Как замерить разность потенциалов между нулевым проводом и заземлением

Обновлено: 13.05.2024

Как определить где ноль, а где провод заземления?

Не всегда можно положиться на цвет изоляции проводников, например, в старых электропроводках домов прошлого столетия, где на уставы ПУЭ особого внимания не обращали. И если фазный провод определяется достаточно быстро (с помощью индикаторной отвёртки), то с нулевым и заземляющим могут возникнуть некоторые сложности.

Способ первый: просто взгляни на маркировку

Как это ни банально, но не все пользователи могут знать истинное значение различной маркировки проводов, отсюда возникают и все проблемы.

Фазный проводник всегда маркируется в агрессивный цвет. Это может быть чёрный, красный, коричневый. Рабочий «ноль» - провод без опасного для жизни и здоровья потенциала, должен иметь нейтральную раскраску, и обычно это голубой или синий. Но самый заметный цвет у контура заземления – жёлто-зелёный, линии могут быть расположены как вдоль, так и поперёк всего проводника.

Рисунок 1: Провод заземления имеет жёлто-зелёную маркировку Рисунок 1: Провод заземления имеет жёлто-зелёную маркировку

Если монтаж выполняли грамотные электрики, то отличить «ноль» от «земли» проблем не составит. К сожалению, толковые мастера встречаются не часто, поэтому приходится применять и другие способы индикации.

Рисунок 2: Синий – цвет нулевого проводника Рисунок 2: Синий – цвет нулевого проводника

Способ второй: мультиметр в помощь

Можно определить нулевой и заземляющий проводник с помощью мультиметра и индикаторной отвёртки. Как это сделать? Достаточно просто, а именно:

1. Исходная ситуация: в распределительной коробке, подрозетнике или электрощитовой есть 3 провода с непонятной изоляцией. Первым делом с помощью индикаторной отвёртки определяем «фазу». Мультиметр переводим в режим измерения переменного напряжения.

Рисунок 3: Для определения «фазы» достаточно иметь под рукой индикаторную отвёртку Рисунок 3: Для определения «фазы» достаточно иметь под рукой индикаторную отвёртку

2. Одним щупом мультиметра касаемся фазного провода, а другим – любого второго проводника.

3. Не убирая щупа с «фазы», вторым щупом касаемся третьего провода.

4. Разница потенциалов между «фазой» и заземляющим проводником всегда будет меньше, чем между фазным и рабочим нулевым.

Конечно, данный способ не слишком точен, но всё же, при некоторой сноровке можно быстро определить где проходит «ноль», а где «земля». Необходимо только точно и скрупулёзно сверить показания на мультиметре.

Способ третий: последовательное отключение проводов

Это, наверное, самый «деревянный», но всё же действенный способ.

Важно! Собираясь произвести далее описанные операции, необходимо отключить все электроприборы. Не просто щёлкнуть клавишей включения, а обязательно вытащить питающий шнур из розетки. Иначе последствия для техники могут быть весьма печальными.

Во-первых, отключаем все электроприборы. Обязательно. После чего идём к электрощитовой и аккуратно отсоединяем нулевой проводник от нулевой шины. После этого можно спокойно идти к проблемному месту, вооружившись мультиметром. Разницы потенциалов между «нулём» и «фазой» не будет – мультиметр покажет значение «0». А вот между фазным проводником и «землёй» напряжение останется, но совсем незначительное.

Следует помнить, что применяя данный способ на практике ни в коем случае нельзя забывать о собственной безопасности и выполнять отключение «нуля» от общей шины только в защитных перчатках, а лучше всего переведя входной рубильник в положение «Выкл.»

Почему между нулем и заземлением есть напряжение и как от этого избавиться?

Здравствуйте! У меня в частном доме новой постройки выходят из строя бытовые приборы: водонагреватель второй раз (ржавеет эмалированный бак ТЕРМЕКС), стиральная машина. Всё в одно время. Причём, скачка напряжения не было. Стоит реле напряжения.

Вопрос. Замерил мультиметром напряжение между нулём и заземлением в разных розетках. Где 4, где 8 вольт. Подскажите, пожалуйста, что это такое и как от этого избавится. Прибор учёта в ящике на трубостойке находятся на улице на границе участка. Заземление есть. Монтаж этих работ производила фирма по заданию нашего местного МРСК.

Комментарии и отзывы (4)

Павел

Дмитрий

Заземляющий проводник электрически не где не связан с нулём . Сказал эксперт .
А ГЛУХОЗАЗЕМЛЁННАЯ НЕЙТРАЛЬ В СИСТЕМЕ ЗАЗЕМЛЕНИЯ ЖИЛЫХ СДАНИЙ ЭТО ЧТО НЕ ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ.

Александр

В бытовых распредсетях перикос фаз нормальное явление , и , как следствие появится напряжение на нулевом проводе . Так что 4вольта это побожески .

Макаров Дмитрий (Эксперт)

Разность потенциала в 4 – 8 В может быть вполне нормальным явлением, если заземление сделано в соответствии с ПУЭ. К примеру, при работе каких-либо устройств по нулевому проводнику протекает ток, создавая падение напряжения, заземляющий провод, электрически, с нулем нигде не связан и между ними возникает разность на эту величину падения напряжения.

Поэтому сначала определитесь в чем причина, для этого отключите абсолютно все приборы, включенные в сеть (холодильники, компьютеры, микроволновки, часы, лампы освещения и т.д.). После того, как вся нагрузка отключена, замерьте разность потенциалов между нулевым проводом и заземлением в розетках. Если разности потенциалов нет, значит, причина в нормальной работе бытовых приборов, если разность потенциалов осталась, а вы уверены, что в цепи не осталось никакой нагрузки, проверьте состояние заземления.

Для этого необходимо проверить величину переходного сопротивления контура заземления току растекания, как правило, оно не должно превышать 20 Ом в бытовых сетях. Заметьте, такое измерение проводится при помощи специального моста, обычный мультиметр не дает точных результатов. Если сопротивление окажется значительно больше или вообще будет стремиться к бесконечности, в цепи присутствует обрыв, который вам нужно найти и устранить. Если контур заземления оказался исправен, вам нужно проверить заземление нулевого вывода трансформатора, неисправность может быть и в нем, но такую процедуру может выполнить только владелец электроустановки.

Частые поломки бытовых приборов могут происходить совсем по другим причинам, чем разность потенциала между нулем и землей. Это и состав воды, и потенциальные зоны, и качество электроэнергии, определять от чего конкретно поломался тот или иной прибор нужно индивидуально.

Электричество из земли своими руками

Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, так как их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.

Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике все получается далеко не так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученого, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Схема получения электричества по Белоусову

Рис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли, согласно этой схемы, будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Из земли и нулевого провода

Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.

Между нулем и землей

Рис. 2. Между нулем и землей

Стержни из цинка и меди (гальванический способ)

Стержни из цинка и меди

Рис.3. Стержни из цинка и меди

В таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:

  • Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
  • Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
  • Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.

Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.

Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.

Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.

Потенциал между крышей и землей

Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.

Потенциал между крышей и землей

Рис. 4. Потенциал между крышей и землей

Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2 В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразно.

Выводы

Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.

Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.

Напряжение между нулем и землей

При проверке параметров сети вольтметром электромонтёры, как правило, измеряют напряжение попарно между всеми тремя проводниками в трёхпроводной сети - L-N, L-PE и N-PE. Теоретически, в последнем случае показания прибора будут равны "0", но так бывает не всегда. В некоторых случаях напряжение между нулем и землей может быть намного больше и даже достигать 220 В.

Что такое "ноль" и "земля" согласно ПУЭ

Современная однофазная электропроводка выполняется тремя проводами и только по одному из них подаётся напряжение, а для трёхфазного питания необходимы пять проводников, из которых питающими являются три. Правила Устройства Электроустановок указывают, зачем нужны оставшиеся, какова функция этих проводов и требования к их монтажу и подключению.

Чем ноль отличается от заземления

Первоначально, с появлением трёхфазного электроснабжения, электропитание подводилось к зданиям при помощи четырёх проводников - три фазных и нейтраль, а в однофазной квартирной электропроводке использовались только два провода - ноль и фаза.

Согласно ПУЭ, гл.1.7 такая система электроснабжения называется TN-C, в ней четвёртая жила в электросхемах обозначается PEN и выполняет функции сразу двух проводов - ноля N и земли РЕ. В современной электропроводке эти проводники разделены.

  • Нейтраль (ноль) N . Это рабочий провод, который служит для питания электроприборов в однофазной сети и для протекания уравнительных токов в трехфазной сети. Его отключение без отключения фазных проводов не допускается. Согласно правилам цветовой маркировки проводов изоляция нулевого проводника имеет синий или голубой цвет.
  • Заземление (земля) РЕ . Защитный проводник, используется для заземления корпусов электроприборов и щитков. Отключать этот провод автоматическими выключателями или другими разъединителями запрещено. Оболочка заземляющего провода окрашена в продольные жёлто-зелёные полосы.

Защитные функции нулевого и заземляющего проводников

Для защиты от поражения электрическим током при нарушении изоляции между корпусом оборудования и элементами электросхемы, находящимися под напряжением, металлические детали корпуса необходимо заземлять. Для этого допускается использовать только защитный заземляющий проводник РЕ.

Нейтраль N так же соединяется с глухозаземлённой нейтралью трансформатора, но соединение с контуром заземления при помощи этого проводника называется "зануление" и выполнять его запрещено по целому ряду причин:

  • нейтральный провод, особенно в однофазных сетях, подключается через автоматический выключатель, что для защитного заземления запрещено согласно ПУЭ 1.7.83;
  • повышенная, по сравнению с заземлением, опасность выхода этого провода из строя, связанная с протеканием по нему тока;
  • при обрыве или отключении защитного зануления напряжение в розетке отсутствует, но корпус при этом окажется присоединённым к фазному проводнику через нейтраль сети и включённые электроприборы.

Эти провода прекладываются раздельно от потребителя до трансформаторной подстанции, где они подсоединяются к глухозаземлённой нейтрали трансформатора.

Современные нормы ПУЭ допускают монтаж объединённого провода PEN на участке от трансформатора до вводного электрощита в многоквартирном здании или отвода от воздушной линии к частному дому, где этот проводник разделяется на провода N(нейтраль) и РЕ(земля).

Важно! Место разделения необходимо дополнительно присоединять к контуру заземления здания, после чего соединение проводов не допускается.

Напряжение между нулем и землей

В системе электроснабжения, которая используется для подвода электричества к жилым домам, вторичные обмотки питающего трансформатора соединены в "звезду", к средней точке которой подключаются контур заземления и нейтральный провод. Существует несколько причин, почему на нулевом проводе появляется напряжение.

Почему между нейтралью и заземлением всегда есть разность потенциалов

Основная причина наличия напряжения между PE и N заключается в том, что по нулевому проводу протекает электрический ток и, согласно закону Ома, имеется падение напряжения, зависящее от сопротивления токопроводящей жилы.

Несмотря на то, что материал, из которого изготовлены провода, отличается высокой проводимостью, большая длина линий приводит к значительным потерям в сети. Поэтому при расчёте сечения кабелей учитываются два фактора - нагрев проводов и допустимое падение напряжения, причём выбирается бОльшее из двух значений.

При большой протяжённости линии сечение провода, выбранное по потерям, многократно превышает необходимое сечение, выбранное по нагреву.

В пятипроводной системе электроснабжения напряжение между землёй и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места разность потенциалов между РЕ и N увеличивается на величину падения напряжения в нейтральном проводнике и тем выше, чем дальше от подстанции и чем хуже распределена нагрузка по фазам и больше уравнительный ток в нейтрали.

Значительное количество линий электропередач были рассчитаны и проложены ещё в советское время, когда нагрузка на провода была намного ниже.

Сейчас с появлением электрических бойлеров, стиральных и посудомоечных машин и другого оборудования потребляемая мощность и ток выросли. Это привело к росту потерь в проводах, в том числе в нейтральном, и росту напряжения между землёй и нулём.

Нормальное напряжение между фазой нулем и землей

В нормативных документах не нормируется, каким должно быть напряжение между нулем и землей, однако указаны допустимые колебания напряжения в сети. При напряжении 220 В отклонения могут составлять -33 +22 В.

Если предположить, что трансформаторная подстанция, чтобы компенсировать падение напряжения в проводах, выдаёт завышенное напряжение 242 В, учитывая потери в нейтральном проводе, разность потенциалов между нейтралью и землёй составит больше 30 В.

Естественно, такое напряжение нельзя считать нормой, но в некоторых сёлах, имеющих большую площадь и протяжённость линий в конечной точке ЛЭП фазное напряжение составит меньше 170 В, а между нулём и землёй можно включить лампочку 36 В.

Почему напряжение между нейтралью и заземлением может отсутствовать

В некоторых случаях разность потенциалов между N и РЕ равна 0. Это происходит при реконструкции системы электроснабжения TN-C и преобразовании её в систему TN-C-S. При этом к дому подходит совмещённый проводник PEN, который во вводном щитке разделяется на два провода - N и РЕ с дополнительным заземлением места разделения.

В этой ситуации длина проводов составляет десятки метров, а не километры, как в воздушных или подземных линиях, и, соответственно, падение напряжения в нейтральном проводе и разность потенциалов между нолём и землёй не превышает погрешность прибора.

Причины повышенного напряжения

Кроме потерь в проводах существуют и другие причины, почему есть напряжение между нулем и землей.

Причиной постоянного наличия напряжения, поднимающегося до 50 В, может быть Неравномерное подключение потребителей по фазам. В идеальных условиях мощность нагрузки должна быть распределена равномерно, при этом уравнительный ток отсутствует и напряжение между РЕ и N равно нулю.

Так бывает не всегда, при подключении к одной из фаз мощных электроприборов или большом расстоянии между ЛЭП и отдельно стоящим зданием в нейтральном проводе протекает значительный ток, из-за чего потери в нем возрастают, и появляется разность потенциалов между нейтралью и землёй.

В случае наличия высокого напряжения причиной чаще является обрыв нейтрали. Это аварийная ситуация, У которой есть два варианта:

  • Обрыв в однофазной сети. При этом на нулевой клемме появляется сетевое напряжение, исчезающее при отключении всех ламп и выключении всех вилок из розеток. Напряжение в розетке при этом отсутствует.
  • Обрыв нейтрали в трёхфазном кабеле. В этом случае величина потенциала между нейтралью и землёй из-за отсутствия уравнительного тока колеблется в диапазоне 0-220 В, а напряжение розетке при этом может достигать 380 В.

Напряжение 110 Вольт

В некоторых случаях разность потенциалов между нейтралью и землёй составляет 110В, или половину сетевого. Это связано с особенностями электросхемы некоторых бытовых приборов. Электронная аппаратура этих устройств, с одной стороны, чувствительна к высокочастотным помехам, а с другой стороны, сама является источником этих помех.

Для защиты от этого явления в аппарате параллельно сетевому кабелю устанавливается два конденсатора, включённых последовательно. Соединение этих элементов, в свою очередь, подключается к корпусу электроприбора и заземляющему проводнику питающего кабеля.

При включении аппарата в розетку на корпусе такого устройства и заземляющей клемме вилки появляется напряжение 110В. В том случае, если электропроводка выполнена по трёхпроводной схеме с заземляющим проводом, который не подключён к контуру заземления или подходящему к зданию проводнику РЕ на всех заземляющих проводах и клеммах квартиры или дома появится высокое напряжение.

Что делать в случае высокого напряжения

  • Превышает 30 В, а напряжение в розетке ниже 200 В. Такое напряжение появляется из-за большой длины питающих проводов и недостаточного сечения токопроводящей жилы. Самостоятельно изменить ситуацию практически невозможно, решением проблемы может стать установка стабилизатора напряжения.
  • Напряжение 110 В. Если напряжение между нулем и землей 110 Вольт, то необходимо отключить заземляющую клемму в розетке, в которую включено устройство с фильтром из двух конденсаторов. Однако прикосновение к корпусу такого аппарата останется болезненным. Для полного решения проблемы необходимо линию заземления подключить к контуру или отключить данный фильтр от корпуса электроприбора.
  • Напряжение между нулевой и заземляющей клеммами 220 В, в розетке питание отсутствует. Такие данные вольтметр показывает при обрыве нулевого провода в квартире или после выполнения однофазного отвода от трёхфазной сети. Фаза на нейтральные проводники попадает через включённые лампы или подключенные к розеткам электроприборы, даже если они в данный момент не работают.
  • Колеблется в диапазоне 0-220 В, а напряжение в розетке стремиться к 0 или 380 В. Причина этой аварийной ситуации в обрыве нейтрали в подходящем кабеле. Нужно немедленно выключить вводной автомат и обратиться в электрокомпанию.

Вывод

Как видно из статьи, небольшое напряжение между нулем и землей имеется почти всегда. Это не является проблемой, если оно не превышает 5-10 В. В противном случае необходимо принимать меры, чтобы это явление не повредило электроприборы или не мешало ими пользоваться. В зависимости от его величины нужно установить стабилизатор напряжения, отсоединить встроенный фильтр в бытовой технике или отключить вводной автомат и устранить аварию.

Что будет если вместо нуля подключить землю

Современная электропроводка выполняется по трёхпроводной схеме, с защитным заземлением. И если фазный провод найти в трёхжильном кабеле можно обычной индикаторной отвёрткой, то чтобы отличить ноль от заземления необходимо использовать дополнительные приспособления.

Поэтому некоторые "специалисты" не обращают внимания на то, какой из проводов присоединён к нейтрали, а какой к земле. В этой статье рассматривается вопрос, допустима ли такая схема соединений и что будет, если вместо нуля подключить землю.

Чем отличается ноль от земли

Основные отличия нулевого и заземляющего проводов в их назначении - НОЛЬ используется для подачи питания, а ЗЕМЛЯ выполняет защитную функцию.

Зачем нужен ноль в электросети

Электроснабжение современных жилых районов и промышленных предприятий осуществляется по системе TN, или с глухо заземлённой нейтралью. Это значит, что вторичные обмотки понижающего трансформатора соединены по схеме "звезда", средняя точка которой без разрывов подключена к контуру заземления подстанции.

От трансформаторной подстанции к потребителям электроэнергия подаётся по четырём проводам - три фазных L1, L2, L3 и один нулевой N. Для подключения бытового электроприбора необходимы два провода - фаза и и ноль, или нейтраль.

В системе электроснабжения TN нулевой проводник выполняет две функции:

  • В однофазной сети . Для протекания электрического тока цепь должна быть замкнута. Условно говоря, по фазным проводам напряжение поступает к электроприборам, а нейтраль служит для замыкания электроцепи.
  • В трёхфазной системе электроснабжения . В этой сети благодаря сдвигу фаз три электроприбора одинаковой мощности могут работать без нейтрали и трёхфазные электродвигатели подключают именно таким образом. В этой сети нулевой проводник служит не для подачи питания, а для протекания уравнительного тока, появляющегося при неравномерном распределении нагрузки по фазам и предотвращения колебаний напряжения при изменении потребляемой мощности.
Информация! В некоторых типах электрических кабелей сечением более 4мм² нулевая жила изготавливается из более тонкого провода.

Зачем нужно заземление

В обычной ситуации ток по заземляющему проводнику не протекает, он используется только в случае аварии. Попадание высокого напряжения на корпус электроприбора и последующее прикосновение к нему является опасным для жизни человека, поэтому, согласно ПУЭ п.1.7.32-33 все металлические части рекомендуется соединять с контуром заземления отдельным проводом или при помощи соответствующей клеммы в розетке.

В этом случае при нарушении изоляции между токоведущим частями и заземлённым корпусом появляется короткое замыкание в сети и ток в фазном проводе резко возрастает, что приводит к срабатыванию защиты.

Если замыкание на корпус электроприбора произошло через некоторое сопротивление, то протекающего тока может быть недостаточно для срабатывания автоматического выключателя. Роль заземления в этом случае снизить напряжение прикосновения до безопасной величины, тем самым снизить разность потенциалов между человеком и поврежденной техникой. Чем меньше разность потенциалов – тем меньше протекающий через человека ток.

Как отличить ноль от заземления

Для того чтобы правильно подключить эти провода, необходимо определить, какой из них является нейтралью, а какой землёй. Существуют различные способы, как отличить ноль от заземления:

  • Цветовая маркировка . В электропроводке, выполненной согласно ГОСТу 31947-2012, цвет оболочки провода определяется его назначением. Нейтраль имеет синюю или голубую окраску, земля окрашена в продольные жёлтые и зелёные полосы.
  • При помощи УЗО или дифавтомата , установленных в электрощитке. После определения при помощи индикаторной отвёртки фазного проводника к нему и одному из оставшихся подключается электроприбор или лампа мощностью более 10 Вт. Если срабатывания защиты не произошло, значит, был выбран нейтральный проводник. В противном случае это заземление.
  • Тестером или вольметром . Электропроводка в щитке отключается от контура заземления, после чего одним из приборов определяются два провода, между которыми имеется напряжение 220В. Оставшийся проводник является заземлением.

Можно ли использовать заземление вместо нуля

Подключение нуля вместо заземления является нарушением ПУЭ п.7.1.36 , запрещающем соединение питающих и защитных проводов. И даже если это сделать в частном доме или квартире, в которые не приходит с проверкой инспектор по электробезопасности, при подключении земли вместо нейтрали возможны различные негативные последствия.

Что будет если в розетке вместо ноля подключить заземление

Напряжение на клеммах розетки не зависит от того, какие проводники к ним подключены - L - N или L - PE. Однако при неправильном монтаже может произойти следующее:

    . УЗО и дифавтоматы работают по принципу сравнения величины тока в фазном и нейтральном проводах. В случае прикосновения человека к токоведущим частям или нарушения изоляции появляется ток утечки, нарушающий равенство, что приводит к срабатыванию защиты. При использовании вместо нейтрали заземления ток по нему, в отличие от фазного провода, не протекает, что приводит к аварийному отключению УЗО или дифференциального автомата. . Если один из электроприборов подключён неправильно, а остальные устройства присоединены к контуру заземления, то при обрыве заземляющего проводника корпуса этих аппаратов через неправильно подключённый аппарат окажутся подключёнными к фазному проводнику. Прикосновение к этим деталям приведёт к попаданию человека под напряжением.
  1. Ускоренное разрушение контура заземления. Детали контура выполняются из углеродистой стали и находятся в земле. Постоянное протекание через них электрического тока приводит к появлению электрокоррозионного эффекта и ускоренному разрушению заземлителей.

Будет ли шаговое напряжение?

Шаговое напряжение появляется при попадании на землю провода, находящегося под напряжением и протекании тока по поверхности земли.

Теоретически, если выполнены все требования к контуру заземления, указанные в ПУЭ-7 п.1.8.39, при использовании заземления вместо нуля шаговое напряжение возникнуть не должно, но на практике не всегда эти правила соблюдаются, особенно если контур был изготовлен самостоятельно и его первичная и повторные проверки не производились.

Совет! Для большей безопасности рекомендуется размещать контур заземления не под пешеходными зонами, а под клумбами и другими зелёными зонами.

Будут ли работать электроприборы

Единственное, для чего не имеет значения порядок подключения ноля и фазы - это работа электроприборов. Для этих устройств важно только величина напряжения в розетке, а она не меняется от того, какой провод куда подключен.

С точки зрения электротехники не имеет значения, каким проводом нейтральная клемма розетки соединяется с нейтралью трансформатора - N при правильном соединении или РЕ при ошибочном.

Информация! В системе электроснабжения TN-C-S отдельные провода N и РЕ разделяются не в подстанции, а во вводном щитке в здание, после чего подключаются к трансформатору общим проводом PEN.

Будет ли мотать электросчётчик

Некоторые желающие "сэкономить", а точнее украсть электроэнергию интересуются, что будет, если вместо нуля подключить землю? Может быть, счётчик остановится или будет вообще вращаться в обратную сторону? Эти любители "халявы" могут спать спокойно - показания электросчётчика не изменятся.

Для работы прибор учёта измеряет два параметра:

  • Напряжение сети . Оно определяется фазным и нулевым проводами, приходящими от подъездного электрощитка или столба линии электропередач.
  • Ток, протекающий по фазному проводу . Он не зависит от того, к чему подключены электроприборы - к нейтрали или к заземлению.

Необходимо отметить, что современные приборы учета отлично работают и считают потребление электроэнергии даже если на клеммы подключить заземление вместо нуля.

Для "экономии" необходимо изменить подключение приходящего кабеля на подключении к электросчётчику, находящемуся в опломбированной коробке, что чревато большим штрафом при проверке прибора учёта инспектором электрокомпании.

Соединение ноля и земли

Для организации защитного заземления необходимо, чтобы к частному дому были подведены три провода, а к многоквартирному зданию пять. Такая система электроснабжения называется TN-S и прокладывается в новых микрорайонах и при замене действующих линий электропередач. Но что делать людям, живущим в старых домах? Что будет если соединить ноль и землю прямо в розетке?

Согласно Правилам Устройства Электроустановок, такое соединение допустимо, но не в розетке, а во вводном щитке в многоквартирном здании или на столбе линии электропередач возле частного дома.

В ПУЭ гл.1.7 указаны требования к системе электроснабжения TN-C-S. Такая схема электроснабжения осуществляется по четырём проводам - три фазы L1, L2, L3 и совмещённый PEN, выполняющий функции нейтрали и заземления одновременно.

Для повышения безопасности людей, живущих в доме, место соединения необходимо подключать к контуру заземления здания. В противном случае вместо защитного заземления получится защитное зануление и, при обрыве провода между зданием и питающим трансформатором, занулённые корпуса электроприборов окажутся под напряжением.

В этом нормативном документе указано, можно ли заземление подключить на ноль. Согласно ПУЭ п.1.7.135 после разделения, а тем более в пятипроводной схеме электроснабжения TN-S, соединение этих проводов не допускается.

Кроме того, заземляющий проводник должен подключаться к оборудованию напрямую, без автоматов или разъединителей.

Вывод

Из материалов статьи видно, что будет, если вместо нуля подключить землю. Электроприборы будут работать, но существует опасность некорректной работы УЗО, появляется опасность поражения электрическим током и из-за электрокоррозии начинает разрушаться контур заземления.

Напряжение Между Нулём И Землёй.

Вячеслав Дубикин

На цели реагирует. Только-что подкрутил на плате резистор и пороговый тон появился.

RADS

С экранировкой от наводок китайцы вообще не заморачиваются.

Вот ещё не понятно , где электролиты с другой стороны платы ? На фото работает Квазар арм, а плата на столе лежит ровно.. но с другой стороны платы должны быть конденсаторы 2200мкФ и 1000мкФ ( фото) . На фото,, на плате этих конденсаторов с другой стороны Какая то непонятка с этими электролитическими конденсаторами у меня..)) фото)

У меня вопрос: А КТО - НИБУДЬ разобрался с EST7502? Что должно быть у нее на 4-й ноге? Только не нужно ссылаться на аналоги типа LPG988. Мне кажется ,что это не 100% аналог.

atmicandr

Хорошо, поищу овальные.

DrZ

Я бы их вообще в полку не рекомендовал бы, насколько помню - они достаточно низкодобротные, их бы в ящики или в двери. А в овальные посадочные полки лучше поищите овальные же динамики )) ЗЫ. И, опять же, насколько помню, не особо-то они и басистые.

Читайте также: