Можно ли устанавливать предохранители в нулевом рабочем проводе в сетях с заземленной нейтралью

Обновлено: 03.05.2024

Что такое нулевой защитный и нулевой рабочий проводники

Проводники бывают нулевыми защитными и нулевыми рабочими, каждый из них имеет свое назначение, способ подключения и допустимые функциональные нагрузки в электрической цепи. Перед тем как приступать к выполнению работ по созданию защитного контура, важно получить минимальные, но необходимые знания.

Содержание

Назначение проводников

Нулевой рабочий проводник имеет еще одно название – проводник сети. По нему протекает нагрузочный ток. На схеме он обозначается латинской буквой «N».

Защите от косвенного прикосновения подлежат следующие электрические элементы (согласно ПУЭ 1.7.76):

    корпуса, изготовленные из металла, портативных и передвижных устройств;

В качестве защиты используется коммутация этих устройств с глухозаземленной нейтралью в системах ТN или ТТ, IТ. Последние две с заземлением.


Схематически нулевой защитный проводник обозначается «РЕ». Когда электрическая цепь функционирует в штатном режиме, по РЕ ток не протекает.

На схемах комбинация «РЕ» означает нулевой защитный проводник, а также все защитные сегменты цепи, например, проложенные шины и проводники, заземляющие проводники, отдельные жилы в кабелях, а также провод в системе уравнивания потенциалов.

Разница между нулевым защитным и рабочим проводниками

Прежде чем приступать к выполнению работ, важно ознакомиться с особенностями и характеристиками проводников, провести сравнительный анализ.

НаименованиеОписание
N – нулевой рабочий проводВместе с фазным проводом принимает участие в непрерывном и беспрепятственном обеспечении электропитанием бытовой техники и прочих электрических приборов. По нему постоянно протекает рабочий ток.
РЕ – нулевой защитный проводНе принимает участия в обеспечении электрических приборов и бытовой техники электричеством. Основная задача – защита от косвенного взаимодействия в сетях с глухозаземленной нейтралью.

Обозначение нулевого защитного проводника

Чаще всего маркировка нулевых защитных жил имеет желто-зеленый окрас. В ПУЭ устанавливаются основные правила выбора сечения токоведущего провода.

Правила прокладки


Прежде чем приступать к монтажу, требуется ознакомиться с правилами, которые предъявляются к прокладке РЕ:

  • В линии должны отсутствовать устройства, которые могут стать причиной разъединения, нарушения целостности цепи, например, удаляемые вставки, выключатели, автоматы защиты и предохранители.
  • Все оборудование и токоведущие части коммутируются с защитным заземлением напрямую.
  • Запрещено соединение нескольких электрических приборов по принципу шлейфа.
  • На распределительной шине РЕ выделяется отдельная клемма (зажим). Запрещается к одной клемме одновременно подсоединять нулевой защитный и рабочий провод.


Сопротивление изоляционного слоя РЕ не должно быть меньше указанного в нормативно-правовом документе.

Виды заземления

В зависимости от функций РЕ заземление делится на несколько видов.

Старые системы заземления характеризуются объединением по всей сети нулевого и защитного рабочего провода, поэтому отдельным РЕ они не оснащены. Согласно постановлению ПУЭ с 2017 года запрещается эксплуатировать такие системы. При строительстве новых сооружений прибегают к более безопасным и усовершенствованным системам заземления.

Характерная особенность новых видов – выполнение отдельных контуров для защитного и рабочего заземления. Он предусматривает подвод также к частным сетям, выполняется с учетом всех требований независимости N и РЕ. Если речь идет о системе ТN-C-S, в частных сетях допускается объединение данных проводников.

Электрический ток несет в себе потенциальную угрозу здоровью и жизни человека. Если нет соответствующих знаний и опыта, рекомендуется обратиться к профессиональному электрику. Найти подходящую кандидатуру можно в ЖЭКе, управляющей компании города или любой строительной организации. Если принято решение все работы выполнять самостоятельно, прежде чем оголять провода, нужно отключить подачу электроэнергии в квартиру дом, и на выходе проверить напряжение с помощью специальной отвертки, оснащенной индикатором.

stigfromsouth / electric_safety_2018.md

Организационные мероприятия, обеспечивающие безопасность работ в электроустановках

  • оформление наряда, распоряжения или перечня работ, выполняемых в порядке текущей эксплуатации;
  • выдача разрешения на подготовку рабочего места и на допуск к работе в случаях, предусмотренных правилами;
  • допуск к работе;
  • надзор во время работы;
  • оформление перерыва в работе, изменения в составе бригады, перевода на другое место, окончания работы.

Технические мероприятия обеспечивающие безопасность работ

  • производство отключений;
  • вывешивание плакатов и ограждение рабочего места;
  • проверка отсутствия напряжения;
  • наложение заземлений.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
  • © 2021 GitHub, Inc.

You can’t perform that action at this time.

You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.

Объяснить, почему в нейтральном проводе трехфазного потребителя электрической энергии не устанавливают предохранитель.


556 выпуск Библиотеки электромонтера. Каминский Е. А. "Звезда, треугольник, зигзаг"
Если нагрузка несимметричная, то при перегорании предохранителя в нулевом проводе возникнет несимметрия по фазным напряжениям, а это грозит выходом из строя участков сети потребителя с недонагруженными фазами (в т. ч. и оборудования подключенного к этому участку) из-за перенапряжений - ИМЕННО ПО ЭТОМУ ЗАПРЕЩЕНО СТАВИТЬ ПРЕДОХРАНИТЕЛЬ В НУЛЕВОЙ РАБОЧИЙ ПРОВОДНИК. .

Остальные ответы

Там тока или нет или значительно меньший, чем в фазах.

Потому что при коротком замыкании ток идёт по петле фаза ноль, этот ток отключается защитой на фазе. Дублировать защиту на нуле смысла нет. При замыкании фаза-фаза думаю понятно.

Потому что в этом нет смысла.. . Задача предохранителя защитить нагрузку при аварийном режиме работы, а сгоревший предохранитель на нейтрали при перекосе фаз приведет к разрушению нагрузки..

ВОПРОСЫ БЕЗОПАСНОСТИ, СВЯЗАННЫЕ С НЕЙТРАЛЯМИ ЭЛЕКТРОУСТАНОВОК

Нейтралью называют общую точку обмоток многофазных гене­раторов, трансформаторов, а также провод, соединенный с этой точкой. Заземленная нейтральная точка (или провод) называется нулевой. Конструктивное исполнение заземления нейтралей или изолирования их от земли оказывает большое влияние на без­опасность эксплуатации электроустановок.

Электроустановки трехфазного переменного тока напряжени­ем до и выше 1000 В работают как с изолированной, так и с за­земленной нейтралью. В сети с изолированной нейтралью (рис. 1.5) нейтрали генераторов и трансформаторов изолированы от земли или связаны с заземляющим устройством через аппараты, имею­щие большое сопротивление (например, трансформаторы напря­жения), либо через реакторы и катушки, компенсирующие емко­стный ток сети.

При нарушении изоляции одной фазы в какой-либо точке сети с изолированной нейтралью возникает однофазное замыкание на землю. Напряжение этой фазы относительно земли становится рав­ным нулю, напряжение двух других фаз относительно земли — равным междуфазному напряжению, а зарядные токи этих двух фаз увеличиваются в 3 раза по сравнению с зарядным током од­ной фазы в нормальном режиме работы.


Рис. 1.5. Сеть с изолированной нейтралью:

а — нейтраль полностью изолирована; б — в нейтраль включена катушка, ком­пенсирующая емкостный ток сети; в — в нейтраль включена обмотка трансфор­матора напряжения; 1 — нейтраль; 2 — компенсирующая катушка; 3 — транс­форматор напряжения

Из-за малой величины ток замыкания практически не влияет на систему междуфазных напряжений и режим работы приемни­ков электроэнергии. Поэтому при замыкании на землю в сети с изолированной нейтралью допускается не отключать линию пи­тания в течение 2 ч, необходимых для обнаружения места по­вреждения и устранения замыкания.

Для исключения перехода однофазного замыкания в между­фазное определяют допускаемый ток Iдоп., который, протекая в течение 1. 2 ч, не вызывает перехода в междуфазное короткое замыкание. Значение Iдоп. находится в пределах от 5 до 30 А. Ниж­ний предел принят для генераторов, верхний — для кабелей на­пряжением 6 кВ. Для воздушных линий напряжением 35 кВ Iдоп. = 10 А, для кабелей напряжением 10 кВ — Iдоп. = 20 А.

В России с изолированной нейтралью работают следующие сети:

трехфазные сети напряжением 3. 35 кВ;

трехфазные трехпроводные сети напряжением до 1000 В;

двухпроводные сети постоянного тока напряжением до 1000 В;

все сети напряжением до 1000 В, для которых требуются за­щитные меры, не связанные с защитным заземлением (напри­мер, двойная изоляция) по условиям охраны труда.


Рис. 1.6. Сеть с заземленной нейтралью:

а — глухое заземление нейтрали; б — глухое заземление нейтрали через транс­форматор тока; в — трехфазная четырехпроводная сеть с заземленным нулевым проводом; 1 — нейтраль; 2 — заземление; 3 — трансформатор тока; 4 — нулевой провод

В сети с заземленной нейтралью (рис. 1.6)нейтрали генерато­ров и трансформаторов присоединены к заземляющим устрой­ствам непосредственно или через малое сопротивление (напри­мер, трансформатор тока). Заземление нейтрали является рабо­чим, оно обеспечивает работу электроустановки в нормальных и аварийных условиях.

Если ток замыкания на землю превышает допустимый для эле­ментов данной сети, то для снижения основной емкостной со­ставляющей тока в месте повреждения нейтраль соединяют через настроенные индуктивности (дугогасящие катушки), благодаря чему ток в месте замыкания может оказаться равным нулю. Дугогасящие катушки, существенно уменьшая ток замыкания на зем­лю, исключают возможность возникновения устойчивой дуги и уменьшают вероятность перехода замыкания фазы на землю в междуфазное короткое замыкание. Такие сети называют сетями с резонансно-заземленной нейтралью.

В сетях с глухозаземленной нейтралью большие токи однофаз­ного короткого замыкания являются причиной усложнения и удо­рожания заземляющих устройств, но при этом изоляция фазных проводов может быть рассчитана на фазное напряжение (а не на междуфазное, как в предыдущих двух случаях), что особенно су­щественно при напряжениях 110 кВ и выше.




Для повышения надежности питания потребителей при частых отключениях из-за замыканий на землю эффективно применять автоматическое повторное включение.

Для ограничения тока короткого замыкания до значений, не превышающих ток трехфазного короткого замыкания, в системах электроснабжения применяют заземление нейтралей не всех ра­ботающих трансформаторов, а только их части. Число заземлен­ных нейтралей регулируется диспетчером системы электроснаб­жения.

Для возможности разземления нейтралей применяют однопо­люсные заземлители ЗОН, параллельно с которыми устанавлива­ются разрядники. Разрядник защищает изоляцию нулевых выво­дов обмоток на случай работы с разземленной нейтралью. Этот разрядник выбирают по классу изоляции на одну ступень ниже линейной изоляции.

В России глухое заземление нейтрали применяют:

в сетях напряжением ПО кВ и выше;

четырехпроводных сетях на 380/220 В;

трехпроводных сетях постоянного тока.

В электроустановках напряжением свыше 1000 В прикоснове­ние к фазе весьма опасно при любом режиме нейтрали. В электри­ческих, сетях напряжением 3. 35 кВ нейтрали источников пита­ния, как правило, изолированы или связаны с заземляющим ус­тройством через аппараты, имеющие большое индуктивное сопротивление (например, реакторы). Электрические сети напряжением 110 кВ и выше работают с глухим за­землением нейтралей трансформато­ров.

Электроустановки напряжением до 1000 В питаются в основном от сетей двух типов: трехпроводных с нейтралью, полностью изолированной от земли или соеди­ненной с ней через сопротивление; четырехпроводных с глухозаземленной нейтралью. В сетях второго типа четвертый провод со­единен с заземленной нейтралью и является рабочим проводом, с его помощью потребителей (осветительную нагрузку) включа­ют на фазное напряжение (рис. 1.7).


Рис. 1.7. Включение лампы на фазное на­пряжение в трехфазной четырехпроходной сети:

1 — патрон; 2 — нарезка патрона, подклю­чаемая к нулевому проводу; 3 — выключа­тель, устанавливаемый только в фазный про­вод; 4 — пяточка лампы, подключаемая к фазному проводу

Контрольные вопросы

1. Назовите основные типы электростанций и расскажите о принципе выработки электроэнергии в каждом случае.

2. Какие нетрадиционные способы получения электрической энергии вы знаете?

3. Перечислите меры защиты окружающей среды при эксплуатации электростанций.

4. Перечислите основные элементы системы электроснабжения и ука­жите назначение каждого из них.

5. Какие требования предъявляются к системам электроснабжения?

6. Что понимают под внешним и внутренним электроснабжением пред­приятия?

7. Охарактеризуйте современное состояние электроэнергетики Рос­сии.

8. Как обозначают электрооборудование и аппаратуру в схемах элект­роснабжения промышленных предприятий?

9. Как влияют энергетические сооружения на окружающую среду?

10. Для чего и какими способами выполняют заземление нейтралей в электрических сетях?

Билет № 3

= На пламенно-дуговые и электронно-лучевые установки.

= На индукционные плавильные и нагревательные установки.

+ На электроустановки электрических сетей жилищно-коммунального хозяйства.

= На стационарные, передвижные, переносные комплектные испытательные установки.

? КАКОВА ПРОДОЛЖИТЕЛЬНОСТЬ СТАЖИРОВКИ ЭЛЕКТРОТЕХНИЧЕСКОГО ПЕРСОНАЛА ДО НАЗНАЧЕНИЯ НА САМОСТОЯТЕЛЬНУЮ РАБОТУ? /1, п. 1.4.11/

= От 5 до 10 смен.

+ От 2 до 14 смен.

? чем проверяется сопротивление изоляции вторичных цепей устройств релейной защиты, автоматики с рабочим напряжением 60 в и ниже и цепей телемеханики? /1, п. 2.6.16/

+ Мегаомметром на 500В.

= Мегаомметром на 1000В.

= Мегаомметром на 2500В.

= Мегаомметром на любое напряжение (500, 1000, 2500 В).

? ДОПУСКАЕТСЯ ЛИ ВЫПОЛНЕНИЕ КАКИХ-ЛИБО РАБОТ ВО ВРЕМЯ ОСМОТРА? /2/3.6/

= Допускается, только оперативно-ремонтному персоналу, закрепленному за данной электроустановкой.

= Допускается оперативно-ремонтному персоналу, закрепленному за данной электроустановкой и ремонтному персоналу под наблюдением оперативного персонала.

? За какие нарушения в работе электроустановок несут персональную ответственность работники, непосредственно обслуживающие электроустановки и проводящие ремонт оборудования? /1, П.1.2.9/

= за нарушения, происшедшие по их вине, а также за неправильную ликвидацию ими нарушений в работе электроустановок на обслуживаемом участке;

+ за нарушения, происшедшие по их вине, а также за неправильную ликвидацию ими нарушений в работе электроустановок на обслуживаемом участке, за нарушения в работе, вызванные низким качеством ремонта;

= за нарушения, происшедшие по их вине, а также за неправильную ликвидацию ими нарушений в работе электроустановок на обслуживаемом участке, за нарушения в работе, вызванные низким качеством ремонта, за нарушения в эксплуатации электротехнологического оборудования.

? МОЖНО ЛИ УСТАНАВЛИВАТЬ ПРЕДОХРАНИТЕЛИ В НУЛЕВОМ РАБОЧЕМ ПРОВОДЕ В СЕТЯХ С ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ? /4, п.6.1.36/

= Можно, если электроустановки потребителей однофазные.

= Можно, если выполнена система уравнивания потенциалов.

= Можно, если в качестве предохранителя служит автоматический выключатель.

= Можно, если установлено УЗО.

? ЧТО ДОЛЖЕН ИЗУЧИТЬ РАБОТНИК В ПРОЦЕССЕ СТАЖИРОВКИ?/1, п. 1.4.13/

= Приобрести необходимые практические навыки в выполнении производственных операций.

= Схемы, производственные инструкции и инструкции по охране труда, знание которых обязательно для работы в данной должности (профессии).

= Приемы и условия безаварийной, безопасной и экономичной эксплуатации обслуживаемого оборудования.

+ В процессе стажировки работник должен изучить все указанное.

? Какие работы относятся к специальным, о праве на проведение которых, делается запись в удостоверении о проверке знаний правил работы в электроустановках? /2/2.6/

=Работы, выполняемые на высоте более 5 м от поверхности земли, перекрытия или рабочего настила, над которым производятся работы непосредственно с конструкций или оборудования при их монтаже или ремонте с обязательным применением средств защиты от падения с высоты (далее - верхолазные работы);

=Работы без снятия напряжения с электроустановки, выполняемые с прикосновением к первичным токоведущим частям, находящимся под рабочим напряжением, или на расстоянии от этих токоведущих частей менее допустимого (далее - работы под напряжением на токоведущих частях);

=Рспытания оборудования повышенным напряжением (за исключением работ с мегаомметром);

=Работы, выполняемые со снятием рабочего напряжения с электроустановки или ее части с прикосновением к токоведущим частям, находящимся под наведенным напряжением более 25 В на рабочем месте или на расстоянии от этих токоведущих частей менее допустимого (далее - работы под наведенным напряжением).

? КАКОЕ ТРЕБОВАНИЕ К РАБОТНИКАМ, ДОПУСКАЕМЫМ К ВЫПОЛНЕНИЮ РАБОТ В ЭЛЕКТРОУСТАНОВКАХ? /2/1.3./

= Работники должны проходить обучение по оказанию первой помощи пострадавшему на производстве в специализированных медицинских центрах, сразу после допуска к самостоятельной работе. Электротехнический персонал кроме обучения оказанию первой помощи пострадавшему на производстве должен быть обучен приемам освобождения пострадавшего от действия электрического тока с учетом специфики обслуживаемых (эксплуатируемых) электроустановок.




= Работники должны проходить обучение по оказанию первой помощи пострадавшему на производстве, должен быть обучен приемам освобождения пострадавшего от действия электрического тока в специализированных учебных центрах, имеющих в своем штате преподавателей имеющих лицензию на ведение преподавательской деятельности.

+ Работники должны проходить обучение по оказанию первой помощи пострадавшему на производстве до допуска к самостоятельной работе.

Электротехнический персонал кроме обучения оказанию первой помощи пострадавшему на производстве должен быть обучен приемам освобождения пострадавшего от действия электрического тока с учетом специфики обслуживаемых (эксплуатируемых) электроустановок.

? В КАКИХ СЛУЧАЯХ НАПРЯЖЕНИЕ С ЭЛЕКТРОУСТАНОВКИ ДОЛЖНО БЫТЬ СНЯТО НЕМЕДЛЕННО БЕЗ ПРЕДВАРИТЕЛЬНОГО РАЗРЕШЕНИЯ ОПЕРАТИВНОГО ПЕРСОНАЛА? /2/3.8./

= При отказе систем противоаварийной защиты.

+ При несчастных случаях для освобождения пострадавшего от действия электрического тока.

Режимы заземления нейтрали в сетях 0,4 кв. Плюсы и минусы различных вариантов


В главе 1.7 нового издания ПУЭ [1] приведены возможные варианты (режимы) заземления нейтрали и открытых проводящих частей1 в сетях 0,4 кВ. Они соответствуют вариантам, указанным в стандарте [2] Международной электротехнической комиссии (МЭК).

Режимы заземления нейтрали в сетях 0,4 кв
Плюсы и минусы различных вариантов

Сергей Титенков, к.т.н., руководитель отдела маркетинга ОАО «ПО Элтехника»

Режим заземления нейтрали и открытых проводящих частей обозначается двумя буквами: первая указывает режим заземления нейтрали источника питания (силового трансформатора 6-10/0,4 кВ), вторая – открытых проводящих частей. В обозначениях используются начальные буквы французских слов [3,4]:

  • Т (terre – земля) – заземлено;
  • N (neutre – нейтраль) – присоединено к нейтрали источника;
  • I (isole) – изолировано.
  • TN – нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу;
  • ТТ – нейтраль источника и корпусы электрооборудования глухо заземлены (заземления могут быть раздельными);
  • IT – нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены.
  • TN-C – нулевые рабочий и защитный проводники объединены (С – первая буква англ. слова combined – объединенный) на всем протяжении. Объединенный нулевой проводник называется PEN по первым буквам англ. слов protective earth neutral – защитная земля, нейтраль;
  • TN-S – нулевой рабочий проводник N и нулевой защитный проводник PE разделены (S – первая буква англ. слова separated – раздельный);
  • TN-C-S – нулевые рабочий и защитный проводники объединены на головных участках сети в проводник PEN, а далее разделены на проводники N и PE.

2 Косвенное прикосновение – электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.

  • электробезопасность (защита от поражения людей электрическим током);
  • пожаробезопасность (вероятность возникновения пожаров при коротких замыканиях);
  • бесперебойность электроснабжения потребителей;
  • перенапряжения и защита изоляции;
  • электромагнитная совместимость (в нормальном режиме работы и при коротких замыканиях);
  • повреждения электрооборудования при однофазных коротких замыканиях;
  • проектирование и эксплуатация сети.

СЕТЬ TN-C

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей (занулением) до последнего времени были широко распространены в России.

Электробезопасность в сети TN-C при косвенном прикосновении2 обеспечивается отключением возникших однофазных замыканий на корпус с помощью предохранителей или автоматических выключателей. Режим TN-C был принят в качестве главенствующего в то время, когда основными аппаратами защиты от замыканий на корпус были предохранители и автоматические выключатели. Характеристики срабатывания этих аппаратов защиты в свое время определялись особенностями защищаемых воздушных линий (ВЛ) и кабельных линий (КЛ), электродвигателей и других нагрузок. Обеспечение электробезопасности было второстепенной задачей.

При относительно низких значениях токов однофазного КЗ (удаленность нагрузки от источника, малое сечение провода) время отключения существенно возрастает. При этом электропоражение человека, прикоснувшегося к металлическому корпусу, весьма вероятно. Например, для обеспечения электробезопасности отключение КЗ на корпус в сети 220 В должно выполняться за время не более 0,2 с [2]. Но такое время отключения предохранители и автоматические выключатели способны обеспечить только при кратностях токов КЗ по отношению к номинальному току на уровне 6-10. Таким образом, в сети TN-C существует проблема обеспечения безопасности при косвенном прикосновении из-за невозможности обеспечения быстрого отключения. Кроме того, в сети TN-C при однофазном КЗ на корпус электроприемника возникает вынос потенциала по нулевому проводу на корпуса неповрежденного оборудования, в том числе отключенного и выведенного в ремонт. Это увеличивает вероятность поражения людей, контактирующих с электрооборудованием сети. Вынос потенциала на все зануленные корпуса возникает и при однофазном КЗ на питающей линии (например, обрыв фазного провода ВЛ 0,4 кВ с падением на землю) через малое сопротивление (по сравнению с сопротивлением контура заземления подстанции 6-10/0,4 кВ). При этом на время действия защиты на нулевом проводе и присоединенных к нему корпусах возникает напряжение, близкое к фазному. Особую опасность в сети TN-C представляет обрыв (отгорание) нулевого провода. В этом случае все присоединенные за точкой обрыва металлические зануленные корпуса электроприемников окажутся под фазным напряжением.

Самым большим недостатком сетей TN-C является неработоспособность в них устройств защитного отключения (УЗО) или residual current devices (RCD) по западной классификации.

Пожаробезопасность сетей TN-C низкая. При однофазных КЗ в этих сетях возникают значительные токи (килоамперы), которые могут вызывать возгорание. Ситуация осложняется возможностью возникновения однофазных замыканий через значительное переходное сопротивление, когда ток замыкания относительно невелик и защиты не срабатывают либо срабатывают со значительной выдержкой времени.

Бесперебойность электроснабжения3 в сетях TN-C при однофазных замыканиях не обеспечивается, так как замыкания сопровождаются значительным током и требуется отключение присоединения.

В процессе однофазного КЗ в сетях TN-C возникает повышение напряжения (перенапряжения) на неповрежденных фазах примерно на 40%. Сети TN-C характеризуются наличием электромагнитных возмущений. Это связано с тем, что даже при нормальных условиях работы на нулевом проводнике при протекании рабочего тока возникает падение напряжения. Соответственно между разными точками нулевого провода имеется разность потенциалов. Это вызывает протекание токов в проводящих частях зданий, оболочках кабелей и экранах телекоммуникационных кабелей и соответственно электромагнитные помехи. Электромагнитные возмущения существенно усиливаются при возникновении однофазных КЗ со значительным током, протекающим в нулевом проводе.

Значительный ток однофазных КЗ в сетях TN-C вызывает существенные разрушения электрооборудования. Например, прожигание и выплавление стали статоров электродвигателей. На стадии проектирования и настройки защит в сети TN-C необходимо знать сопротивления всех элементов сети, в том числе и сопротивления нулевой последовательности для точного расчета токов однофазных КЗ. То есть необходимы расчеты или измерения сопротивления петли фаза-нуль для всех присоединений. Любое существенное изменение в сети (например, увеличение длины присоединения) требует проверки условий защиты.

СЕТЬ TN-S

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей называются пятипроводными. В них нулевой рабочий и нулевой защитный проводники разделены. Само по себе использование сети TN-S не обеспечивает электробезопасность при косвенном прикосновении, так как при пробое изоляции на корпусе, как и в сети TN-C, возникает опасный потенциал. Однако в сетях TN-S возможно использование УЗО. При наличии этих устройств уровень электробезопасности в сети TN-S существенно выше, чем в сети TN-С. При пробое изоляции в сети TN-S также возникает вынос потенциала на корпуса других электроприемников, связанных проводником PE. Однако быстрое действие УЗО в этом случае обеспечивает безопасность. В отличие от сетей TN-С обрыв нулевого рабочего проводника в сети TN-S не влечет за собой появление фазного напряжения на корпусах всех связанных данной линией питания электроприемников за точкой разрыва.

Пожаробезопасность сетей TN-S при применении УЗО в сравнении с сетями TN-С существенно выше. УЗО чувствительны к развивающимся дефектам изоляции и предотвращают возникновение значительных токов однофазных КЗ.

В отношении бесперебойности электроснабжения и возникновения перенапряжений, сети TN-S не отличаются от сетей TN-С.

Электромагнитная обстановка в сетях TN-S в нормальном режиме существенно лучше, чем в сетях TN-С. Это связано с тем, что нулевой рабочий проводник изолирован и отсутствует ответвление токов в сторонние проводящие пути. При возникновении однофазного КЗ создаются такие же электромагнитные возмущения, как и в сетях TN-С.

Наличие в сетях TN-S устройств УЗО существенно снижает объем повреждений при возникновении однофазных КЗ по сравнению с сетями TN-С. Это объясняется тем, что УЗО ликвидирует повреждение в его начальной стадии.

В отношении проектирования, настройки защит и обслуживания, сети TN-S не имеют каких-либо преимуществ по сравнению с сетями TN-С. Отмечу, что сети TN-S более дорогие в сравнении с сетями TN-С из-за наличия пятого провода, а также УЗО.


СЕТЬ TN-С-S

Это комбинация рассмотренных выше двух типов сетей. Для этой сети будут справедливы все преимущества и недостатки, указанные выше.


СЕТЬ TТ

Особенностью данного типа сетей 0,4 кВ является то, что открытые проводящие части электроприемников присоединены к заземлению, которое обычно независимо от заземления питающей подстанции 6–10/0,4 кВ.

Электробезопасность в этих сетях обеспечивается использованием УЗО в обязательном порядке. Само по себе использование режима ТТ не обеспечивает безопасности при косвенном прикосновении. Если сопротивление местного заземлителя, к которому присоединены открытые проводящие части, равно сопротивлению заземления питающей подстанции 6(10)/0,4 кВ и возникает замыкание на корпус, то напряжение прикосновения составит половину фазного напряжения (110 В для сети 220 В). Такое напряжение опасно, и необходимо немедленное отключение поврежденного присоединения. Но отключение не может быть обеспечено автоматическими выключателями и предохранителями за безопасное для прикоснувшегося человека время из-за малой величины тока однофазного замыкания. Например, если принять, что сопротивления заземления питающей подстанции 6(10)/0,4 кВ и местного заземлителя равны 0,5 Ома, и пренебречь сопротивлениями силового трансформатора и кабеля, при фазном напряжении 220 В ток однофазного замыкания на корпус в сети ТТ составит всего 220 А. С учетом всех сопротивлений в цепи замыкания ток будет еще меньше.

Пожаробезопасность сетей TТ в сравнении с сетями TN-С существенно выше. Это связано со сравнительно малой величиной тока однофазного замыкания и с применением УЗО, без которых сети ТТ вообще эксплуатироваться не могут.

Бесперебойность электроснабжения3 в сетях TТ при однофазных замыканиях не обеспечивается, так как требуется отключение присоединения по условиям безопасности.

При возникновении однофазного замыкания на землю в сети ТТ напряжение на неповрежденных фазах относительно земли повышается, что связано с появлением напряжения на нейтрали питающего трансформатора 6(10)/0,4 кВ. Если принять сопротивления, указанные выше, то напряжение на нейтрали составит половину фазного. Такое повышение напряжения не опасно для изоляции, так как однофазное замыкание достаточно быстро ликвидируется действием УЗО, причем в большинстве случаев до своего полного развития и достижения током максимума.

В системе ТТ нескольких корпусов электроприемников обычно объединены одним защитным проводником РЕ и присоединены к общему заземлителю, отдельному, как уже сказано, от заземлителя питающей подстанции. Выполнять отдельный заземлитель в сети ТТ для каждого электроприемника нецелесообразно по экономическим соображениям. В нормальном режиме по защитному проводнику в системе ТТ не протекает ток и соответственно между корпусами отдельных электроприемников нет разности потенциалов. То есть в нормальном режиме электромагнитные возмущения (разность потенциалов между корпусами, протекание токов по конструкциям зданий и оболочкам кабелей) отсутствуют. При возникновении однофазного замыкания ток относительно невелик, при его протекании падение напряжения на защитном проводнике невелико, длительность протекания тока мала. Соответственно возникающие при этом возмущения также невелики. Таким образом, с позиций электромагнитных возмущений сеть ТТ имеет преимущество по сравнению с сетями TN-С в нормальном режиме работы и с сетями TN-С, TN-S, TN-С-S в режиме однофазного замыкания.

Объем повреждений оборудования в сетях ТТ при возникновении однофазных КЗ невелик, что связано с малой величиной тока в сравнении с сетями TN-С, TN-S, TN-С-S и с использованием УЗО, которые обеспечивают отключение до полного развития повреждения изоляции.

С точки зрения проектирования, сети ТТ имеют существенное преимущество по сравнению с сетями TN. Использование в сетях ТТ УЗО устраняет проблемы, связанные с ограничением длины линий, необходимостью знать полное сопротивление петли КЗ. Сеть может быть расширена или изменена без повторного расчета токов КЗ или замера сопротивления петли тока КЗ. Учитывая, что сам по себе ток однофазного КЗ в сетях ТТ меньше, чем в сетях TN-S, TN-С-S, сечение защитного проводника РЕ в сети ТТ может быть меньше.


СЕТЬ IT

Нейтральная точка питающего трансформатора 6(10)/0,4 кВ такой сети изолирована от земли или заземлена через значительное сопротивление (сотни Ом – несколько кОм). Защитный проводник в таких сетях отделен от нейтрального.

Электробезопасность при однофазном замыкании на корпус в этих сетях наиболее высокая из всех рассмотренных. Это связано с малой величиной тока однофазного замыкания (единицы ампер). При таком токе замыкания напряжение прикосновения крайне невелико и отсутствует необходимость немедленного отключения возникшего повреждения. Кроме того, в сети IT безопасность может быть улучшена за счет применения УЗО.

Пожаробезопасность сетей IT самая высокая в сравнении с сетями TN-С, TN-S, TN-С-S, ТТ. Это объясняется наименьшей величиной тока однофазного замыкания (единицы ампер) и малой вероятностью возгорания.

Сети IT отличаются высокой бесперебойностью электроснабжения потребителей. Возникновение однофазного замыкания не требует немедленного отключения.

При возникновении однофазного замыкания на землю в сети IT напряжение на неповрежденных фазах увеличивается в 1,73 раза. В сети IT с изолированной нейтралью (без резистивного заземления) возможно возникновение дуговых перенапряжений высокой кратности.

Электромагнитные возмущения в сетях IT невелики, поскольку ток однофазного замыкания мал и не создает значительных падений напряжения на защитном проводнике.

Повреждения оборудования при возникновении однофазного замыкания в сетях IT очень малы. Для эксплуатации сети IT необходим квалифицированный персонал, способный быстро находить и устранять возникшее замыкание. Для определения поврежденного присоединения необходимо специальное устройство (в западных странах применяется генератор тока с частотой, отличной от промышленной, включаемый в нейтраль). Сети IT имеют ограничение на расширение сети, так как новые присоединения увеличивают ток однофазного замыкания.


ВЫВОДЫ

В качестве общих рекомендаций для выбора той или иной сети можно указать следующее: 1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений.

2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда».

3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок. 4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой.

Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT.

Резюмируя изложенное выше, отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.


Список литературы

1. Правила устройства электроустановок, 7-е издание.

2. Стандарт IEC 60364 «Electrical installation of buildings».

3. Ослон А.Б. Обеспечение электробезопасности в установках напряжением до 1000 В с заземленной нейтралью // Промышленная энергетика. – 1982. – № 1.

4. Ослон А.Б. Зануление как способ обеспечения электробезопасности // Промышленная энергетика. – 1981. – № 5

Что такое эффективно заземленная нейтраль и в чем ее преимущества


Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:


Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:


Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.


Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:


Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

  • В схемах с ЭЗН происходит стабилизация потенциала нейтрали и исключение вероятности возникновения устойчивых заземляющих дуг и последствий возникающих вследствие КЗ.
  • При КЗ на землю и переходных процессах, на изоляцию не воздействуют большие напряжения. Что дает возможность применить изоляцию с меньшим запасом прочности. А это в свою очередь дает значительный экономический эффект от применения менее дорогостоящей изоляции, что снижает эксплуатационные затраты сетей.
  • Применение быстродействующей селективной автоматики. Мгновенная работа защиты не позволяет усугубить возникшую неисправность.

Кроме очевидных достоинств, сети имеют и недостатки.

К ним относятся:

  • При любом КЗ на землю происходит обесточивание неисправного участка. При этом релейные системы защиты оборудуются средствами автоматического повторного включения. При отключении напряжения средствами автоматики, происходит нарушение бесперебойной подачи напряжения, что негативно сказывается на потребителях. А в некоторых случаях, ответственные потребители, вынуждены устанавливать устройства подачи бесперебойного напряжения.
  • В момент короткого замыкания возникает повышенный электромагнитный импульс. Он отрицательно влияет на средства связи. Их приходится дополнительно экранировать.
  • Применение сложных быстродействующих средств защиты.
  • Выход генератора из синхронизма при значительных токах короткого замыкания. Т.е. в момент КЗ происходит «притормаживание» генератора.
  • Значительные токи короткого замыкания могу вызвать повреждение кабеля с повреждением изоляции, механическое разрушение изоляторов на ЛЭП, повреждение железа статора генератора в случае пробоя изоляции на землю и т.п.
  • Возникает опасность поражения людей электрическим током вследствие повышенного и шагового напряжения при коротком замыкании на землю.
  • Изготовление заземляющих устройств. Отсутствие дублирующего заземления может оставить оборудование без защиты, если произойдет обрыв нейтрального провода.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Читайте также: