Почему нулевой провод тоньше фазного

Обновлено: 29.04.2024

Почему нулевой провод тоньше чем фазовый

в трехфазных сетях при равномерной нагрузке фаз, ток в нулевом проводе не течет. если нагрузка на одну из фаз возрастает, то в 0 проводе появляется ток. немедленно диспечера на подстанциях выравнивают нагрузку, так что ток не успевает достичь значительной величины.

&ЪИскусственный Интеллект (136543) 11 лет назад

маленький вопрос: КАК
выравнивают нагрузку.

Трудное детствоОракул (70029) 11 лет назад

электрическая сеть питает много потребителей (заводы, учереждения, квартиры и т.д.). средняя мощность потребляемая каждым из них известна, поэтому при проектировании сети на каждую фазу предусматривают равную среднюю нагрузку. если какой-то потребитель забирает из сети мощность больше номинальной, то из-за возросшей силы тока срабатывает реле тока (выбивает автомат) и нагрузка снижается. постоянно обеспечить абсолютно равную нагрузку на все 3 фазы сложно, всегда имеются колебания и избыточный ток отводиться по 0 проводу.

Что такое фаза и ноль? Рассказываем просто.

Что такое переменный ток и чем на самом деле являются фаза и ноль? Рассмотрим на примере бензинового генератора.

Переменный и постоянный ток

Аккумулятор Аккумулятор

Для начала разберем, как протекает постоянный ток на примере источника постоянного тока - аккумулятора. При подключении нагрузки к клеммам аккумулятора ток будет протекать в направлении от «+» к «-». Если мы с определенной частотой постоянно будем менять местами контакты, то получим переменное напряжение, что на практике неприменимо.

Исходя из ранее сказанного, можем сделать вывод: переменный ток – это электрический ток, который с течением времени изменяется по направлению и величине.

Как появляется ток?

Давайте теперь попытаемся понять, как генерирует переменный ток бензиновая электростанция. Генератор переменного тока, используемый в такой электростанции, имеет три обмотки, которые расположены вокруг ротора, представленного в виде постоянного магнита.

Для начала рассмотрим, что происходит в одной из обмоток во время вращения ротора при приближении одного из полюсов обмотки генератора. В этой обмотке возникает электродвижущая сила. С каждым миллиметром уменьшения расстояния от обмотки до полюса происходит плавное увеличение интенсивности магнитного поля, воздействующего на обмотку, из-за чего рост напряжения в обмотке также происходит плавно и прямо пропорционально приближению магнитного полюса.

При отдалении же напряжение в обмотке резко не падает, а также плавно уменьшается до тех пор, пока на обмотку не начнет воздействовать магнитное поле противоположного полюса. При воздействии противоположного полюса в обмотке будет происходить все то же самое, только ток будет протекать уже в противоположном направлении и напряжение, возможно, будет отрицательным.

Кто-то задастся вопросом, зачем крутить магнит, не проще ли его зафиксировать рядом с обмоткой, и магнитное поле будет воздействовать постоянно? К сожалению, законы природы устроены немного иначе, и чтобы «расталкивать» электроны в обмотке, необходимо именно движение магнитного поля.

Сравнить это можно с водой в колодце. Чтобы вода начала двигаться и вообще, чтобы что-то происходило, помпа погружного насоса должна начать выполнять поступательное движение. Если помпа не будет двигаться, то и вода тоже двигаться не будет. Теперь можно провести аналогию и представить, что магнитное поле - это помпа, а электроны обмотки генератора - это молекулы. За один оборот ротора генератора мы получим ту самую синусоиду переменного тока.

Однако у генератора три обмотки и в каждой из них происходит все то же самое, только с небольшим смещением по времени, потому что ротор своими полюсами приближается к обмоткам не одновременно, а в разное время.

Как же происходит передача напряжения? Конструктивно у генератора имеется три обмотки, у каждой обмотки по два контакта, итого шесть контактов. К этим контактам можно подключить шесть токопроводов и передавать сгенерированное напряжение к электроприемникам. Но шесть проводников - это большое количество металла и чтобы сэкономить, выполняется объединение трёх обмоток в «звезду» - контакты от начала всех обмоток соединяют в общую точку.

Получается один общий контакт, а остальные концы обмоток остаются раздельными. При таком конструктиве получился классический трехфазный генератор, где общая точка «ноль», остальные проводники – фазы. Вот теперь можно передавать электричество к электропотребителям.

Однако мы имеем три фазы, а у нас в розетке одна фаза, и в данном случае всё элементарно. Для бытовых потребителей просто используют одну из фаз и общий «ноль».

Фаза и ноль

Теперь непосредственно поговорим о том, что делает контакт фазы – фазой, а общий контакт обмоток нулем и почему «ноль» не бьется током. Принципиальное отличие фазы от нуля не в том, что нулевой контакт имеет общее соединение с другими обмотками, а в том, что нулевой провод заземлен. Именно по этой причине фаза может вас ударить током, потому что через вас цепь может замкнуться на землю. Нулевой провод наглухо связан с землей и если вы его коснетесь, то ничего страшного не произойдёт, потому что цепь через вас не замкнется, главное, во время прикосновения к нулевому контакту не трогать фазу.

Чтобы лучше понять, как возникает электрический ток, рекомендуем посмотреть видеоролик на нашем канале по ссылке.

Если Вам понравился этот материал, поделитесь им в социальных сетях!

Также рекомендуем посмотреть интересную статью о том, как подключить реле напряжения.

Когда ток в нулевом проводе больше чем в фазном

Многие скажут, что такого не может быть, но на практике такое вполне возможно.

В 3-фазных сетях нулевой провод может отсутствовать, если нагрузка симметричная, или его сечение должно быть равно сечению фазных проводников, если нагрузка несимметричная.

Если фазные проводники имеют сечение больше, чем 16 мм2 по меди и 25 мм2 по алюминию (в 3-фазной сети), — сечение нулевого проводника должно быть НЕ МЕНЕЕ 50% сечения фазных проводников.

В частном доме для отопления многие применяют электрические котлы, подключение такого котла мы и рассмотрим.

Монтажная схема электрического котла отопления Монтажная схема электрического котла отопления

В этой схеме ТЭНы могут быть включены как все вместе одновременно, так и по отдельности.

Блок управления электрокотлом может располагаться на каком-то расстоянии от электрокотла, для соединения блока управления с котлом нужно выбрать сечение кабеля.

Котёл имеет мощность 6 кВт.

Подключение к 3-фазной сети

Для наглядности схему упростим и подключим электрокотёл к 3-фазной сети.

По тем проводникам фазы, которые подключены, будет протекать ток = 9А, а в нулевом проводе ток будет или = 0А (если подключены все три ТЕНа), или 9А, если подключен один или два ТЭНа. Для подключения подойдёт кабель 4х1,5 (или 5х1,5, пятая жила для заземления)

Подключение к 1-фазной сети

Теперь подключим этот электрокотёл к 1-фазной сети, и посмотрим, что получится.

По тем проводникам фазы, которые подключены, будет протекать ток = 9А, а в нулевом проводе ток будет = 9А, 18А или 27А, в зависимости от того, сколько ТЭНов подключено.

В этом случае нужно применить кабель сечением 4 квадрата, или три кабеля сечением 1,5 квадрата, как на рисунке ниже.

Хочу обратить Ваше внимание на то, что мой канал не носит образовательного характера , здесь я просто делюсь с Вами своими мыслями и опытом, поэтому, моё мнение не обязательно должно совпадать с Вашим. Образование нужно получать в образовательном учреждении.

До следующих встреч.

Если статья была для Вас полезной или интересной , не забудьте поставить лайк и подписаться на мой канал.

Задавайте вопросы и оставляйте комментарии, вступайте в дискуссию.

Почему «горят» нули?

С таким понятием, как «отгорание нуля», так или иначе сталкивались многие. Кто не сталкивался, тот слышал такие слова. Эта тема периодически поднимается на тематических порталах и форумах, а по данным «Yandex Wordstat» об этом спрашивают в среднем 500 раз в месяц. Поэтому мы решили затронуть тему отгорания нуля в трёхфазной сети.

Что это такое?

Для начала разберем, что такое фаза и ноль с точки зрения потребителя. В однофазной цепи фазой называется провод, на котором находится какой-либо потенциал, а нулем — провод, на котором его нет, а, правильнее сказать, провод потенциал, на котором равен потенциалу земли. Это справедливо в сетях с глухозаземленной нейтралью, собственно, от которых мы и получаем заветные 220 вольт в наши дома.

Есть и другое определение: фаза – это провод, по которому ток приходит к потребителю, а ноль – это второй провод, по которому ток возвращается обратно к питающему трансформатору или генератору.

В однофазной сети нет причин отгорать только нулю или фазе, поскольку они находятся в равных условиях. Но что мы имеем на практике? Однофазных сетей нет как класса, все дома и квартиры подключаются к трёхфазной сети, поэтому рассмотрим трёхфазную нагрузку.

На приведенном рисунке вы видите трёхфазную нагрузку, подключенную по схеме «звезда», где в одной точке соединен один из выводов нагрузки в каждой фазе. Токи в каждой из фаз сдвинуты друг относительно друга на 120 градусов или на треть периода. В идеальном случае, если выполняется условие R1=R2=R3 токи компенсируют друг друга, т.е. перетекают только из фазы в фазу, и в нулевом проводе ток равен нулю .

Нагрузка, в которой выполняется условие Z 1 = Z2 = Z3 называется симметричной . (Z — комплексное сопротивление нагрузки)

Такой нагрузкой может быть: трёхфазный электродвигатель, трёхфазный электрокотёл, в котором установлено одинаковое количество одинаковых по мощности ТЭНов и прочее. Так как ток через нулевой провод не протекает, такая нагрузка может подключаться вообще без него.

Но симметричная нагрузка, чаще всего, это какие-то отдельные системы или устройства. Так как дома и квартиры также подключаются к трёхфазной сети, то нагрузка в ней никак не может быть симметричной, потому что никто не может контролировать: в какой квартире, когда и сколько включится электроприборов… Соответственно в каждый момент времени каждый из потребителей потребляет разный ток.

Такая нагрузка в трёхфазной сети, когда Z1≠Z2≠Z3, называется несимметричной , и векторная сумма токов каждой из фаз в средней точке не равна нулю. Поэтому возникает ток в нулевом проводе, или как его еще называют – уравнивающий или компенсирующий ток.

Величина уравнивающего тока зависит как от разницы токов по фазам, так и от характера его потребления (индуктивный или емкостной), т.е. от сдвига фаз токов и угла между лучами векторной диаграммы и обычно он меньше тока самой нагруженной из фаз.

Стоит отметить и то, что раз ток в нулевом проводе протекает только тогда, когда нагрузка несимметричная, и этот ток почти всегда меньше фазного тока, то и в четырёхжильных кабелях сечение нулевой жилы часто бывает меньшим чем сечения фазных жил.

«И что с этого? Почему отгорит именно ноль, если ток в нем всё равно меньше чем в фазе?» — вполне логичный и правильный вопрос.

Дело в том, что в цепях с простой нагрузкой, вроде нагревательных элементов и лампочек накаливания всё именно так. Но сегодня практически в каждом бытовом приборе, будь то компьютер, телевизор или даже привычная всем светодиодная лампа, используется импульсный источник питания. Такое положение дел обостряется с начала 90-х годов, когда импульсные источники питания стали применяться всё чаще и чаще.

Ток, который потребляет из сети простой импульсный источник питания неравномерный, то есть он не повторяет по форме синусоиду, характер потребления здесь также импульсный и, если упростить, во многих случаях приходится на область периода синусоиды в районе амплитудного значения.

Нагрузку ток которой по форме отличается от формы питающего напряжения (в нашем случае синусоиды) называют нелинейной .

Примеры нелинейных нагрузок, из-за которых может возрасти ток в нулевом проводнике (если в составе их источников питания корректора коэффициента мощности): газоразрядные лампы, светодиодные лампы, дуговые и индукционные печи, трансформаторы, работающие в режиме насыщения, компьютеры, мониторы, оргтехника, телевизоры, инверторные кондиционеры, источники бесперебойного питания, микроволновые печи, импульсные блоки питания, инверторы, преобразователи частоты, электродвигатели с регуляторами скорости вращения (инверторами).

Почему так происходит? Так как форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды, то её можно представить в виде суммы, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….) это называется гармониками, а с ростом частоты их амплитуда уменьшается. Влияние на амплитуду тока нелинейной нагрузки вносят гармоники, кратные третьей, остальные компенсируются.

В результате такого потребления, ток в нейтральной средней точке не компенсируется, и как следствие возрастает ток в нулевом проводе к тому же он суммируется с и без того имеющимся уравнивающим током до и больше наибольшего значения тока в трёх фазах, что и формирует благоприятные условия для отгорания нуля, особенно если по стояку проложен кабель, в котором нулевой провод имеет меньшее сечение.

Из-за влияния гармоник действующее значение тока в нейтральном проводе может быть больше, чем в фазных. Это может быть даже в том случае, если токи в фазных проводах одинаковы, не смотря на сказанное выше о симметричной нагрузке. Из-за влияния гармоник действующее значение тока в нейтральном проводе может быть больше, чем в фазных. Это может быть даже в том случае, если токи в фазных проводах одинаковы, не смотря на сказанное выше о симметричной нагрузке.

Одно из основных решений рассмотренной проблемы — это использовать корректор коэффициента мощности в схемотехнике импульсных блоков питания . Корректор коэффициента мощности ( ККМ ), или как еще их называют в англоязычных источниках Power Factor Corrector ( PFC ) — это отдельный каскад в схеме блока питания. Выбор схемы и необходимость установки ККМ зависит от потребляемой устройством мощности и его конечной стоимости, например, в компьютерных блоках питания среднего ценового сегмента уже можно встретить активные ККМ, особенно в мощных моделях (550, 600 и более ватт) тогда как в не во всех бюджетных блоках питания можно НЕ найти не то чтобы корректор коэффициента мощности, но и элементарный фильтр электромагнитных помех на входе.

Есть и другие способы решения этой проблемы, например, использования разделительных понижающих трансформаторов, первичная обмотка которых подключается к линейному напряжению трёхфазной сети или трёхфазные online источники бесперебойного питания, но такие решения возможны лишь для питания предприятий с большим числом компьютерной техники и в данном контексте неуместны.

Также при проектировании установки следует выбирать сечение проводов не по фазному току, а согласно ГОСТ Р 50571.5.52-2011:

523.6.2 Если нейтральный проводник пропускает ток, являющийся следствием дисбаланса фазных токов , то увеличение тепловыделения в нейтральном проводнике компенсируется его соответствующим уменьшением в одном или нескольких фазных проводниках. В этом случае сечение всех проводников выбирается по наиболее нагруженному проводу .
Во всех случаях сечение нейтрального проводника должно соответствовать указаниям 523.1.

Последствия

В результате отгорания нуля мы получаем трёхфазную цепь, где несимметричная нагрузка соединена по схеме звезды, но поскольку у нас нет нулевого — уравнивающий ток не протекает. В результате у нас изменяется напряжение на каждой из нагрузки, поскольку фактически каждый из потребителей включается последовательно на линейное напряжение.

И если представить каждую квартиру в виде эквивалентного сопротивления, вычисленного по потребляемому току, то, согласно закона Ома, на том элементе, где больше сопротивление будет большее падение напряжения. Это называется перекосом фаз.

Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе

Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе

05.09.2016 13:40 5 Сентября 2016 13:40

В трехфазной системе, при симметричной линейной нагрузке (например трехфазный электродвигатель) ток в нулевом проводе отсутствует. В реальности идеальной симметрии не существует, ток в нулевом проводе будет присутствовать, но он будет меньше фазных (если совсем отключить нагрузку с двух фаз он станет равен току оставшейся фазы).
Поскольку ток в нулевом проводе был меньше тока в фазном проводнике (раньше было мало нелинейных нагрузок), то для экономии нулевой проводник делался тоньше фазных, теперь сечение нулевого проводника совпадает с сечением фазного.

Если основное потребление энергии приходится на нелинейные нагрузки (импульсные блоки питания без ККМ, люминесцентные лампы с электронными балластами без ККМ и т.п. - ток потребляется узкими импульсами вблизи пика питающего напряжения) встречаются рекомендации по увеличению сечения нулевого проводника в два раза (относительно сечения, рассчитанного для фазных проводников). Это обусловлено тем, что в нулевом проводе будет протекать еще и значительная сумма гармоник тока кратных трем (особенно будет сильна третья - 150 Гц) .

Поскольку от перегрузки по току защищаются только фазные повода, перегрузка нулевого (нейтрального) провода может привести к его повреждению, "отгоранию нуля" - что может привести к значительному перекосу фазных напряжений и повреждению потребителей.
Получается, что мощные потребители с несинусоидальным входным током (нелинейные нагрузки) могут не только вызывать искажение формы напряжения сети и "загрязнять" сеть помехами, но и привести к аварийной ситуации, выведя из строя кабель и других потребителей.

Примеры нелинейных нагрузок, способных вызвать рост тока в нулевом проводнике (если в них нет корректора коэффициента мощности):
Газоразрядные лампы
Светодиодные лампы
Дуговые и индукционные печи
Трансформаторы работающие в режиме насыщения
Компьютеры, мониторы, оргтехника
Телевизоры
Инверторные кондиционеры
Источники бесперебойного питания
Микроволновые печи
Импульсные блоки питания, инверторы, преобразователи частоты
Электродвигатели с регуляторами скорости вращения (инверторами)

Форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды (совсем на нее не похожа). Математически форму несинусоидального тока можно представить в виде суммы, уменьшающихся по амплитуде, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….).

ГОСТ 30804.4.30-2013 предписывает учитывать гармоники не менее 40-го порядка. Но только гармоники, кратные третьей (остальные взаимно компенсируются складываясь), суммируются в нейтральном проводнике и вызывают весьма значительный ток, к которому еще добавляется ток обусловленный несимметрией питающего напряжения, его несинусоидальностью и несимметрией нагрузки. Основной вклад вносит третья гармоника (в нейтрале течет ток с частотой 150 Гц) - прочие гармоники малы.

ГОСТ Р 50571.5.52-2011:
предлагает узнать ток и в нулевом проводнике и выбрать сечение всех проводников по наиболее нагруженному проводу;
следует указать, что ситуация ухудшается, если в трехфазной системе нагружены только две фазы. В этом случае ток высших гармоник в нейтральном проводнике будет суммироваться током дисбаланса;
если доля третьей гармоники превышает 33%, необходимо увеличить площадь поперечного сечения нейтрального проводника.

Что делать толще ноль или фазу ?

Что делать толще ноль или фазу. К примеру - наращиваю провод удлинителя - там две жилы, а у меня провод трехжильный - одна жила не используется - не выдергивать же ее - пусть и она послужит - запараллеливаю ее с - чем - нолем или фазой ? Меняется ли ответ если напряжение - постоянное ?

И вообще, если часть линии идет проводом большего сечения, чем остальная часть - то такое утолщение надо делать ближе к розетке или нагрузке ? Есть ли разница ? Советы про расчеты максимально-допустимой нагрузки для такой линии не нужны.

26.06.2006 в 10:59

SergeyE написал :
Что делать толще ноль или фазу. К примеру - наращиваю провод удлинителя - там две жилы, а у меня провод трехжильный - одна жила не используется - не выдергивать же ее - пусть и она послужит - запараллеливаю ее с - чем - нолем или фазой ? Меняется ли ответ если напряжение - постоянное ?

И вообще, если часть линии идет проводом большего сечения, чем остальная часть - то такое утолщение надо делать ближе к розетке или нагрузке ? Есть ли разница ? Советы про расчеты максимально-допустимой нагрузки для такой линии не нужны.

Почему в 3фазном кабеле сечение фазных жил больше, а нулевого меньше, но в 1 фазных такого нет, а ведь фаза греется силь

в 3-фазном кабеле на ноль меньше нагрузка, т. к. при 3-фазной нагрузке нулевой несет чисто уравнивающую функцию, а все токи протекают по шинке в щитке, т. е. месту соединения всех нолей нагрузок. Если нагрузки на 3 фазы абсолютно одинаковы, то по нулевому проводу в кабеле ток вообще не идет.

Что касается розеток - всякое бывает, тут чисто как попадется.

при 1-фазной нагрузке ток и через фазу, и через ноль идет равный. Цепь-то одна, 2 провода

Читайте также: