Почему ток холостого хода асинхронного двигателя больше чем у трансформатора

Обновлено: 05.05.2024

С. АД при холостом ходе.

Режимы работы асинхронных двигателей. Холостой ход. Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток. Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

При холостом ходе асинхронного двигателя МДС ротора близка к нулю и вращающийся магнитный поток создается только МДС статора

,где – ток холостого хода двигателя.

При увеличении нагрузки на валу двигателя увеличивается ток ротора, а его МДС . Геометрическая сумма МДС статора и ротора всегда равна МДС статора при холостом ходе .

где – приведенный ток ротора. (11.21)

Здесь – коэффициент трансформации по току.

D. Принцип создания вращающегося магнитного поля

(с помощью системы неподвижных катушек с токами).

Рассматриваем линейную среду (воздух: ), допустима суперпозиция.



Вывод: сумма двух пульсирующих полей, направленных вдоль осей, смещенных в пространстве друг относительно друга, при условии, что эти поля пульсируют во времени со сдвигом по фазе, является вращающимся полем, в общем случае- эллиптическим.


вращающееся поле, созданное двухфазной системой


При получается круговое вращающееся поле.

В случае трехфазной системы круговое вращающееся поле создается при условии, что катушки смещены в пространстве на , а их токи- во времени на .


Обратим внимание на то, что в стержнях трехфазного трансформатора существуют пульсирующие потоки, смещенные по временной фазе на треть периода. Это значит, что расположив эти стержни определенным образом и вырезав часть стали чтобы создать пространство, которое в дальнейшем мы назовем активной зоной, можно получить вращающееся магнитное поле.

Для того, чтобы осуществить вращение внутренней части этого модифицированного трансформатора, надо, во-первых, обеспечить электрические контуры, в которых должны индуктироваться токи, и, во-вторых, избавиться от паразитных моментов, которые особенно сильны в том случае, когда число выступов (полюсов, зубцов) на внутренних и внешних сердечниках одинаково (пунктирные линии). С этой целью мы размещаем на внутренней части (роторе) обмотку и сердечник делаем цилиндрическим. Это- основные конструктивные изменения, вносимые в трансформатор.

Е. Приведение асинхронной машины с вращающимся ротором к асинхронной машине с неподвижным ротором.





Действующее значение ЭДС фазы первичной обмотки: (2.1)


где число эффективных витков фазы


обмоточный коэффициент первичной обмотки


коэффициент распределения


коэффициент укорочения


амплитуда потока взаимоиндукции


ЭДС фазы вторичной обмотки: (2.2)


где частота токов в роторе


скольжение (2.3)

Обозначим ЭДС ротора при заторможенном роторе : (2.4)


Очевидно, что (2.5)

Обмотка ротора обладает собственными параметрами:


индуктивное сопротивление рассеяния (при вращающемся роторе)


активное сопротивление


Причем (2.6)


где индуктивное сопротивление вторичной обмотки при заторможенном роторе.


Полное сопротивление (короткозамкнутой) вторичной обмотки: (2.7)


Если к обмотке ротора подключено дополнительное сопротивление, оно должно войти в .


Ток ротора (при любом скольжении): (2.8)

Таким образом, действующее значение тока ротора не изменится, если ротор, вращающийся со скольжением заменить неподвижным с активным сопротивлением, уменьшенным в раз. Частота токов ротора при этом станет равной частоте сети.

F. Приведение обмотки ротора к обмотке статора


В отличие от трансформатора, в АМ первичная и вторичная обмотки могут иметь разное число фаз (в КЗ-АМ, например, ) и разное конструктивное исполнение. Однако, так же как и для трансформатора, вторичную обмотку можно привести к первичной. При этом полагают:



В итоге получают:

И так же как для трансформатора вводят коэффициенты приведения:

- по напряжениям: - по току:

Через конструктивные данные машины коэффициенты приведения могут быть выражены следующим образом:

Здесь и - обмоточные коэффициенты, учитывающие отличие обмотки, выполненной по реальной схеме (распределенной и, возможно, с укорочением шага) от так называемой сосредоточенной обмотки, состоящей из единственной катушки. коэффициент скоса (пазов)

Заметим, что так же как и в трансформаторе, МДС приведенной обмотки сохраняется.

G. Уравнения, схема замещения и параметры асинхронной машины.


Уравнения АМ, в сущности, не отличаются от уравнений трансформатора. Отличие в том, что ко вторичной обмотке обычно не подключается полезная нагрузка . Кроме того, индуктивное сопротивление взаимоиндукции обычно называют главным индуктивным сопротивлением.


Этим уравнениям соответствует схема замещения:


Т-образная схема замещения


Здесь может включать в себя дополнительное сопротивление, подключенное ко вторичной обмотке.

Почему ток холостого хода асинхронного двигателя намного больше, чем ток трансформатора такой же номинальной мощности.

Ток ХХ принято считать совместно с потерями на железо.. . То есть токи ХХ возникают при отсоединенной вторичной обмотке, по которому не течет ток.. . При этом происходит, так скажем, глубокое намагничивание и размагничивание магнитопровода.. . Это в случае с трансформатором.. . Следует заметить, что мощность трансформатора измеряется в ВА, а двигатель Вт.. . Все дело в косинусе фи.. . Но не будем впадать в таие подробности.. . Итак, АД.. . Как уже высказался Atron********** АД имеет короткозамкнутую обмотку ротора.. . Но это в случае с КЗ ротором.. . Но ведь есть и с ФР, где можно отключить обмотки ротора и сделать из него такой же трансформатор при заторможенном роторе. Вторичное напряжение можно снимать с колец.

Остальные ответы

Ведь работа двигателя уже происходит-он вращается. Значит энергия расходуется на нагрев и работу, хоть и не очень большую.

У него ротор короткозамкнутый, из алюминия, в нём ток наводится. потери от этого тока. Утрансформатора на хх во вторичной обмотке никакого тока нет.

Большая Энциклопедия Нефти и Газа

Ток холостого хода асинхронных двигателей достигает 20 - 40 % от номинального тока статора ( / 0 0 2 - 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 - 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обуслоь-лено наличием воздушного зазора между статором и ротором.  [1]

Ток холостого хода асинхронных двигателей достигает 20 - 40 % от номинального тока статора ( / 0 2 - 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 - 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обусловлено наличием воздушного зазора между статором и ротором.  [2]

Почему ток холостого хода асинхронного двигателя составляет 25 - 50 %, а у трансформатора 3 - 10 % от номинального тока.  [3]

Почему ток холостого хода асинхронного двигателя составляет 25 - 50 %, а трансформатора - 3 - 10 % от номинального тока.  [4]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: вес активной стали статора и магнитные потери в нем-для трехфазного асинхронного двигателя; вес стали статора и ротора и потери в них - для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором.  [5]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: массу активной стали статора и магнитные потери в нем - для трехфазного асинхронного двигателя; массу стали статора и ротора и потери в них - для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором.  [6]

Из-за большого магнитного сопротивления цепи с двумя воздушными зазорами ток холостого хода асинхронного двигателя значителен и является в основном реактивным током.  [7]

Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной.  [8]

При повышении частоты и номинальном напряжении ток холостого хода и магнитный поток уменьшаются, а следовательно, снижается и вращающий момент. На рисунке 249 приведен график зависимости тока холостого хода асинхронного двигателя от частоты, который показывает, что уменьшение частоты влечет за собой резкое увеличение тока холостого хода.  [10]

Ток холостого хода двигателя и потребляемая им реактивная мощность значительно возрастают в случае работы от сети с напряжением выше номинального. Поэтому во время эксплуатации необходимо следить за напряжением цеховых сетей и не допускать отклонения его от номинального. Величина тока холостого хода асинхронного двигателя возрастает также вследствие низкого качества ремонтных работ: неправильное соединение секций обмоток, изменение при перемотке обмоточных данных по сравнению с паспортными и увеличение величины воздушного зазора.  [11]

Большая Энциклопедия Нефти и Газа

Увеличение тока холостого хода и повышение потребления реактивной мощности асинхронного двигателя могут возникнуть также вследствие увеличения воздушного зазора между статором и ротором, что приводит к увеличению тока намагничивания, который является основной составляющей тока холостого хода. Увеличенный воздушный зазор и различное значение его величины по окружности имеют место при повышенной вибрации, осадке вала из-за износа подшипников, при низком качестве ремонтных работ механической части электродвигателя. Поэтому при ремонте следует проверять воздушные зазоры электродвигателей, а также мощности холостого хода, сопоставляя их с номинальными значениями.  [1]

Увеличение тока холостого хода и падения напряжения ограничивается допустимой величиной реактивной мощности, потребляемой трансформатором из сети, и допустимыми изменениями напряжения на зажимах вторичной обмотки трансформатора при изменении тока нагрузки.  [2]

Увеличение тока холостого хода может произойти при наличии короткозамкнутых витков в одной из обмоток.  [3]

Увеличение тока холостого хода объясняется тем, что его реактивная составляющая ( намагничивающий ток, затрачиваемый на создание и проведение главного потока) образуется только за счет тока прямой последовательности. При нагрузке однофазного двигателя его ток резко увеличивается из-за токов обратной последовательности. По той же причине увеличивается и ток конденсаторного двигателя в сравнении с трехфазным, но в меньшей степени, так как влияние токов обратной последовательности у этого типа двигателей меньшее.  [4]

Увеличение тока холостого хода трансформатора по сравнению с данными протокола предыдущего испытания свидетельствует о наличии повреждения внутри трансформатора, а газовыделение подтверждает повреждение трансформатора.  [5]

Из-за увеличения тока холостого хода увеличится реактивная мощность и, следовательно, уменьшится коэффициент мощности двигателя. При увеличении воздушного зазора увеличатся потоки рассеяния, что вызовет еще большее уменьшение коэффициента мощности двигателя.  [6]

Из-за увеличения тока холостого хода увеличится реактивная мощность и, следовательно, уменьшится коэффициент мощности двигателя. Следует отметить, что при увеличении воздушного зазора увеличатся потоки рассеяния, что вызовет еще большее уменьшение коэффициента мощности двигателя.  [7]

Как влияет увеличение тока холостого хода на коэффициент мощности двигателя.  [8]

Как влияет увеличение тока холостого хода на коэффициент мощности двигателя.  [9]

Включение обратной связи ведет к увеличению тока холостого хода установки и возрастанию нижнего порогового значения регулируемого тока.  [10]

Проштамповка отверстий в пластинах приводит к увеличению тока холостого хода . Так же как и при расчете потерь холостого хода это влияние может быть учтено путем введения коэффициента / гт.  [11]

Величина тока холостого хода не нормируется, однако увеличение тока холостого хода свидетельствует о неисправности трансформатора. Для трехфазных трансформаторов напряжения определяется среднее значение тока холостого хода.  [13]

Как видно из рис. 111, введение обратной связи сопровождается увеличением тока холостого хода , иногда очень значительным. Это объясняется тем, что сам ток холостого хода создает дополнительное подмагничивающее воздействие.  [15]

§78. Режимы работы асинхронных двигателей

Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток.

Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры.

Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим.

Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается.

При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cosφ1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260).

Рис. 260. Энергетическая диаграмма асинхронного двигателя

Рис. 260. Энергетическая диаграмма асинхронного двигателя

В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ΔРэл1 и ротора ΔРэл2, магнитные ΔРм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ΔРмх от трения в подшипниках и вращающихся частей о воздух.

Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.

Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cosφ2 (здесь φ2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора).

Фт — амплитуда магнитного потока, созданного обмоткой статора;

cм — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников.

Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем.

Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° — φ2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге φ2 — тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол φ2. Электромагнитный момент М зависит от скольжения s.

Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cosφ2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

При s < 10-20% увеличение скольжения приводит к незначительному уменьшению cos φ2, вследствие чего активная составляющая тока в обмотке ротора I2cos φ2 и электромагнитный момент М возрастают.

При некотором критическом скольжении sкр двигатель развивает наибольший момент Мmax, который определяет его перегрузочную способность. При дальнейшем увеличении скольжения (большем sкр) происходит резкое уменьшение cos ?2, поэтому активная составляющая тока I2cos φ2 и электромагнитный момент М уменьшаются.


Номинальный вращающий момент Мном двигатели средней и большой мощности развивают при скольжении Sном = 2-4%.

Асинхронный двигатель, как и любая электрическая машина, может работать в генераторном режиме, создавая тормозной момент. Этот режим используется для электрического торможения приводов.

Режим пуска.

В начальный момент пуска ротор двигателя неподвижен: скольжение s=1, магнитное поле пересекает ротор с максимальной частотой, индуцируя в нем наибольшую э. д. с. Е2. Так как ток в роторе I2 определяется значением э. д. с. Е2, то в начальный момент пуска он будет наибольшим. Наибольшим будет и ток в статоре.

Обычно пусковой ток двигателя в 5—7 раз больше номинального. Вращающий момент Мп при пуске называется пусковым. Он обычно меньше наибольшего момента, который может развить двигатель. Для двигателей различных типов и мощностей отношение Мпном = 0,7 – 1,8.

Холостой ход

Холостой ход. Режим холостого хода. Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток. Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Режим холостого хода асинхронного двигателя

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки — сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

29)Скольжение асинхронного двигателя

Конфликтные ситуации в медицинской практике: Наиболее ярким примером конфликта врача и пациента является.

Обучение и проверка знаний по охране труда на ЖД предприятии: Вредный производственный фактор – воздействие, которого.

Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное .

Холостой ход электродвигателя

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.


Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.



Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу

Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Читайте также: