Мощный стабилизатор тока и напряжения на tl494 своими руками

Обновлено: 01.05.2024

Мощный ШИМ регулятор своими руками


Приветствую, Самоделкины!
Совсем недавно Роману, автору YouTube канала «Open Frime TV», понадобился мощный ШИМ-регулятор. Начались поиски и проверки разных схем. В итоге он остановился на данном варианте:


Автор уже не однократно снимал ролики про шим-регуляторы, но на момент их создания не особо разбирался в схемотехнике, да и не было оборудования для того, чтобы полностью протестировать получившиеся устройства.


Теперь же у автора появился осциллограф, с помощью которого можно увидеть все косяки.


Давайте разберемся в ошибках, чтобы в дальнейшем их не допускать. Самая важная ошибка - это непонимание принципа работы полевого транзистора. Те, кто не первый год занимается электроникой знают, что для открытия полевика нужно не только напряжение, но некий ток.


Это же касается и закрытия. Если этого тока недостаточно, то транзистор будет медленнее открываться и, следовательно, сильнее греться.


Нагрев мосфетов в ключевом режиме появляется именно в моменты переключения, и чем быстрее мы будем коммутировать транзистор, тем меньше он будет нагреваться. Большинство новичков этого не знают и поэтому, в некоторых схемах, силовой транзистор довольно сильно нагревается. У автора было точно также и на тот момент ему было непонятно почему так происходит.


Думаю, все кто искал схему шим-регулятора, натыкались на вариант с микросхемой ne555 и кучей транзисторов, но стоит заглянуть в ее datasheet и мы увидим максимальный выходной ток 200 мА.


Этого тока явно недостаточно для корректной работы устройства. Как же тогда собрать отличный шим-регулятор и уменьшить его нагрев? Все очень просто, необходимо на выход управляющей микросхемы поставить драйвер, который сможет обеспечить достаточный ток для открытия и закрытия мосфетов.


На осциллограммах четко видно, как переключается транзистор без драйвера и когда он есть. Тут даже невооруженным взглядом можно увидеть преимущества драйвера.


Теперь давайте взглянем на схему устройства:


Как видим, в качестве задающий микросхемы, автор применил TL494. Почему именно ее? Да потому, что она очень популярна и легка в настройке.


Автор также пробовал собирать ШИМ на Uc3843, но там есть свои особенности, которые затрудняют сборку. Делал и на 555-ой, но больше всего приглянулась именно 494-ая. В нее можно без особых проблем добавить ограничитель тока, но это уже будете делать под ваши нужды.


Теперь пару слов про работу схемы. TL494 генерирует прямоугольные импульсы, частота которых задается с помощью вот этого конденсатора и резистора:


Потом эти импульсы усиливаются драйвером и поступают на затворы транзисторов.


У каждого транзистора на затворе свой резистор. Это сделано с целью убрать звон при закрытии.


Так как это полевые транзисторы, то при параллельном включении им не нужны токоограничивающие резисторы, что повышает КПД схемы. Также на схеме можем видеть 2 входных напряжения.


Это сделано с целью расширения пределов работы самого шим-регулятора. Если входное напряжение находится в районе 13-30В, то можно установить перемычку и питать схему одним напряжением.


Также нужно сказать пару слов про транзисторы.


IRFZ44N рассчитан на напряжение 50В.


Если вам нужно управлять более высоким напряжением, то необходимо заменить транзисторы под ваши параметры. К примеру, IRF540 рассчитаны уже на напряжение 100В.


Со схемой закончили, рассмотрим печатную плату.


Тут в глаза бросаются силовые дорожки. Они не очень большие, но все компенсируется после сборки устройства. Их придется пропаять медным проводом для повышения токопроводимости. Это будет лучшим решением, так как делать саму дорожку еще больше нету смысла, она имеет маленькое сечение и не сможет провести большой ток.


С платой тоже разобрались. Давайте ее соберем. Это не составит трудностей, деталей немного и сложность минимальная.


С обратной стороны пропаяли силовые дорожки. Теперь необходимо установить транзисторы на радиатор, вы же не думаете, что мы полностью избавились от нагрева.


При установке можно не использовать изолирующие подложки, так как транзисторы включены параллельно.


С таким радиатором можно коммутировать токи до 20А. При б0льших токах требуется б0льший радиатор.


Ну и в конце можно производить тесты. Подаем напряжение на схему (в данном случае оно составляет 28В) и производим включение.


Для начала подключаем 2 лампы накаливания мощностью 100Вт, рассчитанные на напряжение 36В.


Но это такое, детский сад, схема справляется на раз-два. Теперь можно взять нагрузку помощнее, к примеру, вот такую нихромовую спираль.

Как видим ток идет довольно таки большой, но схема держится молодцом. Саму плату автор собирал одному человеку для мощного двигателя постоянного тока. Пока жалоб не было, поэтому можно советовать ее к повторению. Ну а на этом все. Благодарю за внимание. До новых встреч!

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Радиатор с транзисторами

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторов

Печатная плата блока резисторов

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Блок питания с регулировкой тока и напряжения

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Блок питания с регулировкой тока и напряжения

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятора

Схема подключения вентилятора

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к регулируемому блоку питания

Схема подключения китайского вольтметра амперметра к блоку питания

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

Блок питания с регулировкой тока и напряжения

Как заряжать автомобильный аккумулятор?

Зарядное устройство для автомобильного аккумулятора

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Параллельное соединение резисторов формула

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Блок питания с регулировкой напряжения и тока

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Блок питания с регулировкой напряжения и тока подключение нагрузки

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

Блок питания с регулировкой напряжения и тока начало зарядки аккумулятора

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Блок питания с регулировкой напряжения и тока конец зарядки аккумулятора

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на стабилизаторе LM317

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317 своими руками

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Регулируемый стабилизатор напряжения на LM317 для блока питания своими руками

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

494 схемы на TL494

finn32

Andrey 69

Перевал Утинский

Не надо ему ничего подбирать , у него есть Посадить сторожа и дать ему будильник. Хотя сторож - это тоже химический элемент.

shodan_micron_servis

Ну. раз уж мне прорвало пукан, тогда немного Вас коллеги потролю. Девайсики для хранения настоящего Ома(комплект мегаом-совок-дрочера): Это пожалуй единственная продукция Кишеневского ПО Микропровод, заслуживающая сегодня внимания.

Схема простого регулируемого источника питания на микросхеме TL494

Радиолюбители, каким-то образом причастные к устройствам, где используется эта универсальная микросхема, давно привыкли к тому, что применяется она в импульсных схемах для управления силовыми ключами посредством ШИМ. Микросхема TL494, ее различные аналоги и модификации производятся до сих пор огромными тиражами по всему миру, стоимость чрезвычайно низкая и, пожалуй, имеется в запасе практически у каждого электронщика, даже если он об этом и сам не помнит.

Универсальность микросхемы не ограничивается, однако, применением лишь в силовых импульсных устройствах, т.к. внутрисхемно содержит еще и независимую от прочих узлов аналоговую часть в виде пары идентичных друг другу усилителей ошибки (УО) с общим объединенным выходом и встроенный источник опорного (ИОН) напряжения (рис.1), т.е. - все необходимое для проектирования стабилизированного источника питания с выходным регулируемым напряжением и ограничением тока. На рис.1 очерчена используемая функциональная часть микросхемы TL494.


Схема источника может быть такой, как на рис.2. Она достаточно проста и содержит компонентов не более, чем в прочих, аналогичных по функционалу, схемах, не уступая им, однако, по своим параметрам хоть в чем-нибудь. Регулировка выходного напряжения производится с помощью одного из УО путем сравнения части опорного напряжения (изменяемого с помощью регулируемого делителя PR2, R3) на инверсном входе (вывод 2) с частью выходного напряжения на входе прямом (вывод 1), подключенному к делителю выходного напряжения (точка соединения резисторов R12, R13).


Второй УО, контролирующий выходной ток, так же сравнивает изменяемую часть опорного напряжения по инверсному входу (вывод 15 - с делителя на резисторах PR1, R1) с напряжением на шунте (R14) по прямому входу (вывод 15). Отношением резисторов R5 к R4 определяется коэффициент усиления первого УО; отношением резисторов R6 к R2 определяется коэффициент усиления второго УО. Результирующим сигналом на объединенном выходе УО (вывод 3) через последовательно включенный резистор R8 происходит управление переходом Э-Б транзистора Q1, база которого подключена к выходу ИОН (вывод 14) микросхемы. При перемещении движка потенциометра PR2 (в процессе регулировки напряжения) вниз, напряжение на выводе 3 микросхемы растет, снижая ток через Э-Б транзистора Q1, уменьшается падение напряжения на резисторе R9 (соответственно, на электродах сток-исток регулирующих транзисторов Q2, Q3), сопротивление каналов этих транзисторов возрастает, выходное напряжение источника снижается. Все происходит в обратном порядке при смещении движка PR2 в противоположном направлении.

По сути, построение схемы является классическим для аналогового регулируемого источника питания и никаких особых отличий от прочих подобных схем не имеет кроме того, что применение транзистора Q1 (преобразователь уровня - shifter) позволяет работать схеме при относительно высоких входных напряжениях (при условии использования в качестве Q1/ Q2/ Q3 транзисторов с соответствующим граничным напряжением). Микросхема TL494 запитана от отдельного стабилизированного источника питания напряжением 9-15В (транзистор Q3, стабилитрон VZ2, резистор R14). Резистор R13 применен для гашения избыточной мощности. В принципиальных схемах на рис.3, 4, 5 стабилизатор питания +12В отсутствует, но в качестве источника питания напряжением +10. 15В, можно использовать любой другой подходящий стабилизатор с рабочим током от 200мА.


Незначительные изменения в схеме позволяют применение биполярных транзисторов в качестве мощных регулирующих элементов. Замена полевых транзисторов на биполярные мощные предпочтительна, если регулирующие силовые компоненты не имеют достаточного охлаждения. Полевые мощные транзисторы имеют неприятное свойство - ухудшение проводимости канала с возрастанием температуры. На рис.3 показано включение силовых транзисторов по схеме с общим эмиттером (ОЭ). Нагрузка при этом включается в цепь "коллектора" составной транзисторной сборки Q102, Q103 регулирующего каскада, где Q103 является всего лишь мощным токовым повторителем. Запас по току управления регулирующим каскадом допускает использование одиночного мощного транзистора p-n-p-структуры вместо связки Q102, Q103 без заметных последствий. При этом практически исчезает вероятность самовозбуждения схемы (ввиду снижения общего коэффициента усиления стабилизатора, как усилителя постоянного тока), как и необходимость борьбы с этим явлением.


На рис.4 регулирующий каскад выполнен по схеме с общим коллектором (нагрузка включена в цепь эмиттера). Для реализации такого включения достаточно изменить схему включения транзистора Q1 (Q201 для рис.4). Если в схеме на рис.2 Q1 имел каскодное включение с управлением по эмиттеру (ОБ), то Q201 на рис.4 управляется по цепи базы (ОЭ) и имеет инверсный сигнал на коллекторе, управляющий током базы мощного составного транзистора Q202 n-p-n-структуры.

Максимальная величина входного напряжения для схем на рис.3 и рис.4 так же будет определяться граничными значениями напряжений каждого из примененных транзисторов. Максимальная мощность для всех вариантов источника питания будет определяться мощностью транзисторов регулирующего каскада.

Вариант схемы на рис.4 может взаимодействовать с интегральным регулируемым стабилизатором (ИРС) LM317 и ему подобными. Схема включения ИРС в схему показана на рис.5. Максимальное входное напряжение и мощность самого источника в этом случае будет определяться лишь параметрами примененного ИРС.


Правильно собранные схемы с применением заведомо исправных компонентов в наладке практически не нуждаются. Диапазоны регулировки выходного напряжения подбираются с помощью резисторов делителя выходного напряжения, устойчивость работы в пределах заданных регулировок по току и напряжению можно улучшить (или ухудшить) путем подбора резисторов цепи ООС усилителей ошибки микросхемы. Проблемы с устойчивостью могут проявиться в режиме ограничения тока при некоторых видах нагрузки и чрезмерной длины проводников от выхода БП до нагрузки (что характерно для стабилизаторов с большим собственным усилением). В случае самовозбуждения следует предусмотреть включение корректирующих R-C-цепей в ОС УО микросхемы, подбирая их для устойчивой работы РАС. В принципиальных схемах на рис.3,4,5 указаны номиналы для вновь добавленных элементов. Номиналы основной части схемы, присутствующей в неизменном виде во всех схемах, остаются без изменений и указаны явно на рис.2.

Для транзисторов, применяемых в качестве РЭ, необходимы радиаторы с большой площадью охлаждения (от 200см 2 ) с ее увеличением при повышении максимальной мощности РАС. Для токов свыше 2А желательно использование группы параллельно соединенных транзисторов для улучшения теплового режима работы каждого из них. Для работы с напряжениями свыше 20-30В следует предусмотреть разбивку входного напряжения на диапазоны с целью облегчения теплового режима РЭ. Транзистор Q3 стабилизатора схемы управления (+12В) так же следует расположить на радиаторе.

riswel Опубликована: 06.08.2019 0 0


Вознаградить Я собрал 0 0

Схема блок питания на tl494 с регулировкой напряжения и тока

Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока. Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.

Составные части импульсного блок питания на tl494

Блок питания можно разделить на 3 части:

1. Внутренний блок питания

Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.

Внутренний блок питания на 12 Вольт, для питатния схемы блоки питания

2 Блок управления.

Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.

Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока. Резисторы R11 и R12 можно использовать многооборотные.

Блок управления можно собрать на отдельной плате.

Блок управления на микросхеме TL494

Печатная плата блока управления

Печатная плата блока управления на TL494

Печатная плата блока управления на TL494

3 Силовая часть

Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.

Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.

Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.

Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.

Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.

Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.

Схема блок питания на tl494 с регулировкой напряжения и тока

Схема блок питания на tl494 с регулировкой напряжения и тока

Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:

Читайте также: