмотки, а к первичной подводят такое напряжение Uк, при котором ток в первичной обмотке не превышает номинального значения (Iк


где U1ном — номинальное первичное напряжение.

При напряжении Uк составляющем 5—10% от номинального первичного напряжения, намагничивающий ток (ток холостого хода) уменьшается в 10—20 раз или еще более значительно. Поэтому в режиме короткого замыкания считают, что


Основной магнитный поток Ф также уменьшается в 10—20 раз, и потоки рассеяния обмоток становятся соизмеримыми с основным потоком.

Так как при коротком замыкании вторичной обмотки трансформатора напряжение на ее зажимах U2 = 0, уравнение э. д. с. для нее принимает вид


а уравнение напряжения для трансформатора записывается как


Этому уравнению соответствует схема замещения трансформатора, изображенная на рис. 1.



Схема замещения трансформатора при коротком замыкании

Рис. 1. Схема замещения трансформатора при коротком замыкании

Векторная диаграмма трансформатора при коротком замыкании

Рис. 2. Векторная диаграмма трансформатора при коротком замыкании

Опыт короткого замыкания.

Этот опыт, как и опыт холостого хода, проводят для определения параметров трансформатора. Собирают схему (рис. 3), в которой вторичная обмотка замкнута накоротко металлической перемычкой или проводником с сопротивлением, близким к нулю. К первичной обмотке подводится такое напряжение Uк, при котором ток в ней равен номинальному значению I1ном.

Схема опыта короткого замыкания трансформатора

Рис. 3. Схема опыта короткого замыкания трансформатора

По данным измерений определяют следующие параметры трансформатора.

Напряжение короткого замыкания


где UK — измеренное вольтметром напряжение при I1, = I1ном. В режиме короткого замыкания UK очень мало, поэтому потери холостого хода в сотни раз меньше, чем при номинальном напряжении. Таким образом, можно считать, что Рпо = 0 и измеряемая ваттметром мощность — это потери мощности Рпк, обусловленные активным сопротивлением обмоток трансформатора.

Режим короткого замыкания трансформатора

При токе I1, = I1ном получают номинальные потери мощности на нагрев обмоток Рпк.ном, которые называются электрическими потерями или потерями короткого замыкания .

Из уравнения напряжения для трансформатора, а также из схемы замещения (см. рис. 1) получаем



где ZK — полное сопротивление трансформатора.

Измерив Uк и I1 можно вычислить полное сопротивление трансформатора


Потери мощности при коротком замыкании можно выразить формулой


поэтому активное сопротивление обмоток трансформатора


находят из показаний ваттметра и амперметра. Зная Zк и RК, можно вычислить индуктивное сопротивление обмоток:


Зная Zк, RК и Хк трансформатора, можно построить основной треугольник напряжений короткого замыкания (треугольник ОАВ на рис. 2), а также определить активную и индуктивную составляющие напряжения короткого замыкания:




Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Почему вторичную обмотку трансформатора тока нельзя оставлять разомкнутой


GeekBrains

Трансформатор тока нормально работает в режиме короткого замыкания и не допускает работы в холостую. При работе с трансформаторами тока необходимо следить за тем, чтобы вторичная обмотка трансформатора тока при подключенной первичной не оставалась разомкнутой.

Вторичную обмотку трансформатора тока нельзя оставлять разомкнутой, если по первичной обмотке проходит измеряемый ток, по следующим причинам.

При размыкании вторичной цепи, что может быть, например, при отключении амперметра, исчезает встречный магнитный поток Ф2, следовательно, по сердечнику начинает проходить большой переменный поток Ф1, который вызывает наведение большой ЭДС во вторичной обмотке трансформатора тока (до тысячи вольт), так как вторичная обмотка имеет большое число витков. Наличие такой большой ЭДС нежелательно потому, что это опасно для обслуживающего персонала и может принести к пробою изоляции вторичной обмотки трансформатора тока.

Схема включения измерительного трансформатора тока

Схема включения измерительного трансформатора тока

При возникновении в сердечнике большого потока Ф1 в самом сердечнике начинают наводиться большие вихревые токи, сердечник начинает сильно нагреваться, и при длительном нагреве может выйти из строя изоляция обеих обмоток трансформатора. Поэтому надо помнить, что, если надо отключить измерительные приборы, то необходимо сначала закоротить либо вторичную, либо первичную обмотку трансформатора.

У некоторых трансформаторов тока для этой цели предусмотрены специальные устройства (гнезда со штекерами, перемычки и т. д.). Если таких устройств нет, то необходимо их сделать самим.

Почему трансформаторы тока работают в режиме короткого замыкания?

У нас преподаватель сказал, что трансформаторы тока работают в режиме короткого замыкания, но ничего не объяснил. Я так понял, что он всегда нормально закорочен во вторичке, тогда зачем вообще он нужен или ее когда-то размыкают. Можете объяснить, как на самом деле обстоят дела, а то вообще не понятно?

Комментарии и отзывы (1)

Макаров Дмитрий (Эксперт)

Задача трансформатора тока, как измерительного элемента, выдавать определенную величину единственному потребителю – амперметру или токовой катушке счетчика, на подстанциях он также может запитывать различные защиты, но это уже частный случай. Основной потребитель для трансформатора тока – это амперметр, а его сопротивление очень близко к нулю, поэтому считается, что нормальным режимом для трансформатора тока является короткое замыкание вторичной обмотки.

На него рассчитана изоляция и конструкция трансформатора. Более того, включение трансформатора тока с разомкнутой вторичной обмоткой категорически запрещено.

схема трансформатора тока

Посмотрите на рисунок, если рассмотреть ситуацию, когда вторичная обмотка трансформатора тока будет разомкнута, а по первичной будет продолжать протекать ток, в сердечнике исчезнет магнитный поток Ф2, генерируемый током вторичной обмотки. Из-за его отсутствия поток Ф1 значительно возрастет и наводимая ЭДС во вторичной обмотке может достигнуть нескольких киловольт. Так как вторичная обмотка не рассчитана на такое напряжение, ее изоляция очень быстро выйдет из строя, и, вполне вероятно, пробьет на магнитопровод.

Помимо этого, при отсутствии нагрузки на вторичной цепи трансформатора тока, в сердечнике наводятся большие вихревые токи, нагревающие его. Из-за такого температурного воздействия изоляция обмоток быстро изнашивается и создает дополнительные предпосылки для ее преждевременного пробоя.

Режимы работы трансформатора


GeekBrains

Режимы работы трансформатора

В зависимости от величины сопротивления нагрузки трансформатор может работать в трех режимах:

2. Короткое замыкание при zн = 0.

3. Нагрузочный режим при 0

Имея параметры схемы замещения, можно анализировать любой режим работы трансформатора . Сами параметры определяют на основе опытов холостого хода и короткого замыкания. При холостом ходе вторичная обмотка трансформатора является разомкнутой.

Опыт холостого хода трансформатора проводят для определения коэффициента трансформации, мощности потерь в стали и параметров намагничивающей ветви схемы замещения, проводят его обычно при номинальном напряжении первичной обмотки.

Для однофазного трансформатора на основе данных опыта холостого хода можно рассчитать:


– процентное значение тока холостого хода


– активное сопротивление ветви намагничивания r0, определяемое из условия


– полное сопротивление ветви намагничивания


– индуктивное сопротивление ветви намагничивания


Часто определяют также коэффициент мощности холостого хода:


Для определения напряжения короткого замыкания, потерь в обмотках и сопротивлений rк и xк проводят опыт короткого замыкания. При этом к первичной обмотке подводят такое пониженное напряжение, чтобы токи обмоток короткозамкнутого трансформатора были равны своим номинальным величинам, т. е. I1к = I1н, I2к = I2н. Напряжение на первичной обмотке, при котором отмеченные условия выполняются, называется номинальным напряжением короткого замыкания Uкн.

Учитывая, что Uкн обычно составляет всего 5–10 % от U1н, поток взаимоиндукции сердечника трансформатора при опыте короткого замыкания в десятки раз меньше, чем в номинальном режиме, и сталь трансформатора ненасыщенна. Поэтому потерями в стали пренебрегают и считают, что вся подводимая к первичной обмотке мощность Pкн расходуется на нагрев обмоток и определяет величину активного сопротивления короткого замыкания rк.

Во время проведения опыта измеряют напряжение Uкн, ток I1к = I1н и мощность Pкн первичной обмотки. По этим данным можно определить:

– процентное напряжение короткого замыкания


– активное сопротивление короткого замыкания


– активные сопротивления первичной и приведенной вторичной обмоток, приблизительно равные половине сопротивления короткого замыкания


– полное сопротивление короткого замыкания


– индуктивное сопротивление короткого замыкания


– индуктивное сопротивление первичной и приведенной вторичной обмоток, приблизительно равны половине индуктивного сопротивления короткого замыкания



– сопротивления вторичной обмотки реального трансформатора:


– индуктивное, активное и полное процентные напряжения короткого замыкания:


В нагрузочном режиме очень важно знать, как влияют параметры нагрузки на КПД и изменение напряжения на зажимах вторичной обмотки.

Коэффициентом полезного действия трансформатора называется отношение активной мощности, передаваемой нагрузке, к активной мощности, подводимой к трансформатору.

КПД трансформатора имеет высокое значение. У силовых трансформаторов небольшой мощности он составляет примерно 0,95, а у трансформаторов мощностью в несколько десятков тысяч киловольт-ампер доходит до 0,995.

Определение КПД по формуле с использованием непосредственно измеренных мощностей P1 и P2 даёт большую погрешность. Удобнее эту формулу представить в другом виде:


где – сумма потерь в трансформаторе.

В трансформаторе имеются два вида потерь: магнитные потери, вызванные прохождением магнитного потока по магнитопроводу, и электрические потери, возникающие при протекании тока по обмоткам.

Так как магнитный поток трансформатора при U1 = const и изменении вторичного тока от нуля до номинального практически остаётся постоянным, то и магнитные потерив этом диапазоне нагрузок также можно принять постоянными и равными потерям холостого хода.



Расчетная формул для определения КПД трансформатора:


Максимум КПД можно найти, приравняв первую производную к нулю. При этом получим, что КПД имеет максимальные значения при такой нагрузке, когда постоянные (не зависящие от тока) потери P0 равны переменным (зависящим от тока), откуда


Кривая изменения КПД трансформатора в зависимости от коэффициента нагрузки

Рисунок 1. Кривая изменения КПД трансформатора в зависимости от коэффициента нагрузки

Для определения процентного изменения напряжения на вторичной обмотке однофазного трансформатора используют уравнение


где uКА и uКР – активная и реактивная составляющие напряжения короткого замыкания, выраженные в процентах.

Внешние характеристики трансформаторов средней и большой мощностей при различных характерах нагрузки

Рисунок 2. Внешние характеристики трансформаторов средней и большой мощностей при различных характерах нагрузки

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Режим короткого замыкания трансформатора

Всем известно, что при подключении вторичной трансформаторной обмотки к нагрузке, она принимает на себя и сопротивление этой нагрузки. Ток, установившийся во вторичной цепи, находится в пропорциональной зависимости от подключенной нагрузки. Если же имеет место большое количество потребителей, то в результате повышения нагрузки возрастает вероятность нарушения изоляционного слоя соединительных проводников. В случае их возможного соприкосновения возникает режим короткого замыкания трансформатора.

Провода, расположенные перед приемником электроэнергии, замыкаются вместе со вторичной обмоткой. Энергия из первичной обмотки будет продолжать свое движение во вторичную обмотку и далее – во вторичную цепь. Эта цепочка, образовавшаяся в результате короткого замыкания будет включать в себя лишь обмотку и частично – соединительные провода.

Содержание

Виды КЗ у трансформаторов

При возникновении короткого замыкания, трансформатор вплотную подходит к предельному рабочему режиму. В этом случае на первичную обмотку поступает какое-то напряжение, а вторичная оказывается замкнутой.

Режим короткого замыкания трансформатора

Короткое замыкание трансформатора может быть аварийным или испытательным. В первом случае опасная ситуация возникает в режиме эксплуатации устройства, при подключении его к номинальному первичному напряжению. В обмотках появляется ток короткого замыкания, многократно превышающий номинал, и прибор выходит из строя. Как правило, основные детали сгорают, и вся схема просто разваливается на части.

Избежать подобных негативных последствий возможно с помощью защитной аппаратуры – автоматов, предохранителей, реле и т.д. Она производит отключение в максимально короткие сроки со стороны первичной обмотки и тем самым сохраняет устройство от разрушения.

В испытательном режиме, известном в качестве опыта короткого замыкания, подобная ситуация создается искусственным путем. С этой целью на первичную обмотку подается пониженное напряжение. При этом, токи в каждой обмотке не выходят за пределы номинала. Данный опыт позволяет точно установить наиболее важные параметры и характеристики трансформаторного устройства. Каждое из коротких замыканий следует рассмотреть более подробно, с точки зрения его физического воздействия на трансформатор.

Повышающий и понижающий трансформатор

Физические процессы при аварийном замыкании

С технической точки зрения любой трансформатор должен обязательно разрушиться в результате замыкания и действия высоких токов. Основной причиной выступает незначительное сопротивление проводов и обмоток, которое многократно превышается сопротивлением подключенной нагрузки.

Следует учитывать и резкое повышение температуры в обмотках, достигающей 500-600 градусов в течение 1-2 секунд. Этого вполне достаточно, чтобы они полностью сгорели. Нельзя забывать о механических усилиях, возникающих между обмотками во время работы, и стремящихся сдвинуть их в осевом и радиальном направлениях. Эти усилия существенно увеличиваются при возрастании силы тока, что теоретически должно привести к мгновенному разрушению трансформатора. Тем не менее, на практике все происходит по-другому.


Трансформаторные устройства оказываются способными выдержать токи коротких замыканий в течение малого временного промежутка, пока не сработает защита и они не будут отключены от сети. Было выявлено какое-то дополнительное сопротивление, ограничивающее высокие токи в обмотках. Оно образуется благодаря магнитным потокам рассеяния, отходящим от основного потока и замыкающимся вокруг витков соответствующей обмотки.

Величина и разница этого рассеяния практически не поддается точному измерению, в основном, из-за различных путей, используемых для замыкания магнитных потоков. В связи с этим, его оценка производится по влиянию, оказываемому на ток и напряжение в обмотках. Была выявлена закономерность, в соответствии с которой при возрастании тока в обмотках, увеличиваются и магнитные потоки. В нормальном рабочем режиме они составляют незначительную часть основного потока, поскольку лишь частично связаны с витками. Основной же поток оказывает влияние на все без исключения витки обмоток.

Таким образом, действие дополнительного сопротивления позволяет свести до минимума потери КЗ трансформатора. Все негативные параметры снижаются во много раз и не наносят вреда. То есть, прибор сам способен защититься от высоких токов, возникающих при замыканиях. Подобные ситуации возникают достаточно редко, но все равно к ним нужно готовиться заранее, своевременно осуществляя необходимые защитные мероприятия.

Коэффициент трансформации трансформатора

Испытание трансформатора в режиме КЗ

Для проверки работоспособности трансформатора в особых условиях, создается режим холостого хода и короткого замыкания с подводом к обмоткам соответствующего напряжения. В этом случае одна из них оказывается коротко замкнутой, а к другой через клеммы подводится напряжение, чтобы получить номинальный ток. Напряжение, полученное в результате короткого замыкания, в среднем составляет от 5,5 до 10% от номинала и не зависит от того, какая из обмоток окажется замкнутой. Данный параметр играет важную роль в эксплуатации устройства, отображается в его техническом паспорте или наносится непосредственно на корпус.


Во время проведения испытания трансформатора в режиме короткого замыкания напряжение будет незначительным, поэтому магнитный поток в магнитопроводе тоже небольшой. В связи с этим, потери в стальных пластинках можно не учитывать, а сосредоточиться на потребляемой мощности, которая перекрывает тепловые потери в медных обмотках.

В режиме замыкания вторичная обмотка соединяется с амперметром, а в первичную поступает пониженное напряжение, контролируемое с помощью вольтметра. Мощность, потребляемая из сети трансформаторным устройством, замеряется ваттметром.

Основными целями исследований является определение следующих показателей:

  • Напряжение и токи КЗ, определяемое вольтметром и амперметрами, подключаемыми поочередно к первичной и вторичной обмоткам.
  • Активные потери короткого замыкания, которая приблизительно равны потерям в медных обмотках.
  • Показания амперметра, вольтметра и ваттметра, подключенных к первичной цепи, позволяют установить коэффициент мощности и саму мощность короткого замыкания.
  • Показатели и работоспособность схемы замещения трансформаторного устройства в режиме короткого замыкания.
  • с опытами КЗ проверяется холостой ход, где устанавливается величина полных потерь при работе трансформатора под нагрузкой. Полученные данные дают возможность точно определить коэффициент полезного действия устройства.

Короткое замыкание трансформатора в условиях эксплуатации

Режим КЗ трансформатора может возникнуть практически в любой электроустановке, при наличии определенных негативных факторов. Это могут быть механические повреждения изоляции, электрический пробой из-за перенапряжения и т.д. Иногда серьезные ошибки допускаются обслуживающим персоналом.

Опыт короткого замыкания трансформатора

Под влиянием высоких токов температура обмотки резко повышается, и целостность изоляции находится под угрозой разрушения. Большой ток короткого замыкания, примерно в 20 раз превышающий номинальный, приводит к росту потерь в обмоточных проводах более чем в 400 раз. Огромная мощность, выделяемая в обмотках в короткий промежуток времени, приводит к их резкому нагреву, от чего изоляция разрушается и трансформатор выходит из строя.


В связи с этим, каждое устройство обеспечивается защитой с высоким быстродействием, выполняющей отключение при замыкании. До момента отключения, вторичная обмотка трансформатора, находящегося в аварийном режиме, просто не успевает разогреться до опасной температуры.

Опасность КЗ состоит еще и в возможном механическом разрушении прибора. Дело в том, что провода, обтекаемые током, физически взаимодействуют между собой. Если токи в параллельных проводах протекают в одном и том же направлении, между ними возникает взаимное притяжение. Если же течение токов происходит в разных направлениях, провода будут отталкиваться друг от друга. В трансформаторах таких проводов очень много, и расположены они в витках параллельно между собой. Поэтому в них периодически возникают взаимные притяжения или отталкивания, а слишком большие механические силы рано или поздно приведут к деформации трансформаторных обмоток, резкому снижению их электрической прочности.

В связи с этим, заранее принимаются меры по усилению конструкции. Это достигается путем неоднократной осевой запрессовки обмоток, предотвращением возможной усадки изоляции. При соблюдении всех технических условий, короткое замыкание не сможет нанести трансформатору серьезных повреждений.


Опыт короткого замыкания трансформатора

Напряжение короткого замыкания трансформатора

Режим короткого замыкания

Как рассчитать ток короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание (КЗ): в чем причина, виды, защита, определение для чайников

Как работает трансформатор тока

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Как работает трансформатор тока

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

Трехфазные трансформаторы

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.


Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

Тороидальный трансформатор

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.


Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

Напряжение короткого замыкания трансформатора

В энергетических системах существуют различные устройства, предназначенные для производства, преобразования и передачи электроэнергии на большие расстояния. Среди них следует отметить конструкции силовых трансформаторов. Именно они преобразуют одно значение напряжение в другое, в зависимости от потребностей. Важнейшей характеристикой является напряжение короткого замыкания трансформатора. Данная величина соответствует конкретному изделию и полностью зависит от его конструкции. Зная ее, возможно установить способность трансформатора к параллельной работе, позволяющей избежать увеличения токов, снизить перегрузки, более эффективно решать задачи электроснабжения.

Содержание

Общие сведения о трансформаторах

Практически на всех объектах энергосистемы практикуется установка трехфазных трансформаторов. Их потери по сравнению с однофазными устройствами снижены на 12-15%, а себестоимость на 20-25% ниже, чем у трех преобразователей с аналогичной суммарной мощностью.

Напряжение короткого замыкания трансформатора

Каждый трансформатор имеет собственную предельную единичную мощность, которая полностью зависит от размеров, веса и условий доставки оборудования к месту монтажа. Так мощность трехфазных устройств на 220 кВ составляет около 1000 МВА, при 330 кВ этот показатель повышается до 1250 МВА и т.д.

Применение однофазных трансформаторов встречается значительно реже. Они устанавливаются при невозможности выбора или изготовления трехфазного устройства с запланированной мощностью. Многие трехфазные преобразователи сложно доставлять к месту установки из-за больших размеров и веса. Поэтому однофазные устройства группируются в зависимости от требуемой общей мощности. Приборы на 500 кВ составляют 3х533 МВА, на 750 кВ – 3х417 МВА, на 1150 кВ – 3х667 МВА.

В соответствии с числом обмоток, рассчитанных на разные потенциалы, преобразователи могут быть двух- или трехобмоточными. В свою очередь, обмотки с одним и тем же напряжением бывают разделены на параллельные ветви в количестве две и выше. Они разъединены между собой перегородками и разделяются изоляцией с заземляющими элементами. Подобные обмотки называются расщепленными, и в соответствии с напряжением, которое бывает высшим, средним или низшим, они обозначаются как ВН, СН и НН.

Расчет трансформатора

Наиболее значимые характеристиками трансформаторов:

  • Номинальная мощность. Это наибольший показатель, до которого преобразователь может быть беспрерывно нагружен в обычных условиях, определенных паспортными данными
  • Номинальное обмоточное напряжение. Включает в себя сумму потенциалов обмоток №№ 1 и 2 в режиме холостого хода. При подключении к потребителю и подаче на обмотку-1 обыкновенного напряжения, во вторичной обмотке оно будет снижено на величину потерь. Отношение высшего напряжения к низшему называется коэффициентом трансформации.
  • Номинальные токи. Их величина отмечена в документации и должна обеспечивать нормальную функциональность трансформатора в течение продолжительного времени.
  • Номинальный ток обмоток. Величина определяется номинальной мощностью и потенциалом преобразователя.
  • Напряжение КЗ трансформатора. Образуется в условиях, когда обмотка-2 коротко замыкается, а к первичной подходит обычный номинальный ток. Данный показатель определяется по спаду напряжения и характеризует величину полного сопротивления трансформаторных обмоток.

Характеристика напряжения короткого замыкания

Рассматриваемый параметр является одной из основных характеристик трансформаторных устройств. Его показатели должны быть минимальными во избежание чрезмерных ограничений токов КЗ. Проводимые испытания устанавливают их соответствие нормам и требованиям, определяемым ПУЭ. Одновременно проверяется состояние изоляции проводов.

В трансформаторах с двумя обмотками напряжением, КЗ является величина, приведенная к заданной температуре и номинальной частоте, подводимая к одной из обмоток, в то время как другая замыкается накоротко. После этого номинальный ток устанавливается в каждой обмотке, а переключатель занимает положение, обеспечивающее подачу номинального напряжения.


Используя напряжение КЗ, можно установить падение напряжения, внешние характеристики и токи короткого замыкания преобразователя. Эти данные учитываются при дальнейшем включении трансформатора в параллельную работу. Напряжение короткого замыкания включает в себя активную и реактивную составляющие.

Величина активной составляющей определяется в процентах и вычисляется по следующей формуле: Ua = (Pоб1 + Pоб2)/10Sн = Роб/10Sн, в которой Роб – общие потери в трансформаторных обмотках, Sн – номинальная мощность устройства (кВА).

Как рассчитать мощность трансформатора

Значение реактивной составляющей определяется по собственной формуле, в которой все переменные величины определяются заранее: Хк = √Zk2 – Rk2. В ней Zk2 и Rk2 являются общим и активным сопротивлением вторичной обмотки.

Лабораторные испытания

В режиме КЗ обмотка-2 оказывается перемкнутой проводником тока, сопротивление которого стремится к нулю. В процессе деятельности трансформатора, короткое замыкание приводит к возникновению аварийного режима, поскольку величина первичного и вторичного токов многократно возрастает в сравнении с номиналом. В связи с этим для таких устройств предусматривается специальная защита для самостоятельного отключения.


В лабораториях короткое замыкание используется для испытания трансформаторов. С этой целью на обмотку-1 подается напряжение Uк, не превышающее номинал. Обмотка-2 замыкается коротко и в ней возникает напряжение, обозначаемое uK, которое является напряжением короткого замыкания трансформатора, выраженное в % от Uк. При этом ток короткого замыкания равен номинальному. Как формула — это будет выглядеть в виде uK = (Uк х 100)/U1ном, где U1ном будет номинальным напряжением в первичной обмотке.

Напряжение КЗ напрямую связано с высшим напряжением трансформаторных обмоток. Если оно составляет от 6 до 10 кВ, то величина uK будет 5,5%, при 35 кВ – 6,5-7,5%, при 110 кВ – 10,5% и далее по нарастающей. Быстро найти значение поможет специальная таблица.

Опыт и напряжение КЗ

Установить параметры трансформатора с достаточно высокой точностью позволяет опыт короткого замыкания. Для этой цели используется специальная методика, при которой обмотка-2 коротко замыкается с помощью токопроводящей перемычки или проводника. Сопротивление замыкающего элемента очень низкое и стремится к нулю. В обмотку-1 поступает напряжение (Uк), при котором сила тока (Iном) будет номинальной. К выводам подключаются измерительные приборы – амперметр, вольтметр и ваттметр, необходимые для выявления требуемых показателей трансформатора.

Понижающий трансформатор с 220 на 12 вольт


В режиме КЗ напряжение короткого замыкания uK будет слишком маленьким, что вызывает многократное снижение потерь холостого хода по сравнению с номиналом. Следовательно, можно условно принять мощность первичной обмотки равной нулю – Рпо = 0, а мощность, замеряемая ваттметром, будет потерянной мощностью короткого замыкания (Рпк), вызванной под влиянием активного сопротивления трансформаторных обмоток.

При режиме с одинаковыми токами можно определить величину номинальных потерь мощности, связанных с нагревом обмоток, известные как потери короткого замыкания или электрические потери (Рпк.ном).

Потери холостого хода и короткого замыкания

Помимо напряжения короткого замыкания существуют и другие, не менее важные параметры трансформаторных устройств. Например, экономичность их работы во многом определяется потерями холостого хода (Рх) и короткого замыкания (Рк).


В первом случае затраты связаны с потерями в стальных компонентах, задействованных в создании вихревых токов и перемагничивании. Они снижаются за счет использования специальной электротехнической стали, содержащей малое количество углерода и определенные виды присадок. Для защиты используется жаростойкое изоляционное покрытие. Существуют разные уровни потерь холостого хода и причины, от чего зависит величина их для преобразователей. Удельные потери уровня А составляют до 0,9 Вт/кг, а на уровне Б они будут не выше 1,1 Вт/кг.

Потери КЗ включают в себя потери в обмотках, находящихся под нагрузкой, а также дополнительные потери в обмотках и конструктивных элементах. На их появление оказывают влияние магнитные поля рассеяния, способствующие возникновению вихревых токов в витках, расположенных по краям обмотки и самих деталях устройства. Снизить такие потери возможно за счет использования в обмотках многожильного транспонированного провода, а на стенках бака устанавливаются экраны из магнитных шунтов.

Почему трансформатор тока работает в режиме короткого замыкания?!

нерпавда все устройства имиеют 3 режима работы 1 рабочий режим 2 режим ХХ, 3 режим КЗ, , а да ХХ-холостого хода. ищи проблему во вторичной обмотке!

Источник: радиотехник

SekaУченик (161) 6 лет назад

трансформатор тока работает в режиме к. з. потаму что сопротивление измеретильных аппаратов, реле, и соединительных проводов намного меньше номинальной нагрузки тр тока.

Остальные ответы

может, потому что ты пытаешься трансформировать постоянный ток? =)

Нет такого рабочего режима у трансформаторов.

такой трансформатор работает только в электродвигателях .асинхронных. это ротор.

Читайте также: