Может ли ток в нулевом проводе четырехпроводной цепи соединенной звездой быть равным нулю

Обновлено: 04.05.2024

Электрика на счёт тока ноля.

В стандарте содержится ряд требований и положений, существенно отличающихся от требований ПУЭ, действующих на момент выхода стандарта.

1. Изолированные провода допускается прокладывать только в трубах, коробах и на изоляторах. Не допускается прокладывать изолированные провода скрыто под штукатуркой, в бетоне, в кирпичной кладке, в пустотах строительных конструкций, а также открыто по поверхности стен и потолков, на лотках, на тросах и других конструкциях. В этом случае должны применяться изолированные провода с защитной оболочкой или кабели.

2. В одно- или трехфазных сетях сечение нулевого рабочего проводника и PEN- проводника (совмещенный нулевой рабочий и защитный проводник) должно быть равным сечению фазного проводника при его сечении 16 мм2 и ниже для проводников с медной жилой.

При больших сечениях фазных проводников допускается снижение сечения нулевого рабочего проводника при следующих условиях:

ожидаемый максимальный рабочий ток в нулевом проводнике не превышает его длительно допустимый ток;

нулевой защитный проводник имеет защиту от сверхтока.

При этом в стандарте сделано специальное замечание относительно тока в нулевом рабочем проводнике: нулевой проводник может иметь меньшее сечение по сравнению с сечением фазных проводников, если ожидаемый максимальный ток, включая гармоники, если они есть, в нулевом проводнике при нормальной эксплуатации не превышает величины допустимой нагрузки по току для уменьшенного сечения нулевого проводника.

Величина действующего значения тока в нулевом рабочем проводнике при таких нагрузках может достигать 1,7 от действующего значения тока в фазных проводниках.

К электроустановкам уникальных и других специальных зданий, не вошедших в вышеуказанный список, могут предъявляться дополнительные требования.

Кроме того (п. 7.1.38 ПУЭ), электрические сети, прокладываемые за непроходными подвесными потолками и в перегородках, рассматриваются как скрытые электропроводки, и их следует выполнять:

за потолками и в пустотах перегородок из горючих материалов в металлических трубах, обладающих локализационной способностью, и в закрытых коробах;

за потолками и в перегородках из негорючих материалов, в выполненных из негорючих материалов трубах и коробах, а также кабелями, не распространяющими горение. При этом должна быть обеспечена возможность замены проводов и кабелей. Под подвесными потолками из негорючих материалов понимают такие потолки, которые выполнены из негорючих материалов, при этом другие строительные конструкции, расположенные над подвесными потолками, включая междуэтажные перекрытия, также выполнены из негорючих материалов.

В приложении 3 приводится выдержка из ГОСТ Р 50571.15-97 с примерами монтажа электропроводок применительно к административным зданиям. Данные иллюстрации не дают точного описания изделий или практики монтажа, а рассматривают способ монтажа.

Применение гибких многопроволочных кабелей возможно на участках сети, подвергаемых реконструкции при работе или для подключения отдельных электроприемников.

Все соединения необходимо выполнять ответвительными сжимами или пружинными клеммами, при этом многопроволочные жилы должны быть обжаты с применением специальной оснастки.

В связи с тем, что сечение нулевого рабочего проводника должно быть рассчитано на ток, который может превышать фазный в 1,7 раза, а существующая номенклатура проводов и кабелей не всегда позволяет однозначно решить данную задачу, возможно выполнение трёхфазных электропроводок следующими способами:

1. При прокладке проводами сечение фазных и защитного проводников выполняется одним сечением, а нулевой рабочий (нейтральный) проводник выполняется сечением, рассчитанным на ток, больший фазного в 1,7 раза.

2. При прокладке кабелями возможны три варианта:

при применении трёхжильных кабелей жилы кабелей используются как фазные проводники, нулевой рабочий проводник выполняется проводом (или несколькими проводами) сечением, рассчитанным на ток, больший фазного в 1,7 раза, нулевой защитный

проводом сечением в соответствии с п. 7.1.45 ПУЭ, но не менее 50% сечения фазных проводников; вместо проводов воз можно применение кабелей с соответствующим числом жил и сечением;

при использовании четырёхжильных кабелей: три жилы — фазные проводники, нулевой рабочий проводник — также одна из жил кабеля, а нулевой защитный проводник — отдельный провод. При этом сечение кабеля определяется по рабочему току в нулевом рабочем проводнике, а сечение фазных жил получается завышенным (такое решение является наилучшим с технической точки зрения, но дороже прочих и не всегда выполнимо при больших токах);

при применении пятижильных кабелей с жилами одного сечения: три жилы — фазные проводники, в качестве нулевого рабочего проводника используются две объединённые жилы кабеля, а для нулевого защитного — отдельный провод. При этом сечение кабеля определяется током фазы (такое решение также является наилучшим с технической точки зрения, однако довольно дорого; имеются также сложности с тем, чтобы выполнить госзаказ, а также и с поставкой кабелей).

При больших мощностях возможна прокладка фазных, нулевых рабочих и защитных проводников двумя или более параллельными кабелями или проводами. Все кабели и провода, относящиеся к одной линии, должны прокладываться по одной трассе.

Источник информации: "Электроснабжение компьютерных и телекомуникационных систем" Автор: А. Ю. Воробьев -— известный специалист в области систем бесперебойного и гарантированного электроснабжения. Руководил созданием и эксплуатацией крупных систем бесперебойного электроснабжения Центрального банка РФ в Москве и других регионах России. Автор проектов электроснабжения интеллектуальных зданий компаний ЮКОС, ЛУКОЙЛ, АЭРОФЛОТ, МПС РФ и ряда других. Автор многих публикаций по проблемам качества электрической энергии, структур и принципов построения современных систем электроснабжения.

Помогите с тестом (Трехфазный ток)

Вопрос номер ОДИН:
Нагрузка соединена по схеме четырехпроводной цепи. Будут ли меняться фазные напряжения на нагрузке при обрыве нулевого провода: 1) симметричной нагрузки 2) несимметричной нагрузки?
1) да 2) нет
1) да 2) да
1) нет 2) нет
1) нет 2)да

Вопрос номер ДВА:
При соединении симметричной трёхфазной нагрузки "звездой" с нейтральным проводом нулевого сопротивления .
линейные и фазные напряжения равны
линейные напряжения опережают соответствующие фазные на угол 30 градусов
линейные токи в 2 раза больше фазных
линейные токи в 2 раза меньше фазных
линейные и фазные напряжения совпадают по фазе

Вопрос номер три:
При соединении трёхфазной нагрузки по схеме "звезда" при наличии нейтрального провода с нулевым сопротивлением .
фазные токи становятся одинаковыми по модулю
фазные токи оказываются сдвинутыми на угол 120 градусов независимо от нагрузки
активные мощности во всех фазах оказываются одинаковыми
напряжения на фазах нагрузки не зависит от величины и характера сопротивлений фаз
полные мощности во всех фазах оказываются одинаковыми

Вопрос номер четыре:
Угол сдвига между тремя синусоидальными ЭДС, образующими трехфазную симметричную систему составляет:
150 градусов
120 градусов
240 градусов
90 градусов
(тут по-моему должно быть 120 градусов)

Вопрос номер пять:
Чему равен ток в нулевом проводе в симметричной трёхфазной цепи при соединении нагрузки в звезду?
Номинальному току одной фазы
Нулю
Сумме номинальных токов двух фаз
Сумме номинальных токов трёх фаз

Вопрос номер шесть:
В трехфазную сеть с линейным напряжением 380 В включают трехфазный двигатель, каждая из обмоток которого рассчитана на220 В. Как следует соединить обмотки двигателя? Можно треугольником, можно звездой
Двигатель нельзя включать в эту сеть
Звездой
Треугольником

Вопрос номер Семь:
Линейный ток равен 2,2 А .Рассчитать фазный ток, если симметричная нагрузка соединена звездой. 2,2 А
1,27 А
3,8 А
2,5 Авопрос номер восемь:

В трехфазной цепи линейное напряжение 220 В, линейный ток 2А, активная мощность 380 Вт. Найти коэффициент мощности.

вопрос номер девять:

В симметричной трехфазной цепи линейный ток 2,2 А. Рассчитать фазный ток, если нагрузка соединена треугольником. 2,2 А
1,27 А
3,8 А
2,5 А

вопрос номер десять:
Может ли ток в нулевом проводе четырехпроводной цепи, соединенной звездой быть равным нулю? Может
Не может
Всегда равен нулю
Никогда не равен нулю

НАЗНАЧЕНИЕ НУЛЕВОГО ПРОВОДА В ЧЕТЫРЕХПРОВОДНОЙ ЦЕПИ

Ток в нулевом проводе равен нулю при строго симметричной на­грузке. Если нагрузка несимметричная, т. е. , то нерав­ными будут и токи . Тогда на основе построения, ана­логичного приведенному на рис.64, нетрудно убедиться, что при симметрии фазных напряжений ток в нулевом проводе не будет равен нулю: (за исключением некоторых частных случаев).

Итак, при симметрии фазных напряжений и несимметрии нагрузки в нулевом проводе есть ток. Представим себе, что нулевой провод оборвался, При этом токи должны измениться так, чтобы их векторная сумма оказалась рав­ной нулю:

Но при заданных сопротивлениях нагрузки токи могут измениться только за счет изменения фазных напряжений.

Следовательно, обрыв нулевого провода в общем случае приводит к изменению фазных напряжении, симметричные фазные напряжения становятся несимметричными.

Рассмотрим топографическую векторную диаграмму, представленную на рис. 69.

Для простоты пренебрежем падением на­пряжения внутри обмоток генератора и проводах линии и будем считать, что напряжения на нагрузке равны э.д.с. генератора.

При несимметрии нагрузки и отсутствии нулевого провода фазные напряжения будут различными и точка О' займет на векторной диаграмме положение, отличное от точки О.

Включим теперь нулевой провод с пренебрежимо малым сопро­тивлением, как показано на рис. 63. При этом потенциалы точек О и О' окажутся одинаковыми. Это значит, что точки О и О' на топогра­фической диаграмме рис. 69 должны быть совмещены.

Точка О на топографической диаграмме не может изменить своего положения, так как симметрия э.д.с. обеспечивается конструкцией генератора. Следовательно, точка О' перейдет в точку О, т.е. фазные напряжения на нагрузке станут симметричными.

Таким образом, нулевой провод в четырехпроводной цепи пред­назначен для обеспечения симметрии фазных напряжений при несим­метричной нагрузке.

Несимметрия фазных напряжений недопустима, так как приводит к нарушению нормальной работы потребителей.

4.5. СОЕДИНЕНИЕ НАГРУЗКИ ТРЕУГОЛЬНИКОМ. ВЕКТОРНЫЕ

ДИАГРАММЫ, СООТНОШЕНИЯ МЕЖДУ ФАЗНЫМИ И ЛИНЕЙНЫМИ ТОКАМИ И НАПРЯЖЕНИЯМИ


Рис. 70

Треугольником могут быть соединены как обмотки генератора, так и фазы нагрузки. При соединении треугольником фазные и ли­нейные напряжения равны: = (рис. 70).

Применяя первый закон Кирхгофа к узлам А, В и С, найдем связь между линейными и фазными токами . Для векторов токов справедливы соотношения:


Рис. 71

Этим уравнениям удовлетворяют векторные диаграммы, пред­ставленные на рис. 71.

При симметричной нагрузке

Из треугольника фазных и линейных токов (рис. 71) находим

Таким образом, при соединении треугольником

4.6. АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ

ТРЕХФАЗНОИ ЦЕПИ. КОЭФФИЦИЕНТ МОЩНОСТИ

Активная мощность трехфазной цепи равна сумме активных мощно­стей ее фаз:

Реактивная мощность трехфазной цепи равна сумме реактивных мощностей ее фаз:

Очевидно, что в симметричной трехфазной цепи

Мощность одной фазы определяется по формулам для однофазной цепи. Таким образом,

Эти формулы можно использовать для подсчета мощности симмет­ричной трехфазной цепи. Однако измерения фазных напряжений и токов связаны с некоторыми трудностями, так как необходим доступ к нулевой точке. Проще измерить линейные токи и напряжения непо­средственно на клеммах щита питания. Поэтому формулы мощности трехфазной системы записывают через линейные токи и напряжения.

При соединении звездой

При соединении треугольником

Таким образом, в обоих случаях активная мощность симметрич­ной цепи:

Аналогично реактивная мощность

Коэффициент мощности симметричной трехфазной цепи находят как отношение активной и полной мощностей:

Все эти формулы точны для симметричных цепей. Реальные цепи рассчитывают таким образом, чтобы их нагрузка была близка к сим­метричной, поэтому приведенные формулы имеют широкое приме­нение.

ТЕСТЫ ПО ГЛАВЕ 4

ТЕСТ 4.1 Принцип получения трехфазной э.д.с. Основные схемы соединений трехфазных цепей

Вопросы Варианты ответа Выбран вариант
1.При вращении рамок против часовой стрелки в них индуктируются э.д.с. eA = Em sinwt; eB = sin (wt – 120°); eC = sin (wt + 120°). Какие э.д.с. будут индуктироваться при вращении рамок по часовой стрелке? Те же самые
Знаки начальных фаз изменятся на противоположные
Направления векторов э.д.с. в рамках изменятся на противоположные
2.По ходу вращения за вектором ЕА следует вектор ЕВ, за вектором ЕВ – вектор ЕС. Изменится ли порядок следования векторов (порядок чередования фаз), если изменить направление вращения рамок? Изменится
Не изменится
3.Какие характеристики изменятся, если при прочих равных условиях увеличить скорость вращения рамок? Частота и начальные фазы
Частота и амплитуды
Амплитуды и начальные фазы
4.Сколько соединительных проводов подходит к генератору, обмотки которого образуют звезду?
3 или 4
5.С какой точкой соединяется начало первой обмотки при соединении обмоток генератора треугольником? С началом второй
С концом второй
С концом третьей

ТЕСТ 4.2 Соединение трехфазной цепи звездой. Четырехпроводная и трехпроводная цепи

Помогите с тестом (Трехфазный ток)

Вопрос номер ОДИН:
Нагрузка соединена по схеме четырехпроводной цепи. Будут ли меняться фазные напряжения на нагрузке при обрыве нулевого провода: 1) симметричной нагрузки 2) несимметричной нагрузки?
1) да 2) нет
1) да 2) да
1) нет 2) нет
1) нет 2)да

Вопрос номер ДВА:
При соединении симметричной трёхфазной нагрузки "звездой" с нейтральным проводом нулевого сопротивления .
линейные и фазные напряжения равны
линейные напряжения опережают соответствующие фазные на угол 30 градусов
линейные токи в 2 раза больше фазных
линейные токи в 2 раза меньше фазных
линейные и фазные напряжения совпадают по фазе

Вопрос номер три:
При соединении трёхфазной нагрузки по схеме "звезда" при наличии нейтрального провода с нулевым сопротивлением .
фазные токи становятся одинаковыми по модулю
фазные токи оказываются сдвинутыми на угол 120 градусов независимо от нагрузки
активные мощности во всех фазах оказываются одинаковыми
напряжения на фазах нагрузки не зависит от величины и характера сопротивлений фаз
полные мощности во всех фазах оказываются одинаковыми

Вопрос номер четыре:
Угол сдвига между тремя синусоидальными ЭДС, образующими трехфазную симметричную систему составляет:
150 градусов
120 градусов
240 градусов
90 градусов
(тут по-моему должно быть 120 градусов)

Вопрос номер пять:
Чему равен ток в нулевом проводе в симметричной трёхфазной цепи при соединении нагрузки в звезду?
Номинальному току одной фазы
Нулю
Сумме номинальных токов двух фаз
Сумме номинальных токов трёх фаз

Вопрос номер шесть:
В трехфазную сеть с линейным напряжением 380 В включают трехфазный двигатель, каждая из обмоток которого рассчитана на220 В. Как следует соединить обмотки двигателя? Можно треугольником, можно звездой
Двигатель нельзя включать в эту сеть
Звездой
Треугольником

Вопрос номер Семь:
Линейный ток равен 2,2 А .Рассчитать фазный ток, если симметричная нагрузка соединена звездой. 2,2 А
1,27 А
3,8 А
2,5 Авопрос номер восемь:

В трехфазной цепи линейное напряжение 220 В, линейный ток 2А, активная мощность 380 Вт. Найти коэффициент мощности.


вопрос номер девять:

В симметричной трехфазной цепи линейный ток 2,2 А. Рассчитать фазный ток, если нагрузка соединена треугольником. 2,2 А
1,27 А
3,8 А
2,5 А

вопрос номер десять:
Может ли ток в нулевом проводе четырехпроводной цепи, соединенной звездой быть равным нулю? Может
Не может
Всегда равен нулю
Никогда не равен нулю


Анна Берне

Вопрос номер ОДИН 1) нет 2)да
Вопрос номер ДВА: линейные напряжения опережают соответствующие фазные на угол 30 градусов
Вопрос номер три: напряжения на фазах нагрузки не зависит от величины и характера сопротивлений фаз
Вопрос номер четыре: 120 градусов
Вопрос номер пять: Нулю
Вопрос номер шесть: Звездой
Вопрос номер Семь: 2,2 А
вопрос номер восемь: 1
вопрос номер девять: 1,27 А
вопрос номер десять: Может

Соединение в звезду без нулевого провода

Рассмотрим случай, когда к трехфазной цепи, соединенной звездой без нулевого провода, приложена несимметричная система линейных напряжений , , (рис. 6.29). Требуется определить токи , ,


Рис. 6.29


. Очевидно, для их определения достаточно знать фазные напряжения нагрузки. Чтобы их определить, воспользуемся законами Кирхгофа:


;
(6.4)


из которых следует:


(6.5)

(6.6)

По закону Ома с учетом уравнений (6.4), (6.5) фазные токи:


(6.7)

Подставив значения токов из (6.7) в уравнение (6.4), получим уравнение с одним неизвестным:


,

из которого находим


.
(6.8)

Аналогичным образом можно получить другие фазные напряжения:


;
,
(6.9)

хотя их проще найти по формулам (6.3) и (6.4). По фазным напряжениям легко определить токи.

Нужно отметить, что линейные напряжения задают обычно только по величине (действующие значения). Для определения комплексных значений в этом случае треугольник линейных напряжений располагают на комплексной плоскости таким образом, чтобы один вектор был направлен по оси действительных чисел. После этого из анализа геометрии топографической векторной диаграммы определяют начальные фазы других линейных напряжений.


На топографической диаграмме должно быть указано положение нейтральной точки 0'. Ее положение может быть определено по значению одного из фазных напряжений, например . Рассмотрим некоторые частные случаи.

1. Обрыв фазы в звезде без нулевого провода (рис. 6.30, а). В данном случае положение нулевой точки не определяется генератором, поэтому целесообразно вначале построить диаграмму токов.

Поскольку , то . Фактически сопротивления и обтекаются одним током, но в соответствии с указанными положительными направлениями следует считать, что токи и находятся в противофазе. Их сумма равна нулю (диаграмма на рис. 6.30 , б). При этом


.


а)

б)

в)
Рис. 6.30

Векторная диаграмма напряжений (рис. 6.30 , в)строится по известным линейным напряжениям и заданным проводимостям фаз. Если предположить, что или , то напряжения на фазах нагрузки составляет:


;


.

Напряжение на разомкнутых зажимах


.

2. Рассмотрим другой пример, когда обрыв в фазе C (рис. 6.31,а), а нагрузка фаз имеет разный характер (активное сопротивление и емкость), причем r = xC = 1 Ом. Линейное напряжение симметричного источника В. Требуется определить фазные напряжения , , .


а)

б)
Рис. 6.31

Примем, что вектор направлен по оси действительных чисел, то есть В, тогда В, В. Проводимости ветвей , , . Согласно формулам (6.6) и (6.7) фазные напряжения определяются выражениями:


В;


В;


Напряжения можно определить из анализа геометрии топографической векторной диаграммы напряжений. Рассчитав сначала токи


А,

построим из точки 0' на плоскости векторы:


В;


В.


Затем строим векторы линейных напряжений. Напряжение определяется как вектор, проведенный из точки 0' в точку C. Его аргумент равен 90°, а модуль – сумме высот верхнего и нижнего треугольников.

3. Короткое замыкание в звезде без нулевого провода. Сначала рассмотрим цепь на рис. 6.32 и определим как изменятся токи симметричной звезды без нулевого провода при коротком замыкании фазы B0', если в симметричном режиме ток был равен I .


Из схемы видно, что при коротком замыкании фазы B потенциал точки B симметричного генератора подается в точку 0' нагрузки. Напряжения других фаз A и B, а также токи в этих фазах увеличиваются в
раз:
. Ток короткого замыкания фазы можно определить по векторной диаграмме.
Рис. 6.32

На диаграмме напряжений (рис. 6.33, а) точка 0' смещается в точку B, положение которой жестко задано симметричным источником. Угол между фазными напряжениями и равен 60º. Поскольку углы сдвига в фазах одинаковы, между токами и сохраняется тот же угол 60º (рис. 6.33, б). При сложении токов по первому закону Кирхгофа



а)

б)
Рис. 6.33

вектор оказывается лежащим против угла 120º, поэтому он в раз больше двух других фазных токов:


.


a)

б)

в)
Рис. 6.34

В несимметричной схеме (рис. 6.34, а) диаграмма напряжений (рис. 6.34, б) сохраняется, но соотношение токов изменится (рис. 6.34, в), при этом ток короткого замыкания оказывается равным по величине токам двух неповрежденных фаз.

Соединение треугольником

Необходимо заметить, что обмотки генераторов не соединяются в треугольник, так как при таком соединении даже незначительная несимметрия фазных э.д.с. приводит к появлению значительных уравнительных токов, что не допустимо по условиям эксплуатации.

В качестве источников, фазные э.д.с. которых соединены в треугольник, можно использовать трехфазный трансформатор с вторичной обмоткой, соединенной в треугольник. Трансформаторы в трехфазных цепях могут иметь не только одинаковые, но и разные схемы соединений магнитосвязанных обмоток.

Разные схемы соединений позволяют согласовать между собой трехфазные системы с различными по величине или (и) фазе напряжениями.

Трехфазная нагрузка, присоединенная к сети, также может быть соединена в треугольник. При несимметричных режимах работы приемника, соединенного в треугольник, фазные и соответственно линейные токи получаются неравными, однако при любой несимметрии сумма комплексных значений линейных токов равна нулю:





.

Задача расчета цепи при несимметричной нагрузке, соединенной в треугольник, решается просто, поскольку по известным линейным напряжениям можно найти фазные токи. После этого по первому закону Кирхгофа определяют линейные токи. Рассмотрим ряд частных случаев.

1.Обрыв фазы в треугольнике (рис. 6.35, а). Топографическая диаграмма напряжений в этом случае (рис. 6.35, б) не деформирована. Структура векторной диаграммы токов точно такая же, как и в симметричном


а)

б)

в)

г)
Рис.6.35

режиме, деформирована лишь форма диаграммы. Из одной точки строится звезда фазных токов (рис. 6.35, в и г). Так как , можно считать, что конец и начало этого вектора находятся в одной точке, а именно в точке, где начинаются все фазные токи. Концы векторов этих фазных токов замыкаются линейными токами , и , направление ориентации которых известно (как в симметричном режиме). Ток направлен во всех вариантах (рис. 6.35, в и г) из конца вектора в конец вектора , ток – из конца вектора в точку расхождения фазных токов и , поскольку в этой точке начинается и заканчивается нулевой вектор тока . Из этой же точки начинается вектор , направленный в конец вектора . Комплексы токов и находятся в противофазе, хотя фактически это один и тот же ток. Это является результатом специфического выбора направлений токов в треугольнике. Токи и физически одинаковы (см. схему на рис. 6.35, а) и изображаются одинаковыми векторами, так как совпадают условные положительные направления токов.


На рис. 6.35, в принято , тогда величина


.


Тупой угол треугольника равен 120°, следовательно, .

На рис. 6.35, г, когда


,


имеем правильный треугольник токов, все токи по величине равны .


а)

б)

в)

г)
Рис. 6.36

На рис. 6.36, в в таком порядке построены диаграммы для активной нагрузки . Здесь точка c лежит на середине вектора , так как . Величина равна высоте правильного треугольника генераторных напряжений. Величина в два раза меньше тока , линейные токи составляют . Один и тот же ток представлен на схеме цепи двумя условными положительными направлениями токов, соответственно на диаграмме рис. 6.36, в им соответствуют два вектора ( и ), которые находятся в противофазе.


а)

б)

в)

г)
Рис. 6.37

На рис. 6.37, г построены диаграммы для случая, когда


.

3. Короткое замыкание фазы в примыкающем линейном проводе. Положение всех точек схемы (рис. 6.37 , а) на топографической диаграмме задается напряжениями генератора (рис. 6.37 , б). Причем потенциалы точек C, c, a одинаковы.

Диаграмма токов (рис. 6.37 , в) строится с соблюдением обычных правил, начиная с токов , , , которые могут быть рассчитаны и ориентированы по соответствующим напряжениям. Векторы и строятся из одной точки, а ток – так, чтобы его конец совпадал с концом вектора . Начало вектора определит положение конца вектора , а начало этого вектора совпадает с началом векторов и . Затем структура диаграммы дополняется недостающими токами и . Величины , и можно определить из геометрии диаграммы.

На рис. 6.37, в построена диаграмма токов для . Здесь , . Величина может быть рассчитана по теореме косинусов или определяется длиной вектора диаграммы в соответствующем масштабе.

Рассмотрим случай смешанной нагрузки. Пусть , , при . Из диаграммы на рис. 6.37, г, построенной в том же порядке, следует интересное заключение: вектор , находящийся между концами векторов и , равен нулю. Все остальные токи, кроме тока , по величине одинаковы:


.


Ток короткозамкнутой фазы находят по теореме косинусов. 4. Определить ток
при обрыве линии
в заданной схеме (рис. 6.38) с симметричным источником, если задано:
;
Ом;
. При принятых условных положительных направлениях по закону Ома
Рис. 6.38


А, а

А.

По первому закону Кирхгофа находим токи:


А.


А.


Рис. 6.39

Из диаграммы (рис. 6.39) следует:




;
В. 5. Определить ток при обрыве фазы в заданной схеме (рис. 6.40) с симметричным источником, если задано:
. По закону Ома находим токи:
Рис. 6.40

А;

А.

По первому закону Кирхгофа


,


А.


Рис. 6.41

Векторная диаграмма напряжений и токов показана на рис. 6.41.

В приведенных примерах трехфазная цепь рассчитывается, как обыкновенная разветвленная схема. Особенность лишь в том, что используются общепринятые для трехфазных цепей условные положительные направления токов. Этим направлениям соответствует и структура векторных диаграмм.

Как вычислить ток в нулевом проводе при несимметричной нагрузке

Самый простой способ – его измерить (есть такой прибор. амперметр). Но бывают случаи, когда этот ток необходимо вычислить. Для этого существуют математические формулы.

Формулы вычисления тока в нулевом проводе. Рисунок из интернета Формулы вычисления тока в нулевом проводе. Рисунок из интернета

Но есть способ намного проще, измерить этот ток не с помощью амперметра, а с помощью линейки.

На практике такие задачи не возникают (зачем измерять то, что нас не интересует?). Но в теории этот вопрос может возникнуть, значит – нужно на него ответить.

Как узнать ток в фазном проводе

Очень просто. Для этого есть закон Ома.

формула закона Ома формула закона Ома

Допустим, что нам удалось вычислить ток в каждом из фазных проводов по этой очень простой формуле. Но вопрос остался, какой ток будет протекать в нулевом проводе?

От этого зависит, какое сечение проводников должен иметь кабель для подключения нагрузки.

Немного теории

В 3-фазной сети фазы сдвинуты друг от друга на 120 градусов.

В эту окружность можно вписать треугольник, угол между сторонами треугольника будет = 60 градусов.

А по сторонам треугольника можно начертить (при помощи линейки) параллельные отрезки, длинной, равной токам в каждой из фаз. Для этого обозначим точку – начало координат.

точка начала координат точка начала координат

Допустим, что токи будут в фазе А = 6А, в фазе В = 9А, в фазе С = 5А.

ток в проводе А ток в проводе А ток в проводе В ток в проводе В ток в проводе С ток в проводе С

Треугольник у нас получился не замкнутый. Теперь берём линейку, и измеряем ток, который будет протекать в нулевом проводе.

ток в нулевом проводе ток в нулевом проводе

На рисунке видно, что нужно измерить расстояние между началом координат и окончанием отрезка С. При токах в фазе А = 6А, в фазе В = 9А, в фазе С = 5А, ток в нулевом проводе будет = 3,59А.

Вывод

При симметричной нагрузке (ток А = ток В = ток С) ток в нулевом проводе буде отсутствовать, или = 0 (отсюда и провод называется «нулевой»).

При симметричной нагрузке при обрыве одной фазы ток в нулевом проводе будет равен наибольшему току в одной из оставшихся необорванных фазах.

При симметричной нагрузке при обрыве двух фаз ток в нулевом проводе будет равен току в необорванной фазе.

При несимметричной нагрузке ток в нулевом проводе будет меньше, чем самый большой ток одной из фаз.

Хочу обратить Ваше внимание на то, что мой канал не носит образовательного характера , здесь я просто делюсь с Вами своими мыслями и опытом, поэтому, моё мнение не обязательно должно совпадать с Вашим. Образование нужно получать в образовательном учреждении.

До следующих встреч.

Если статья была для Вас полезной или интересной , не забудьте поставить лайк и подписаться на мой канал.

Задавайте вопросы и оставляйте комментарии, вступайте в дискуссию.

Почему «горят» нули?

С таким понятием, как «отгорание нуля», так или иначе сталкивались многие. Кто не сталкивался, тот слышал такие слова. Эта тема периодически поднимается на тематических порталах и форумах, а по данным «Yandex Wordstat» об этом спрашивают в среднем 500 раз в месяц. Поэтому мы решили затронуть тему отгорания нуля в трёхфазной сети.

Что это такое?

Для начала разберем, что такое фаза и ноль с точки зрения потребителя. В однофазной цепи фазой называется провод, на котором находится какой-либо потенциал, а нулем — провод, на котором его нет, а, правильнее сказать, провод потенциал, на котором равен потенциалу земли. Это справедливо в сетях с глухозаземленной нейтралью, собственно, от которых мы и получаем заветные 220 вольт в наши дома.

Есть и другое определение: фаза – это провод, по которому ток приходит к потребителю, а ноль – это второй провод, по которому ток возвращается обратно к питающему трансформатору или генератору.

В однофазной сети нет причин отгорать только нулю или фазе, поскольку они находятся в равных условиях. Но что мы имеем на практике? Однофазных сетей нет как класса, все дома и квартиры подключаются к трёхфазной сети, поэтому рассмотрим трёхфазную нагрузку.

На приведенном рисунке вы видите трёхфазную нагрузку, подключенную по схеме «звезда», где в одной точке соединен один из выводов нагрузки в каждой фазе. Токи в каждой из фаз сдвинуты друг относительно друга на 120 градусов или на треть периода. В идеальном случае, если выполняется условие R1=R2=R3 токи компенсируют друг друга, т.е. перетекают только из фазы в фазу, и в нулевом проводе ток равен нулю .

Нагрузка, в которой выполняется условие Z 1 = Z2 = Z3 называется симметричной . (Z — комплексное сопротивление нагрузки)

Такой нагрузкой может быть: трёхфазный электродвигатель, трёхфазный электрокотёл, в котором установлено одинаковое количество одинаковых по мощности ТЭНов и прочее. Так как ток через нулевой провод не протекает, такая нагрузка может подключаться вообще без него.

Но симметричная нагрузка, чаще всего, это какие-то отдельные системы или устройства. Так как дома и квартиры также подключаются к трёхфазной сети, то нагрузка в ней никак не может быть симметричной, потому что никто не может контролировать: в какой квартире, когда и сколько включится электроприборов… Соответственно в каждый момент времени каждый из потребителей потребляет разный ток.

Такая нагрузка в трёхфазной сети, когда Z1≠Z2≠Z3, называется несимметричной , и векторная сумма токов каждой из фаз в средней точке не равна нулю. Поэтому возникает ток в нулевом проводе, или как его еще называют – уравнивающий или компенсирующий ток.

Величина уравнивающего тока зависит как от разницы токов по фазам, так и от характера его потребления (индуктивный или емкостной), т.е. от сдвига фаз токов и угла между лучами векторной диаграммы и обычно он меньше тока самой нагруженной из фаз.

Стоит отметить и то, что раз ток в нулевом проводе протекает только тогда, когда нагрузка несимметричная, и этот ток почти всегда меньше фазного тока, то и в четырёхжильных кабелях сечение нулевой жилы часто бывает меньшим чем сечения фазных жил.

«И что с этого? Почему отгорит именно ноль, если ток в нем всё равно меньше чем в фазе?» — вполне логичный и правильный вопрос.

Дело в том, что в цепях с простой нагрузкой, вроде нагревательных элементов и лампочек накаливания всё именно так. Но сегодня практически в каждом бытовом приборе, будь то компьютер, телевизор или даже привычная всем светодиодная лампа, используется импульсный источник питания. Такое положение дел обостряется с начала 90-х годов, когда импульсные источники питания стали применяться всё чаще и чаще.

Ток, который потребляет из сети простой импульсный источник питания неравномерный, то есть он не повторяет по форме синусоиду, характер потребления здесь также импульсный и, если упростить, во многих случаях приходится на область периода синусоиды в районе амплитудного значения.

Нагрузку ток которой по форме отличается от формы питающего напряжения (в нашем случае синусоиды) называют нелинейной .

Примеры нелинейных нагрузок, из-за которых может возрасти ток в нулевом проводнике (если в составе их источников питания корректора коэффициента мощности): газоразрядные лампы, светодиодные лампы, дуговые и индукционные печи, трансформаторы, работающие в режиме насыщения, компьютеры, мониторы, оргтехника, телевизоры, инверторные кондиционеры, источники бесперебойного питания, микроволновые печи, импульсные блоки питания, инверторы, преобразователи частоты, электродвигатели с регуляторами скорости вращения (инверторами).

Почему так происходит? Так как форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды, то её можно представить в виде суммы, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….) это называется гармониками, а с ростом частоты их амплитуда уменьшается. Влияние на амплитуду тока нелинейной нагрузки вносят гармоники, кратные третьей, остальные компенсируются.

В результате такого потребления, ток в нейтральной средней точке не компенсируется, и как следствие возрастает ток в нулевом проводе к тому же он суммируется с и без того имеющимся уравнивающим током до и больше наибольшего значения тока в трёх фазах, что и формирует благоприятные условия для отгорания нуля, особенно если по стояку проложен кабель, в котором нулевой провод имеет меньшее сечение.

Из-за влияния гармоник действующее значение тока в нейтральном проводе может быть больше, чем в фазных. Это может быть даже в том случае, если токи в фазных проводах одинаковы, не смотря на сказанное выше о симметричной нагрузке. Из-за влияния гармоник действующее значение тока в нейтральном проводе может быть больше, чем в фазных. Это может быть даже в том случае, если токи в фазных проводах одинаковы, не смотря на сказанное выше о симметричной нагрузке.

Одно из основных решений рассмотренной проблемы — это использовать корректор коэффициента мощности в схемотехнике импульсных блоков питания . Корректор коэффициента мощности ( ККМ ), или как еще их называют в англоязычных источниках Power Factor Corrector ( PFC ) — это отдельный каскад в схеме блока питания. Выбор схемы и необходимость установки ККМ зависит от потребляемой устройством мощности и его конечной стоимости, например, в компьютерных блоках питания среднего ценового сегмента уже можно встретить активные ККМ, особенно в мощных моделях (550, 600 и более ватт) тогда как в не во всех бюджетных блоках питания можно НЕ найти не то чтобы корректор коэффициента мощности, но и элементарный фильтр электромагнитных помех на входе.

Есть и другие способы решения этой проблемы, например, использования разделительных понижающих трансформаторов, первичная обмотка которых подключается к линейному напряжению трёхфазной сети или трёхфазные online источники бесперебойного питания, но такие решения возможны лишь для питания предприятий с большим числом компьютерной техники и в данном контексте неуместны.

Также при проектировании установки следует выбирать сечение проводов не по фазному току, а согласно ГОСТ Р 50571.5.52-2011:

523.6.2 Если нейтральный проводник пропускает ток, являющийся следствием дисбаланса фазных токов , то увеличение тепловыделения в нейтральном проводнике компенсируется его соответствующим уменьшением в одном или нескольких фазных проводниках. В этом случае сечение всех проводников выбирается по наиболее нагруженному проводу .
Во всех случаях сечение нейтрального проводника должно соответствовать указаниям 523.1.

Последствия

В результате отгорания нуля мы получаем трёхфазную цепь, где несимметричная нагрузка соединена по схеме звезды, но поскольку у нас нет нулевого — уравнивающий ток не протекает. В результате у нас изменяется напряжение на каждой из нагрузки, поскольку фактически каждый из потребителей включается последовательно на линейное напряжение.

И если представить каждую квартиру в виде эквивалентного сопротивления, вычисленного по потребляемому току, то, согласно закона Ома, на том элементе, где больше сопротивление будет большее падение напряжения. Это называется перекосом фаз.

Когда ток в нулевом проводе больше чем в фазном

Многие скажут, что такого не может быть, но на практике такое вполне возможно.

В 3-фазных сетях нулевой провод может отсутствовать, если нагрузка симметричная, или его сечение должно быть равно сечению фазных проводников, если нагрузка несимметричная.

Если фазные проводники имеют сечение больше, чем 16 мм2 по меди и 25 мм2 по алюминию (в 3-фазной сети), — сечение нулевого проводника должно быть НЕ МЕНЕЕ 50% сечения фазных проводников.

В частном доме для отопления многие применяют электрические котлы, подключение такого котла мы и рассмотрим.

Монтажная схема электрического котла отопления Монтажная схема электрического котла отопления

В этой схеме ТЭНы могут быть включены как все вместе одновременно, так и по отдельности.

Блок управления электрокотлом может располагаться на каком-то расстоянии от электрокотла, для соединения блока управления с котлом нужно выбрать сечение кабеля.

Котёл имеет мощность 6 кВт.

Подключение к 3-фазной сети

Для наглядности схему упростим и подключим электрокотёл к 3-фазной сети.

По тем проводникам фазы, которые подключены, будет протекать ток = 9А, а в нулевом проводе ток будет или = 0А (если подключены все три ТЕНа), или 9А, если подключен один или два ТЭНа. Для подключения подойдёт кабель 4х1,5 (или 5х1,5, пятая жила для заземления)

Подключение к 1-фазной сети

Теперь подключим этот электрокотёл к 1-фазной сети, и посмотрим, что получится.

По тем проводникам фазы, которые подключены, будет протекать ток = 9А, а в нулевом проводе ток будет = 9А, 18А или 27А, в зависимости от того, сколько ТЭНов подключено.

В этом случае нужно применить кабель сечением 4 квадрата, или три кабеля сечением 1,5 квадрата, как на рисунке ниже.

Хочу обратить Ваше внимание на то, что мой канал не носит образовательного характера , здесь я просто делюсь с Вами своими мыслями и опытом, поэтому, моё мнение не обязательно должно совпадать с Вашим. Образование нужно получать в образовательном учреждении.

До следующих встреч.

Если статья была для Вас полезной или интересной , не забудьте поставить лайк и подписаться на мой канал.

Задавайте вопросы и оставляйте комментарии, вступайте в дискуссию.

Читайте также: