Оборудование для проверки трансформаторов тока

Обновлено: 17.04.2024

Приборы для проверки трансформаторов

Механические или электрические изменения трансформатора обнаруживаются путем сравнения их частотных отпечатков. Это сравнение может быть использовано для обнаружения таких проблем силового трансформатора, как:

• Короткое замыкание между витками или обрыв обмотки;
• Смещение или деформация обмотки;
• Смещения сердечника;
• Проблемы с подключением обмоток;
• Повреждение зажимных клемм

Мы рекомендуем N
Цена по запросу Наши менеджеры обязательно свяжутся с вами и уточнят условия заказа

Чтобы трансформаторы служили максимально долго, не выходили из строя, и не проводилась их аварийная остановка, используются специализированные приборы для диагностики силовых установок. С их помощью можно обнаружить дефекты на ранней стадии их появления, сократить расходы на обслуживание и диагностику, составить эффективный план ремонта и пр.

Для проведения диагностики используются современные приборы, которые позволяют считывать различные показатели в реальном времени. Они показывают:

  1. Насколько качественной и безопасной является обмотка трансформатора и изоляторы вводов. При высоком напряжении могут возникать пробои, что приводит к быстрому выходу из строя масла и появлению различных проблем. Устройства диагностики позволяют обнаружить радиологические помехи и количество влаги, образовавшейся в масле.
  2. Насколько чистым является масло. В процессе работы трансформаторов в него попадают газы и влага, у него меняется поверхностное натяжение, цвет, плотность и сопротивление. Приборы позволяют проконтролировать параметры масла и получить нужную информацию о составе масла.
  3. Показатели изоляции, качества заземления, состояния контактов, температура рабочей среды.
  4. Состояние системы охлаждения, количество проходящего через нее воздуха, состояние подшипников и пр.

Где купить прибор для диагностики трансформаторов?

Компания «ГК-Ресурс» занимается продажей товаров, необходимых для контроля за состоянием трансформаторов любого размера, мощности и назначения. Мы предлагаем:

Приборы контроля силовых трансформаторов

Молния К540-3

Описание приборов для контроля силовых трансформаторов

Силовые трансформаторы периодически необходимо диагностировать на наличие или отсутствие повреждений его элементов, куда, например, входят обмотки, активная сталь, фарфоровая и внутренняя изоляция вводов, контакты устройства регулирования напряжения (РПН), а также такие вспомогательные устройства как маслонасосы или системы охлаждения.

Типы приборов контроля

Приборы контроля определяют степень воздействия на оборудование со стороны энергосистем и позволяют своевременно выявить дефекты, благодаря чему в будущем можно будет избежать дорогого и серьезного ремонта. Существует два типа приборов для контроля: способные контролировать один параметр или универсальные, покрывающие практически весь список испытаний.

Первый тип специализируется на каком-либо одном испытании из перечня, к примеру, приборы типа ПКР-2 созданы для проверки технического состояния резисторных и реакторных устройств РПН в составе силовых трансформаторов или вне их. Он измеряет время переключения контактов устройств РПН и угол поворота вала привода РПН в моменты переключений избирателей и контакторов.

схема присоединения при измерении сопротивления обмоток трансформатора (1).jpg

Схема присоединения при измерении сопротивления обмоток трансформатора

Ко вторым относится, например, измеритель параметров силовых трансформаторов К540-3, задачей которого является проведение измерений во время электромагнитных испытаний в цеховых условиях согласно ГОСТ 3484.1-88 в составе испытательного стенда или передвижной лаборатории.

Измерители подобного рода предназначены для измерения действующих значений напряжений и токов как в однофазной, так и трехфазной цепях с параллельным вычислением активной мощности и частоты, а также сопротивлений обмоток трансформаторов постоянному току. Они также могут проводить замеры потерь холостого хода и КЗ. По полученным результатам измерители рассчитывают коэффициент трансформации и определяют группу соединений обмоток трансформатора.

Приборы широко применяют на предприятиях энергетики, а также при производстве и передаче электроэнергии.

Причины сбоя

Сбой в работе устройства может появиться из-за ряда причин, среди которых:

Перегрев токоведущей части и магнитопровода;

Ошибки при проектировании или производстве;

Нарушения при монтаже или во время эксплуатации;

Грозовые и коммутационные перенапряжения;

Повреждение устройств регулирования напряжения под нагрузкой;

Неисправности счетчиков и прочего оборудования.

Виды диагностики

Существует несколько методов проверки трансформаторов под рабочим напряжением:

Отбор проб трансформаторного масла с целью дальнейшего физико-химического анализа;

Тепловизионное обследование узлов и элементов конструкции;

Контроль влажности и температуры;

Отключенный силовой трансформатор можно протестировать для исследования:

Сопротивления изоляции обмоток;

Измерения тангенса угла диэлектрических потерь изоляции обмоток;

Измерения емкости и фактора диэлектрических потерь изоляции вводов;

Измерения сопротивления току при всех положениях РПН.

Помимо этого, можно определить коэффициент трансформации и группу соединения обмоток, измерить сопротивление короткому замыканию, потери холостого хода и проверить работоспособность РПН.

Где купить приборы для контроля силовых трансформаторов

Сделать заказ или узнать цену на приборы для контроля силовых трансформаторов можно у наших менеджеров. Они ответят на ваши вопросы и предложат подходящее оборудование по нужным для вас характеристикам. Компания СОЮЗ-ПРИБОР работает с надежными производителями, поэтому мы отвечаем за качество продукции.

Приборы для диагностики состояния силовых трансформаторов, часть I

Приборы для диагностики состояния силовых трансформаторов, часть I

В статье приведен перечень методик и приборов, необходимых для комплектации лаборатории диагностики силовых трансформаторов. Основная часть приборов и оборудования проверены автором в работе, а также приведены те, которые находятся в планах на приобретение. Следует учитывать, что, большая часть приборов постоянно изменяется как в лучшую, так худшую сторону.

Эта статья написана в помощь тем, кто заниматься или только собирается заниматься диагностикой и испытаниями силовых трансформаторов. В этой статье не приводятся приборы для контроля параметров трансформаторных масел, т.к. это отдельный, специфичный и немаловажный раздел в диагностики трансформаторов. Проведением измерений параметров трансформаторного масла занимаются другие специалисты.

Я занимаюсь обследованием оборудования напряжением свыше 1000 В более 20 лет. Так получилось, что за это время, пришлось поработать в нескольких фирмах. Приборный парк этих фирм отличался довольно сильно. Это обусловлено подходом к выбору приборов, так как выбор делается на основании множества объективных и субъективных факторов, таких как:

  • выбор фирмы производителя оборудования на основании личных предпочтений, на основании известности фирмы, на основании рекламы;
  • выбор марки прибора на основании заявленных технических характеристик и рекомендаций специалистов;
  • выбор приборов в рамках ограниченного бюджета;
  • выбор приборов не специалистами;
  • невозможность выбора определенных марок и типов приборов из-за корпоративной политики компании;
  • замена типа прибора (не понравился ранее приобретенный);
  • выбор в пользу дешевизны приборов.

При выборе прибора стоит очень внимательно ознакомится с его инструкцией. Потому что чтобы приборы лучше продавались производители или продавцы могут лукавить. Например, могут декларировать востребованную функцию размагничивания трансформатора. А по факту это может оказаться всего лишь функцией подмагничивания, которая предназначена для ускорения процесса измерения. Но вот размагнитить обмотку при помощи нее увы не получится. Или преподносят методику и прибор как «панацею от всех бед». Это сразу настораживает и заставляет задуматься, а так ли это и как такое возможно? Поэтому в случае, когда есть сомнения, лучше перед заказом прибора получить официальное подтверждение о наличие в нем тех или иных функций.




Рисунок 1. Лаборатория для диагностики трансформаторов СиамМастер.

На сегодняшний день для оценки состояния силовых трансформаторов применяются следующие основные методики:

Методики на отключенном оборудовании:

Методики под рабочим напряжением и в режиме нагрузки:

  • измерение сопротивления изоляции;
  • измерение диэлектрических характеристик изоляции;
  • измерение сопротивления постоянному току;
  • измерение сопротивления переменному току;
  • измерение потерь холостого тока на пониженном напряжении;
  • измерение коэффициента трансформации;
  • испытание повышенным напряжением;
  • измерение деформации обмоток методом FRA или SFRA;
  • оценка степени увлажнения твердой изоляции;
  • проверка состояния переключающих устройств.
    • измерение характеристик частичных разрядов;
    • измерение степени запрессовки активной части;
    • тепловизионнное обследование.

    Измерение сопротивления изоляции.

    Для измерения сопротивления изоляции используются мегаомметры. На сегодняшний день на рынке предлагается множество типов данного вида прибора. В работе сам я попробовал около двух десятков различных типов. Необходимо отметить, что многие модели мегаомметров под нагрузкой не выдают заявленной величины напряжения.

    Для диагностики мощных силовых трансформаторов желательно использовать мегаомметры более дорогого ценового сегмента – тестеры изоляции. В них помимо стандартной функции измерения изоляции и испытания изоляции повышенным постоянным напряжением реализованы ряд дополнительных функций. Например, измерение напряжения приложенного к объекту испытания, измерение ёмкости изоляции, измерение токов абсорбции изоляции, проведение различных автоматических тестов. Пробовал в работе следующие марки тестеров изоляции: С.А6545/47(Chauvin Arnoux), Fluke 1550/55 (Fluke Industrial), MI3200 (Metrel), MIT525 (Megger). Все вышеперечисленные тестеры изоляции имеют примерно одинаковые характеристики. Единственное отличие - в зависимости от модификации может меняться максимальное тестовое напряжение: 5 или 10 кВ. Для диагностики трансформаторов этот параметр не имеет значения, но вот для ряда оборудования наличие тестового напряжения 10 кВ в работе предпочтительнее. Наиболее комфортным в работе для меня оказался MI3200. Основное преимущество - удобное меню настроек прибора и наглядность отображения информации на дисплее. После запуска измерения не нужно совершать дополнительных переключений, чтобы проконтролировать все необходимые величины. Меньше всего понравился Fluke 1550/55 из-за мягкого громоздкого кейса и невозможности производить подзарядку прибора пока в него вставлены измерительные щупы.





    Рисунок 2. Тестеры изоляции

    слева – направо С.А6545, Fluke 1555, MI3200, MIT525.

    Измерение диэлектрический характеристик изоляции.

    Для измерения диэлектрических характеристик изоляции используются мосты переменного тока. В начале карьеры работал мостами МД-16, Р5026, Р5026М. Потом попробовал в работе следующие марки мостов переменного тока: СА7100 (ОЛТЕСТ), Тангенс 2000 (НИИЭМП), Вектор-2М (Точприбор).

    Мосты серии CA7100 поставляются в нескольких модификациях. В СА7100-3 встроен мегаомметр для совместного проведения измерений сопротивления изоляции и диэлектрических характеристик. С моей точки зрения выигрыш времени незначительный за счет необходимости коммутации блоков. При этом разница в цене между модификацией со встроенным мегаомметром и без мегаомметра равна хорошему тестеру изоляции, который пригодится и для других работ. Кроме того, синий кабель поставляемый в комплекте с мостом серии СА7100 очень неудобный и тяжелый из-за этого быстро выходит из строя. Поэтому как правило не используется. Наличие тележки, блока коммутации и встроенного повышающего трансформатора необходимо при выполнении работ в пределах одной станции при отсутствии передвижной лаборатории.

    Тангенс 2000 неплохой мост. По характеристикам не уступает серии СА7100. Но более громоздкий. Имеет один недостаток. При снижении заряда аккумулятора менее 30% могут очень сильно «плыть» показания при измерениях.

    Задумка измерителя Вектор-2М в целом неплохая. Измеритель работает не по классической мостовой схеме, а измеряет угол между током и напряжением. Но вот измерения в условиях наведенного напряжения, особенно по «обратной» схеме, может стать огромной проблемой. Не понравился эталонный конденсатор. Слабая изоляция корпуса от земли и без дополнительной изоляции легко перекрывается и конденсатор может выйти из строя. За десять лет эксплуатации четырех комплектов Вектор-2М вышли из строя 3 эталонных конденсатора.

    Для меня с точки зрения перевозки (в том числе и авиатранспортом) удобнее блок СА7100-2 без дополнительного оборудования.




    Рисунок 3. Мосты переменного тока

    слева – направо СА7100-2, Тангенс 2000, Вектор-2М.

    Измерение сопротивления постоянному току.

    Для измерения сопротивления постоянному току применяются два метода. Метод амперметра – вольтметра и мостовой метод.





    Рисунок 4. Мосты постоянного тока

    слева – направо Виток, DLRO10HD, ПФИ24-10Р, МИКО-7.

    Помучившись с различными типами мостов, мы вернулись к измерению сопротивления постоянного тока по классической схеме «амперметра – вольтметра». Заменили самый тяжелый и нестабильный элемент в схеме – автомобильный аккумулятор на сетевой, стабилизированный, трансформаторный источник питания на 30В/5А типа QJ3005C (Ningbo JiuYuan Electronic, существует более тяжелая версия на 10А). А «нежные» стрелочные вольтамперметры постоянного тока типа М2044 на цифровые мультиметры высокой точности типа PC500a или PC710 (Sanwa). При этом мультиметр можно использовать только один. Так ток, выдаваемый источником, практически не меняется во время проведения измерений (±0,01…0,02А при величине подаваемого тока 5А) и хорошо контролируется по встроенному в источник амперметру. Точность измерения мультиметра не менее 0,12%. Отключение такой схемы на время переключения РПН не требуется. Правильность измерения данной схемы проверена на мощных силовых трансформаторах (ТЦ 1000000/500, АТДЦТН 200000/220/110 и т.п.) и на сухих трансформаторах (ТRV -2000/6,3, ТСНЗ 2500/10 и т.п.) с сопротивлением обмоток менее 0,5 мОм.



    Рисунок 5. Комплект для измерения сопротивления постоянному току

    слева источник питания QJ3005C, справа мультиметр PC710.

    Измерение сопротивления переменному току.

    Для измерения сопротивления переменному току (сопротивление короткого замыкания) могут применяться специализированные комплекты или схема, собираемая на месте измерения из отдельных приборов переменного тока.

    Наиболее широкую известность имеют комплекты К505 / К540 или их электронные аналоги типа К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ). Основным недостатком электронных комплектов является высокая стоимость, в остальном комплекты удобны в работе. Для меня более удобным показался СА540.

    Другим вариантом проведения измерений является использование мультиметров или аналоговых стрелочных приборов. При высоких значениях токов вместо мультиметров с трансформатором тока проще и удобнее использовать токовые клещи.




    Рисунок 6. Комплекты для измерения сопротивления переменному току

    слева – направо К540, Молния К540-3, СА540.

    Измерение потерь холостого хода на пониженном напряжении.

    Для измерения потерь холостого хода трансформаторов используются те же комплекты, что и для измерения сопротивления переменному току. При отсутствии комплекта для проведения измерения достаточно наличия аналогового ваттметра типа Д566 (Д5106) и двух мультиметров. Как правило ваттметры многопредельные, но все равно желательно оценить ожидаемое значение потерь, чтобы значение измеряемых величин не находилось в начале шкалы, что приведет к высокой погрешности измерений. И наоборот, чтобы диапазона выбранного ваттметра хватило для проведения измерений. В этом отношении аналоговый комплект К540 был очень неудобен.

    Есть вариант использования цифрового ваттметра типа АСМ-8003 (АКТАКОМ) или СР3010/2-000 (ЗИП-Научприбор). Прибор АСМ-8003 позволяет регистрировать ток, напряжение и активную мощность. К сожалению, заявленный диапазон при измерении потерь ограничен разрешением по мощности 1 Вт. СР3010/2-000 является цифровой копией Д566. Существует несколько модификаций с различными пределами измерений.




    Рисунок 7. Ваттметры

    слева – направо Д566, АСМ-8003, СР3010/2-000.

    Измерение коэффициента трансформации.

    Для измерения коэффициента трансформации могут применяться цифровые комплекты К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ) или специализированные приборы типа TTR330 (Megger), MI3250 (Metrel). К сожалению, из-за высокой стоимости специализированных приборов и комплектов на практике приходится использовать два вольтметра или мультиметра.

    ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

    Тестер трансформаторов — это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел — если будет замыкание в витках — покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале «Ремонт электронной техники»:

    ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ - схема

    Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов — это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

    Плата ПРИБОРА ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

    Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа — появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

    Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

    Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

    Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

    Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

    В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

    В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15…R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

    В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1…HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два — желтые (ситуация неопределенная) и последние три — зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

    Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей — необходимо выпаять выходной транзистор и повторить измерение.

    Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

    Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

    ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

    Аналог микросхемы 4015 — К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали — нет. Транзистор поставил 2N5401, а на месте полевого — 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков, сборка nickolay78.

    Приборы для диагностики состояния силовых трансформаторов, часть I

    В статье приведен перечень методик и приборов, необходимых для комплектации лаборатории диагностики силовых трансформаторов. Основная часть приборов и оборудования проверены автором в работе, а также приведены те, которые находятся в планах на приобретение. Следует учитывать, что, большая часть приборов постоянно изменяется как в лучшую, так худшую сторону.

    Эта статья написана в помощь тем, кто заниматься или только собирается заниматься диагностикой и испытаниями силовых трансформаторов. В этой статье не приводятся приборы для контроля параметров трансформаторных масел, т.к. это отдельный, специфичный и немаловажный раздел в диагностики трансформаторов. Проведением измерений параметров трансформаторного масла занимаются другие специалисты.

    Я занимаюсь обследованием оборудования напряжением свыше 1000 В более 20 лет. Так получилось, что за это время, пришлось поработать в нескольких фирмах. Приборный парк этих фирм отличался довольно сильно. Это обусловлено подходом к выбору приборов, так как выбор делается на основании множества объективных и субъективных факторов, таких как:

    • выбор фирмы производителя оборудования на основании личных предпочтений, на основании известности фирмы, на основании рекламы;
    • выбор марки прибора на основании заявленных технических характеристик и рекомендаций специалистов;
    • выбор приборов в рамках ограниченного бюджета;
    • выбор приборов не специалистами;
    • невозможность выбора определенных марок и типов приборов из-за корпоративной политики компании;
    • замена типа прибора (не понравился ранее приобретенный);
    • выбор в пользу дешевизны приборов.

    При выборе прибора стоит очень внимательно ознакомится с его инструкцией. Потому что чтобы приборы лучше продавались производители или продавцы могут лукавить. Например, могут декларировать востребованную функцию размагничивания трансформатора. А по факту это может оказаться всего лишь функцией подмагничивания, которая предназначена для ускорения процесса измерения. Но вот размагнитить обмотку при помощи нее увы не получится. Или преподносят методику и прибор как «панацею от всех бед». Это сразу настораживает и заставляет задуматься, а так ли это и как такое возможно? Поэтому в случае, когда есть сомнения, лучше перед заказом прибора получить официальное подтверждение о наличие в нем тех или иных функций.

    Рисунок 1. Лаборатория для диагностики трансформаторов СиамМастер.

    На сегодняшний день для оценки состояния силовых трансформаторов применяются следующие основные методики:

    Методики на отключенном оборудовании:

    Методики под рабочим напряжением и в режиме нагрузки:

    • измерение сопротивления изоляции;
    • измерение диэлектрических характеристик изоляции;
    • измерение сопротивления постоянному току;
    • измерение сопротивления переменному току;
    • измерение потерь холостого тока на пониженном напряжении;
    • измерение коэффициента трансформации;
    • испытание повышенным напряжением;
    • измерение деформации обмоток методом FRA или SFRA;
    • оценка степени увлажнения твердой изоляции;
    • проверка состояния переключающих устройств. измерение характеристик частичных разрядов;
    • измерение степени запрессовки активной части;
    • тепловизионнное обследование.

    Измерение сопротивления изоляции.

    Для измерения сопротивления изоляции используются мегаомметры. На сегодняшний день на рынке предлагается множество типов данного вида прибора. В работе сам я попробовал около двух десятков различных типов. Необходимо отметить, что многие модели мегаомметров под нагрузкой не выдают заявленной величины напряжения.

    Для диагностики мощных силовых трансформаторов желательно использовать мегаомметры более дорогого ценового сегмента – тестеры изоляции. В них помимо стандартной функции измерения изоляции и испытания изоляции повышенным постоянным напряжением реализованы ряд дополнительных функций. Например, измерение напряжения приложенного к объекту испытания, измерение ёмкости изоляции, измерение токов абсорбции изоляции, проведение различных автоматических тестов. Пробовал в работе следующие марки тестеров изоляции: С.А6545/47(Chauvin Arnoux), Fluke 1550/55 (Fluke Industrial), MI3200 (Metrel), MIT525 (Megger). Все вышеперечисленные тестеры изоляции имеют примерно одинаковые характеристики. Единственное отличие — в зависимости от модификации может меняться максимальное тестовое напряжение: 5 или 10 кВ. Для диагностики трансформаторов этот параметр не имеет значения, но вот для ряда оборудования наличие тестового напряжения 10 кВ в работе предпочтительнее. Наиболее комфортным в работе для меня оказался MI3200. Основное преимущество — удобное меню настроек прибора и наглядность отображения информации на дисплее. После запуска измерения не нужно совершать дополнительных переключений, чтобы проконтролировать все необходимые величины. Меньше всего понравился Fluke 1550/55 из-за мягкого громоздкого кейса и невозможности производить подзарядку прибора пока в него вставлены измерительные щупы.


    Рисунок 2. Тестеры изоляции

    слева – направо С.А6545, Fluke 1555, MI3200, MIT525.

    Измерение диэлектрический характеристик изоляции.

    Для измерения диэлектрических характеристик изоляции используются мосты переменного тока. В начале карьеры работал мостами МД-16, Р5026, Р5026М. Потом попробовал в работе следующие марки мостов переменного тока: СА7100 (ОЛТЕСТ), Тангенс 2000 (НИИЭМП), Вектор-2М (Точприбор).

    Мосты серии CA7100 поставляются в нескольких модификациях. В СА7100-3 встроен мегаомметр для совместного проведения измерений сопротивления изоляции и диэлектрических характеристик. С моей точки зрения выигрыш времени незначительный за счет необходимости коммутации блоков. При этом разница в цене между модификацией со встроенным мегаомметром и без мегаомметра равна хорошему тестеру изоляции, который пригодится и для других работ. Кроме того, синий кабель поставляемый в комплекте с мостом серии СА7100 очень неудобный и тяжелый из-за этого быстро выходит из строя. Поэтому как правило не используется. Наличие тележки, блока коммутации и встроенного повышающего трансформатора необходимо при выполнении работ в пределах одной станции при отсутствии передвижной лаборатории.

    Тангенс 2000 неплохой мост. По характеристикам не уступает серии СА7100. Но более громоздкий. Имеет один недостаток. При снижении заряда аккумулятора менее 30% могут очень сильно «плыть» показания при измерениях.

    Задумка измерителя Вектор-2М в целом неплохая. Измеритель работает не по классической мостовой схеме, а измеряет угол между током и напряжением. Но вот измерения в условиях наведенного напряжения, особенно по «обратной» схеме, может стать огромной проблемой. Не понравился эталонный конденсатор. Слабая изоляция корпуса от земли и без дополнительной изоляции легко перекрывается и конденсатор может выйти из строя. За десять лет эксплуатации четырех комплектов Вектор-2М вышли из строя 3 эталонных конденсатора.

    Для меня с точки зрения перевозки (в том числе и авиатранспортом) удобнее блок СА7100-2 без дополнительного оборудования.

    Рисунок 3. Мосты переменного тока

    слева – направо СА7100-2, Тангенс 2000, Вектор-2М.

    Измерение сопротивления постоянному току.

    Для измерения сопротивления постоянному току применяются два метода. Метод амперметра – вольтметра и мостовой метод.

    Рисунок 4. Мосты постоянного тока

    слева – направо Виток, DLRO10HD, ПФИ24-10Р, МИКО-7.

    Помучившись с различными типами мостов, мы вернулись к измерению сопротивления постоянного тока по классической схеме «амперметра – вольтметра». Заменили самый тяжелый и нестабильный элемент в схеме – автомобильный аккумулятор на сетевой, стабилизированный, трансформаторный источник питания на 30В/5А типа QJ3005C (Ningbo JiuYuan Electronic, существует более тяжелая версия на 10А). А «нежные» стрелочные вольтамперметры постоянного тока типа М2044 на цифровые мультиметры высокой точности типа PC500a или PC710 (Sanwa). При этом мультиметр можно использовать только один. Так ток, выдаваемый источником, практически не меняется во время проведения измерений (±0,01…0,02А при величине подаваемого тока 5А) и хорошо контролируется по встроенному в источник амперметру. Точность измерения мультиметра не менее 0,12%. Отключение такой схемы на время переключения РПН не требуется. Правильность измерения данной схемы проверена на мощных силовых трансформаторах (ТЦ 1000000/500, АТДЦТН 200000/220/110 и т.п.) и на сухих трансформаторах (ТRV -2000/6,3, ТСНЗ 2500/10 и т.п.) с сопротивлением обмоток менее 0,5 мОм.


    Рисунок 5. Комплект для измерения сопротивления постоянному току

    слева источник питания QJ3005C, справа мультиметр PC710.

    Измерение сопротивления переменному току.

    Для измерения сопротивления переменному току (сопротивление короткого замыкания) могут применяться специализированные комплекты или схема, собираемая на месте измерения из отдельных приборов переменного тока.

    Наиболее широкую известность имеют комплекты К505 / К540 или их электронные аналоги типа К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ). Основным недостатком электронных комплектов является высокая стоимость, в остальном комплекты удобны в работе. Для меня более удобным показался СА540.

    Другим вариантом проведения измерений является использование мультиметров или аналоговых стрелочных приборов. При высоких значениях токов вместо мультиметров с трансформатором тока проще и удобнее использовать токовые клещи.

    Рисунок 6. Комплекты для измерения сопротивления переменному току

    слева – направо К540, Молния К540-3, СА540.

    Измерение потерь холостого хода на пониженном напряжении.

    Для измерения потерь холостого хода трансформаторов используются те же комплекты, что и для измерения сопротивления переменному току. При отсутствии комплекта для проведения измерения достаточно наличия аналогового ваттметра типа Д566 (Д5106) и двух мультиметров. Как правило ваттметры многопредельные, но все равно желательно оценить ожидаемое значение потерь, чтобы значение измеряемых величин не находилось в начале шкалы, что приведет к высокой погрешности измерений. И наоборот, чтобы диапазона выбранного ваттметра хватило для проведения измерений. В этом отношении аналоговый комплект К540 был очень неудобен.

    Есть вариант использования цифрового ваттметра типа АСМ-8003 (АКТАКОМ) или СР3010/2-000 (ЗИП-Научприбор). Прибор АСМ-8003 позволяет регистрировать ток, напряжение и активную мощность. К сожалению, заявленный диапазон при измерении потерь ограничен разрешением по мощности 1 Вт. СР3010/2-000 является цифровой копией Д566. Существует несколько модификаций с различными пределами измерений.


    Рисунок 7. Ваттметры

    слева – направо Д566, АСМ-8003, СР3010/2-000.

    Измерение коэффициента трансформации.

    Для измерения коэффициента трансформации могут применяться цифровые комплекты К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ) или специализированные приборы типа TTR330 (Megger), MI3250 (Metrel). К сожалению, из-за высокой стоимости специализированных приборов и комплектов на практике приходится использовать два вольтметра или мультиметра.


    Рисунок 8. Измерители коэффициента трансформации

    слева – направо TTR330, MI3250.

    Продолжение читайте в следующей статье “Приборы для диагностики состояния силовых трансформаторов, часть II”

    Проверка трансформатора тока

    Устройства для пропорционального преобразования переменного тока до значений, безопасных для его измерений, называют трансформаторами тока.

    Проверка ТТ проводится с целью выявления его работоспособности, при этом не производится оценка метрологических характеристик, которые определяют класс точности и сдвига фаз между вектором первичного и вторичного токов.

    Перечень возможных неисправностей

    Ниже приведены наиболее распространённые причины неисправностей ТТ:

    • механические повреждения магнитопровода;
    • повреждения изоляции корпуса;
    • механические повреждения обмоток:
    • обрывы обмоток;
    • снижение изоляции проводников обмотки, создающее межвитковые замыкания;
    • механический износ выводов обмотки и контактов.

    Методы проверок

    Для оценки работоспособности трансформатора проводится внешний визуальный осмотр и проверка электрических характеристик.

    Внешний визуальный осмотр

    С него начинается каждая проверка, и она позволяет оценить:

    • состояние внешних поверхностей деталей;
    • наличие сколов и трещин на изоляции;
    • состояние клеммных или болтовых соединений;
    • наличие видимых дефектов.

    Проверка изоляции

    Испытания изоляции

    В случае установки в составе высоковольтного оборудования трансформатор тока смонтирован в линии нагрузки, при этом он входит в линию конструктивно, и в таком случае испытания изоляции проводятся при проведении совместных высоковольтных испытаний отходящей линии сотрудниками службы изоляции. По результатам проведенных испытаний оборудование может быть допущено в эксплуатацию.

    Проверка состояния изоляции

    Для проведения измерения сопротивления изоляции следует использовать мегомметр с Uвых соответствующий требованиям техдокументации на ТТ. Для большинства существующих высоковольтных устройств проверку сопротивления изоляции следует проводить прибором с Uвых в 1 Кв.

    Мегомметром проводят измерения сопротивление изоляции между:

    • корпусом и обмотками (каждой из обмоток);
    • каждой из обмоток и всеми остальными.

    К эксплуатации могут быть допущены собранные токовые цепи с величиной сопротивления изоляции не менее 1 мОм.

    Оценка работоспособности трансформатора тока

    1. Прямой метод проверки

    Для проведения следует использовать штатную цепь включения трансформатора в цепи первичного и вторичного оборудования или же, собрать новую цепь для проверки, при которой ток величиной от 20 до 100 % от номинальной величины проходит по первичной обмотке трансформатора и замеряется во вторичной.

    Численное значение замеренного первичного тока нужно разделить на численное значение замеренного тока вторичной обмотки. Полученное значение и будет коэффициентом трансформации, которое следует сравнить с паспортным значением, что позволит судить об исправности трансформатора.

    Трансформатор тока может содержать не одну, а несколько вторичных обмоток. До начала испытаний все обмотки должны быть надежно подключены к нагрузке или же закорочены. В противном случае, в разомкнутой вторичной обмотке, при условии появлении тока в первичной обмотке, возникнет напряжение в несколько КВ, опасное для жизни человека и могущее привести к повреждению оборудования.

    Магнитопроводы большинства высоковольтных трансформаторов тока нуждаются в заземлении. Для этого в их конструкции предусмотрена специальная клемма, которая маркируется буквой “З”.

    На практике очень часто возникают какие-либо ограничения по проверке трансформаторов под нагрузкой, обусловленные особенностями эксплуатации и безопасности испытаний. В связи с этим часто используются иные способы проверки.

    2. Косвенные методы

    Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

    Определение правильности маркировки выводов обмоток

    Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

    Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

    Проверка полярности выводов обмоток.

    Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

    Определение полярности выводов обмоток Трансформатора тока.

    Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

    Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

    К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

    При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

    При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

    Таким же образом следует проверить полярность подключения других обмоток трансформатора.

    Снятие характеристики намагничивания.

    Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

    Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

    Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

    Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

    Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

    Важно

    Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

    Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

    Читайте также: