Как узнать ток вторичной обмотки трансформатора

Обновлено: 22.04.2024

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора - указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

ряд мощностей трансформаторов по ГОСТ 9680

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные - более 5 кВА

Номинальное напряжение обмотки - напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки - ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания - дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Взято из ГОСТ 16110

Напряжение короткого замыкания uk - это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник - Электрооборудование станций и подстанций

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания - 5,4%. Определим ток из формулы определения полной мощности:

формула мощности силового трансформатора и определение тока

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

формула определения сопротивления трансформатора в именованных единицах

  • x - искомое сопротивление в именованных единицах, Ом
  • xT% - относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб - базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном - номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

определение xt% двухобмоточного трансформатора

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

определение xt% трехобмоточного и автотрансформатора

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

определение xt% трехфазного Т с разветвленной низкой стороной

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

определение xt% однофазных Т с низкой стороной на 2 или 3 ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 - 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ - 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 - 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ.

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

S сеч = a * б (см2)

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Р (Вм) = S сеч2

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и "перерабатывать" мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется "число витков на вольт", и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти "число витков на вольт", разделив 50—70 на сечение сердечника в см:

W/B = 50 / 70/Sсеч

Так, если взять сердечник с сечением 6 см², то для него получится "число витков на вольт" примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

W1 = W/B * U1

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

W2 = 1,2 * W/B * U2

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

d (мм) = 07 * корень из I (A)

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Как измерить мощность трансформатора с помощью мультиметра.

Когда то давно я делал себе зарядное устройство из трансформатора. Его я взял из старого черно белого телевизора ВЭЛС. Убрал все вторичные обмотки и намотал одну на 16 вольт. Мощности этого трансформатора хватало даже для зарядки 190 аккумуляторов.

Когда этот трансформатор у меня появился, обмотка его была обернута бумагой. На ней было написано напряжение, которое выдают вторичные обмотки. Их там было много, наверное, 7 или 8. Но вот мощности трансформатора на ней написано не было.

Для того, что бы определить мощность трансформатора нужно измерить ток и напряжение в нагрузке. Проверять буду 2 способами. С начало посмотрю ток короткого замыкания.

Для этого беру провод по толще и устанавливаю на него токовые клещи. Замыкаю вторичную обмотку.

Ток, короткого замыкания составляет 93 ампера.

Напряжение без нагрузки составляет 16,5 вольт.

Теперь нужно нагрузить трансформатор до такого уровня, при котором напряжение во вторичной обмотке просядет. Это делается для того, что бы можно было определить, какую максимальную мощность может выдать трансформатор. Нагружать буду стартером.

Нагружать нужно до такого уровня, при котором напряжение во вторичной обмотке просядет не менее чем на 15% от напряжения без нагрузки. Именно 15% будет оптимально. Но можно нагрузить и больше.

Напряжение просело до 8,5 вольт, а ток составил 55 ампер. Теперь для того, что бы вычислить мощность трансформатора нужно напряжение умножить на ток.

Получается, что мощность данного трансформатора составляет около 467 ватт.

Из этого трансформатора можно сделать зарядное устройство. Статья об этом находится здес ь.

На этом все, спасибо за прочтение статьи, если она была вам полезна, ставьте лайк, и подписывайтесь на канал.

Как определить параметры неизвестного трансформатора

Как определить параметры неизвестного трансформатора

Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.

Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.

Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.

Схема обмоток трансформатора

Рис. 1. Схема обмоток трансформатора (пример)

Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки. У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой. Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

Трансформатор ТПП-281

Рис. 2. Трансформатор ТПП-281

Как измерить ток холостого хода трансформатора

Ток холостого хода следует измерить амперметром переменного тока. При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть. Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, - напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

Схема испытания вторичной обмотки трансформатора

Рисунок 3. Схема испытания вторичной обмотки трансформатора

Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

Для питания усилителя требуется одна обмотка со средней точкой (см. статью "Трансформаторы для УМЗЧ"). Соединяем последовательно две вторичные обмотки и измеряем напряжение. Должно получиться 48В, точка соединения обмоток будет средней точкой. Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.

В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Тема: А как определить нагрузочную способность обмоток неизвестного трансформатора ?

А как определить нагрузочную способность обмоток неизвестного трансформатора ?

В общем проблема - есть трасофрматор неизвестного типа (обычно для ТС, ТН, ТАН и проч можно спокойно найти справочные данные) . А тут не указано ничего - путем некоторых исследований и предположений определяем где сетевая обмотка . Если все работает и не грееться - значит вроде правильно. Также легко найти напряжения на выходных обмотках - просто померяв их (ну ессно прикинуть какими они будут при номинальном напряжении сети). А вот дальше как определить максимальный ток снимаемый с каждой обмотки ? Ибо даже на мощных силовиках есть обмотки на дополнительные напряжения - намотанные тонким проводом . Причем диаметр провода обмотки тоже бывает без разборки транса не узнаешь . У когонить есть "неразрушающие" методы определить это ?
Blackbird, 1. измерить сопротивление обмотки (для малых значений обычный тестер не пригоден)
2. прикинуть длину провода - намотать пробную обмотку просунув 1-2 витка, имерить напряжение на ней и определить число витков на вольт, отсюда количество витков во всех обмотках, измерить по середине обмотки среднюю длину витка - длины провода всех обмоток известны! (приблизительно число витков на вольт можно определить по площади железа W

45/S, где S-площадь железа в см кв.)
Для справки удельное сопротивление меди 0,0175 Ом/(Метр*мм^2)

Изображения

Изображения

А Вы уверены, что Вы включились именно на сетевую обмотку? Ничего не будет гудеть и не будет греться (и дымить), если подключиться к любой обмотке, имеющей к-во витков больше и, в том числе, на много больше, чем сетевая. Есть способы, но предполагают определенные знания электротехники. Проще всего попытаться определить габаритную можность тр-ра по сесению сердечника. Затем найти обмотку по току покоя и признать ее сетевой. Короче у меня ИНЕТ по телефону - пока пишу может сбросить.

Добавлено через 1 минуту
О! пока писал послание, откликнулся ZXCVB. Даже молодец!

О! пока писал послание, откликнулся ZXCVB. Даже молодец!

Да не совсем молодец . Вот и у меня есть вопросы по трансформаторной
теме: Достался мне трансформатор стержневой с двумя катушками
Площадь трансформаторных пластин (в одной катушке естественно)
54см2 Ну приблизительно где то 2200 ватт получается габаритная мощность
Что меня удивило что первичка одной катушки соединена с первичкой
второй катушки параллельно (провод 1.6мм)
А вторички соединены последовательно (провод 0.65) приблизительно
в сумме 2300 В
Замерил ток хх первички =1300мА Меня это очень смутило
Обычно если взять трансформаторы типа ТС-180 и др У них первички
обоих катушек соединены последовательно
Почему в этом трансформаторе сделано так
Очень сомневаюсь в идеальности намоток первичек и при параллельном их соединении
не возникает ли различные перетоки и как следствие большой хх

буду благодарен за конструктивный ответ

плотность тока для меди - 3,5 ампера на кв мм
надо прикинуть толщину провода вычислить вспомнив математику за 9 класс сечение проволоки - вот и все
73. Алексей (RA3POD) В общем проблема - есть трасофрматор неизвестного типа А тут не указано ничего - путем некоторых исследований и предположений определяем где сетевая обмотка . А вот дальше как определить максимальный ток снимаемый с каждой обмотки ?

Так можно перефразировать вопросы автора:

1. Как определить, что эта обмотка сетевая и нужно ли ещё добавить витков?
2. Как теперь при правильно созданной первичной обмотке узнать максимально возможный ток вторичной обмотки?
3. На какую мощность усилителя можно рассчитывать применяя этот трансформатор?

2 FLYING - ну опять не впопад Я же писал что какми проводом намотана так или иная обмотка на трансе частенько просто установить невозможно - ибо не видно выводы то не всегда проводом обмоток делаються - даже в случае когда провод толстый . А разбирать сердечник и разматывать пол транса чтоб это определить (а если транс залит наглухо ?)- это проще новый намотать транс . А насчет допустимой плотности тока - в пяти разных книгах по изготовлению трансов приводяться разные величины в пределах 1-5 и даже 10 ампер на кв. мм а уж чем руководствовались разработчики это вообще темный лес . У нас на работе лет двадцать назад нужно было сделать малогабаритный транс на 1 квт мощности - так блин он вышел размером как тс-270 - зато ток хх сетевой обмотки был 1.2 ампера !

2 UN7CI - спасибо что мой сумбур перевел . а насчет первого вопроса - ну с определением что обмотка сетевая и вообще транс сетевой у меня проблем не возникало пока . Трансы на 400 гц не очень распостранены - да и без обозначений я их не встречал . Трансы для киловольтных напряжений имеют другую конструкцию . А те которые расчитаны на 380 вольт (есть такие которыми низковольтные лампочки питать на станках) как правило четко маркированы . Проблемы возникают в определении например никак не маркированных трансов из бытовой аппаратуры и нестандартных девайсов .

плотность тока для меди - 3,5 ампера на кв мм У меня почему-то цифра 2А/кв.мм с детства в голове. зато ток хх сетевой обмотки был 1.2 ампера !

и сколько он мог проработать7 полчаса7

У меня почему-то цифра 2А/кв.мм с детства в голове.

ну это зависит от мощности транса

а вапще я бы прогрузил его - померял U хх и U под нагрузкой - не должно сильно отличяться если ток номинальный.
а потом еще можно по нагреву судить

73. Алексей (RA3POD) У меня почему-то цифра 2А/кв.мм с детства в голове. То FLYING
плотность тока для меди - 3,5 ампера на кв мм
надо прикинуть толщину провода вычислить вспомнив математику за 9 класс сечение проволоки - вот и все
__________________
RA3POD
Откуда такая категоричность в цифрах плотности тока. Почему, скажем, не 1,5 или 7 ампер на 1 кв. мм.
Рассчет плотности тока в обмотках очень точно определяет эти значения для каждого трансформатора индивидуально. Ну, а уж лень взять справочник и рассчитать, тогда воспользуйтесь таблицами для особо ленивых из справочников. Там сразу увидите как зависит плотность тока в обмотке от габаритной мощности и типа сердечника.
И пожалуйста ненужно делать таких категоричных заявлений. Форум читает много радиолюбителей, в том числе и начинающие. Ненужно направлять их сразу на путь, который не принесет им практической пользы, а заведет в тупик.
Прошу без обид. Ничего личного.
73! С уважением Александр, UT4FA. UT4FA :: Нет уз святее товарищества

Чтобы определить допустимое напряжение на обмотке, используемой в качестве первичной, нужно снять зависимость тока ХХ от приложенного к ней напряжения. Граница там, где ток начинает расти быстрее, чем увеличивается напряжение. Конечно, резкого перехода нет. Обычно допустимым считают отклонение от пропорциональности процентов на 10.

Чтобы убедиться в возможности параллельного соединения половин обмотки, нужно сначала измерить ток ХХ при подключении к сети одной половины (вторая отключена). С подключением параллельно второй половины их суммарный ток ХХ не должен существенно отличаться от этого значения. Если ток значительно возрос, соединять такие обмотки параллельно недопустимо.

Когда диаметр провода обмотки неизвестен и его невозможно узнать косвенными методами, самый правильный способ определить допустимый ток нагрузки - экспериментально оценить перегрев проверяемой обмотки при данном токе и принять субъективное решение "можно-нельзя". Только учтите, когда будут нагружены все обмотки, суммарный перегрев станет больше. Какой перегрев считать допустимым, зависит от теплостойкости изоляции обмоточных проводов, пропиточного лака и даже материала каркаса. Из разброса этих параметров и условий охлаждения обмоток и происходит разброс допустимой плотности тока в различных методиках расчета.

Можно еще измерить активное сопротивление исследуемой обмотки и оценить потери мощности в ней при заданной нагрузке. Если они не больше нескольких процентов от мощности нагрузки (не всей, а лишь подключенной к данной обмотке) - все нормально.

Как определить число витков обмоток трансформатора

Когда неизвестен тип или нет данных трансформатора, число витков каждой обмотки можно определить с помощью мультиметра.

Пользуясь омметром, определяют расположение выводов всех обмоток трансформатора. При наличии зазоров между катушкой и магнитопроводом поверх обмоток наматывают тонким проводом дополнительную обмотку. Чем больше витков будет иметь обмотка, тем точнее будут результаты измерения.

Если нет места на катушке трансформатора для дополнительной обмотки, то вместо дополнительной обмотки можно использовать часть наружной обмотки. Для этого осторожно вскрывают слой внешней изоляции катушки, чтобы получить доступ к последнему слою обмотки, выполненному, как обычно, виток к витку. От конца этой обмотки в "обнаженном" слое отсчитывают некоторое число витков. Осторожно счищают эмаль последнего отсчитанного витка.

При измерении один щуп вольтметра подключают к концу обмотки, в другой щуп зажимают иголку. Омметром измеряют сопротивление всех обмоток, обмотка с большим сопротивлением является первичной.

В случае когда имеются еще обмотки с большим сопротивлением, в качестве первичной принимают одну из обмоток с малым сопротивлением и на нее подают низкое переменное напряжение, например, 6 В от какого-либо силового трансформатора.

Подают напряжение на первичную обмотку и замеряют напряжение на всех обмотках. Если использовали в качестве первичной обмотку с малым сопротивлением, то определяют первичную обмотку трансформатора. Подав на нее напряжение сети, еще раз проводят измерение напряжения на всех обмотках.

Пользуясь данными измерений напряжений на каждой обмотке, число витков определяют по формуле: Wn=U n Wдоп/Uдоп, где W n - число витков какой-либо обмотки, U n - напряжение на этой обмотке, Uдоп - напряжение на дополнительной обмотке,Wдоп - число витков дополнительной обмотки.

Как узнать мощность и ток трансформатора по его внешнему виду

Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после - умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

Итак, давайте найдем площадь сечения окна.

Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

В этой формуле: j - плотность тока в А/кв.мм, f - частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

Как правильно рассчитать количество витков трансформатора для разных типов устройств

витки в трансформаторе

Вопрос-ответ

При необходимости самостоятельно изготовить устройство питания электронной аппаратуры вопрос, как самостоятельно рассчитать количество витков трансформатора и как определить данные для проводов первичной и вторичных обмоток, стоит наиболее часто.

Правильный расчет возможен при наличии исходных данных по характеристикам мощности потребителей, напряжений входа и выхода. показатели массы и габаритов устройства, также могут накладывать ограничения.

Содержание

На что влияет количество витков в трансформаторе

Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.

Методика расчета

Полный расчет трансформатора довольно сложен и учитывает такие параметры:

  • напряжение и частоту питающей сети;
  • число вторичных обмоток;
  • ток потребления каждой вторичной обмотки;
  • тип материала сердечника;
  • массогабаритные показатели.

На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.

Методика не требует особенных знаний сложности, и при наличии опыта занимает немного времени.

Для расчета требуются следующие данные:

  1. Количество выходов.
  2. Напряжение и потребляемый ток каждой обмотки.

В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:

Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:

Зная мощность, можно определить сечение сердечника:

Полученное значение сечения будет выражено в квадратных сантиметрах!

Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:

  • броневые;
  • стержневые;
  • О-образные.

Также различаются и способы изготовления магнитопроводов:

  • наборные – из отдельных пластин;
  • витые, разрезные или сплошные.

Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.

Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:

где К – коэффициент, который зависит от материала и типа сердечника.

Для упрощения вычислений приняты следующие значения коэффициента:

  1. Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
  2. Для разрезных магнитопроводов К=50.
  3. Для О-образных сердечников К=40.

Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.

Зная параметр W, легко определить количество витков для каждой из обмоток:

Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.

Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.

На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:

Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.

Полученные значения округляют до ближайшего большего значения из стандартных диаметров проводов.

Альтернативный метод по габаритам

Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.

Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:

Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:

Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.

Использование мультиметра

Используя мультиметр, можно найти данные для пересчета обмоток имеющегося трансформатора. Для этого необходимо выполнить дополнительную катушку из любого имеющегося в наличии провода. После подключения устройства в сеть необходимо измерить напряжение на дополнительной катушке. Теперь можно легко подсчитать необходимое число витков на вольт и выполнить перерасчет трансформатора под нужные требования.

Таблица количества вольт на виток

Для того, чтобы постоянно не выполнять расчеты, можно воспользоваться таблицей, в которой приведены усредненные данные обмоток в зависимости от мощности:

Мощность, P Сечение в см 2 , S Количество вит. /В, W Мощность, P Сечение в см 2 , S Количество вит. /В, W
1 1.4 32 50 9.0 5.0
2 2.1 21 60 9.8 4.6
5 3.6 13 70 10.3 4.3
10 4.6 9.8 80 11.0 4.1
15 5.5 8.4 90 11.7 3.9
20 6.2 7.3 100 12.3 3.7
25 6.6 6.7 120 13.4 3.4
30 7.3 6.2 150 15.0 3.0
40 8.3 5.4 200 17.3 2.6

Примеры реальных расчетов

В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:

  • напряжение сети – 220В;
  • выходное напряжение – 14В;
  • ток вторичной обмотки – 10А;

Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт

Габаритная мощность: P=1.25∙ 140=175 Вт.

Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см 2

Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см 2 .

Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт

Для обмоток общее количество витков равняется:

  • первичная обмотка n1=220∙3.6= 792 витка;
  • вторичная обмотка n2=14∙3.6=50 витков.

Поскольку трансформатор мощный, то падение напряжения на первичной обмотке можно не учитывать.

Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.

Ближайшее стандартное значение – 2.4 мм.

Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.

Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.

Ближайшее стандартное значение имеет как раз такое значение.

Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.

Читайте также: