Как работает заземление электрооборудования

Обновлено: 02.05.2024

Почему земля проводит ток и как работает заземление

Что такое заземление и как оно работает

Итак, вы все прекрасно знаете, что заземление - это преднамеренное соединение металлических корпусов электроприборов или любой точки сети с заземляющим устройством. При этом в электротехнике благодаря заземлению обеспечивают защиту от опасного действия электрического тока путем снижения напряжения прикосновения до вполне безопасных уровней для человека.

Но возникает вполне логичный вопрос: "Так почему же земля является таким хорошим проводником?" Давайте разбираться.

За счет чего земля проводит ток

Безусловно, сама по себе земля - это не изолирующий материал, ведь в ней присутствуют различные жидкости и растворы солей, которые вполне способны проводить электрический ток.

Но такой проводник далеко не идеальный, а при этом все равно прекрасно работает и вот почему.

Бесконечно большое сечение равно нулевому сопротивлению

Давайте рассмотрим вот такую таблицу:

А теперь вспомним вот такую формулу расчета сопротивления:

Так вот, на самом деле нам абсолютно неважно какова длина и удельное сопротивление. Ведь площадь поперечного сечения земли настолько велика, что сопротивление можно считать равным нулю.

Для понимания давайте проведем сравнительный анализ, и возьмем из таблицы выше серебро и такой материал как графит.

Как вы уже поняли из таблицы, серебро гораздо лучше проводит электричество (за счет меньшего удельного сопротивления), чем графит. Но если мы увеличим площадь поперечного сечения графита в миллион раз, то уже сопротивление графита будет существенно ниже сопротивление серебра. Точно такой же эффект срабатывает и в случае с землей.

Вроде с нулевым сопротивлением земли разобрались, и, казалось бы, все просто замечательно, но есть один очень важный момент. Для того, чтобы опасный потенциал уходил именно через заземление, а не стал причиной поражения человека электрическим током, оно должно соответствовать целому ряду требований.

Особенности заземляющего устройства

Итак, для того, чтобы заземление работало так как нужно, оно должно обладать минимальным переходным сопротивлением, а это в свою очередь достигается за счет следующих факторов:

  1. Должна быть обеспечена большая площадь контакта в местах соединения контура. То есть сварочный шов на пластинах должен быть не менее 10 см.
  2. Всю систему электродов нужно обязательно закапывать ниже линии промерзания грунта.
  3. Общее сопротивление заземляющего контура не должно превышать 4 Ом. Если при замерах специальными приборами данное условие не выполняется, тогда необходимо увеличить заземляющий контур, до достижения требуемых параметров.

Вот так заземление выполняет свою защитную функцию по причине того, что земля обладает бесконечно большим сечением. А так как ток протекает только по пути наименьшего сопротивления, то даже в случае пробоя изоляции у электроприбора, корпус которого заземлен, ничего страшного не случится, так как опасный потенциал уйдет через заземляющий контур в землю.

Понравилась статья, тогда ставим палец вверх, пишем комментарии и подписываемся. Спасибо за внимание!

Все, что обязательно надо знать про заземление


GeekBrains

Все, что обязательно надо знать про заземление

Заземление — электрическое соединение предмета из проводящего материала с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т.д. Устройство заземления в России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ).

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Ошибки в устройстве заземления

Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.

Объединение рабочего нуля и PE-проводника

Все, что обязательно надо знать про заземление

Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токонесущими в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено). Неправильное разделение PEN-проводника

Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем.

Опасность данной схемы в том, что на заземляющем контакте розетки, а следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:
- Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);
- Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Защитная функция заземления

Защитное действие заземления основано на двух принципах:

- Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

- Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые сотые доли секунды — время срабатывания УЗО).

Работа заземления при неисправностях электрооборудования Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

- Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

- Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RGIF, где RG ? сопротивление заземлителя, IF ? ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.

- Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,010,3 секунды — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.

- Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,010,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля.

Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР.

На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры.

Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Киргхофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделений нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Заземляющие устройства


GeekBrains

Заземляющие устройства

При повреждении изоляции металлические части электроустановок и оборудования, обычно не находящиеся под напряжением, могут оказаться под полным рабочим напряжением. Прикосновение к ним человека связано с опасностью поражения электрическим током.

Одной из мер защиты людей в этих случаях является заземление, т. е. преднамеренное присоединение к земле (через заземляющую проводку и заземлитель, например вбитые в землю трубы) металлических частей электрооборудования и электроустановок, которые могут оказаться под напряжением вследствие нарушения изоляции. Сущность этой меры защиты заключается в следующем.

При повреждении изоляции через место замыкания в землю протекает ток. По пути протекания тока создается падение напряжения между оказавшейся под напряжением металлической частью и землей, при этом наибольшее значение имеет " напряжение относительно земли " , т. е. напряжение между корпусом электроприемника и точками земли, находящимися вне зоны растекания токов в земле. Практически такие точки отстоят от сосредоточенного заземлителя на расстоянии 20 м и более (рис. 1).

Кривая распределения напряжения относительно земли

Рис. 1. Кривая распределения напряжения относительно земли

Напряжение между двумя точками на пути протекания тока, к которым одновременно может прикоснуться человек (например, между корпусом электроприемника и тем местом, где стоит человек, или между ногами человека, идущего или стоящего в зоне растекания тока), называется «напряжением прикосновения» («шага»). Это напряжение будет всегда меньше «напряжения относительно земли».

В сетях с малыми токами замыкания на землю, т. е. там, где генераторы и трансформаторы работают с изолированной нейтралью или нейтралью, заземленной через компенсирующее сопротивление, безопасность персонала от прикосновения к металлическим частям, находящимся под напряжением, может быть достигнута путем выбора сопротивления заземления , при котором напряжение прикосновения будет находиться в допустимых пределах.

В сетях с большими токами замыкания на землю, т. е. там, где нейтраль трансформаторов или генераторов заземлена наглухо или через небольшое сопротивление, безопасность может быть обеспечена только путем возможно быстрого автоматического отключения поврежденного участка. Такое отключение должно осуществляться либо релейной защитой, либо аппаратами защиты (автоматическими выключателями или плавкими предохранителями ) . Соответствующим расположением заземлителей в целях выравнивания потенциалов можно добиться дополнительного снижения напряжений прикосновения и шага.

Заземляющие устройства , сооружаемые в основном для обеспечения условий безопасности персонала, должны удовлетворять также требованиям, обусловленным режимами сетей и защитой от перенапряжений.

Последовательное включение в заземляющий проводник заземляемых элементов установки не допускается , так как при изъятии какого-либо элемента установки для ремонта, замены и т. п. произойдет разрыв цепи заземления со всеми вытекающими отсюда последствиями.

При параллельном присоединении (т. е. посредством отдельных ответвлений) в этом случае сохраняется непрерывность цепи заземления (заземляющей магистрали). Заземление присоединенных к ней элементов установки не нарушается (рис. 2).

Схемы присоединения заземленных электроприемников к заземляющей магистрали

Рис. 2. Схемы присоединения заземленных электроприемников к заземляющей магистрали

Способы присоединения заземляющей проводки к заземляемым конструкциям, корпусам аппаратов, машин, к заземлителям и т. д., а также соединения заземляющих проводников между собой должны обеспечивать надежный контакт. Неудовлетворительное соединение может привести к нарушению функций, выполняемых заземляющим устройством.

Наибольшую надежность соединения обеспечивает сварка. Болтовое соединение применяется только в тех местах заземляющей проводки, где необходимо отсоединение от общей заземляющей сети, например при ремонтах или испытаниях. При наличии в этом случае сотрясений или вибрации должны быть приняты меры против ослабления контакта (контргайки, контрящие шайбы и т. п.).

Для обеспечения надежного соединения сболчиваемые поверхности тщательно зачищаются.

Сварка заземляющей проводки выполняется внахлестку с длиной шва, равной двойной ширине при прямоугольном сечении или шестикратному диаметру - при круглом сечении проводников.

Согласно Правилам устройства электроустановок при невозможности присоединения заземляющих проводников к трубопроводу (протяженный заземлитель) при помощи сварки допускается выполнение его при помощи хомутов, контактная поверхность которых должна быть облужена. Трубы в местах накладки хомутов должны быть зачищены.

Правилами устройства электроустановок также требуется, чтобы заземление оборудования, подвергающегося частному демонтажу или установленного на движущихся частях, выполнялось при помощи гибких проводников.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Что такое заземление — простыми словами для новичков объясняю технические способы защиты человека от действия электрического тока, которые работают даже при случайных авариях

Что такое заземление и почему ему стоит уделять внимание интересует тех владельцев домов, кому не безразлично здоровье и безопасность всех членов семьи.

Этой статьей я объясняю простыми словами, как оно работает и какие научные схемы разработаны для защиты людей от поражения электрическим током в различных случаях возникновения аварийных ситуаций.

Содержание статьи

Как просто представить работу заземления в бытовой проводке

Опасность электрической энергии очень хорошо помогает понять принцип работы мышеловки: проголодавшаяся мышка выходит из норки, а перед ней на специальной подставочке лежит аппетитная корочка хлеба, да еще сдобренная капелькой ароматного масла.

Подходит зверек к предложенному угощению, чуть-чуть дотрагивается до него, а скрытая сила мощной пружины моментально бьет по мышке металлической рамкой… Точно так, совершенно неожиданно, человек получает травмы от электричества.

Электрический ток всегда протекает только внутри замкнутой цепи под действием приложенного напряжения. Он направлен от потенциала большей величины к меньшему. Когда же эта цепочка разорвана, то тока нет, а риск попасть под его действие огромный.

В наших жилищах существует довольно много факторов, когда опасный потенциал, например, фазы может проникнуть на токопроводящие конструкции (корпус бытового прибора), и остаться на них потому, что дальнейшая цепь изолирована диэлектрическим слоем.

Этим свойством пользуются «шутники», не до конца представляющие последствия своих действий.

Опасные шалости

Стоит только создать контакт высокого потенциала с землей, как через нее (почва обладают высокой проводимостью) сразу протекает ток, отводящий эту энергию. Если на его пути оказывается живое существо, то судьба его не завидна.

Поэтому все токопроводящие корпуса современных бытовых приборов специально (преднамеренно) соединяют через заземляющие устройства (ЗУ). Этим достигается моментальное стекание опасного заряда через выделенный контур земли в сети с глухозаземленной нейтралью.

Сеть с глухозаземленной нейтралью

По цепочке РЕ проводника создается надежный электрический контакт через землю с источником напряжения главного распределительного щита (ГРЩ) на питающей подстанции.

При соединении потенциалов фазы, оказавшейся на корпусе, и земли возникает ток короткого замыкания. Его должен отключить автоматический выключатель SQ, подобранный по местным условиям.

Этот процесс называется защитным отключением. Он подробно изложен в главе 1.7 ПУЭ.

Схема заземления с глухозаземленной нейтралью используется в нашей стране на подстанциях 0,4 кВ с трехфазными генераторами. Их обмотки собраны по схеме «звезда» с общей точкой, выведенной на заземляющее устройство.

Как работает глухозаземленная нейтраль

Аналогичным образом подключены потребители. За счет такого соединения обеспечивается равенство потенциалов земли и нейтрального провода.

Заземление создается заранее. Его назначение — защита людей и электротехнических устройств от воздействия опасного электрического тока.

Кроме защитной функции оно может выполнять еще и технологические задачи, связанные с нормальной работой электротехнического оборудования.

Как обыкновенный человек может попасть под действие тока в собственном жилище, на производстве и в любом другом месте: краткое пояснение физических процессов

Правила безопасности учитывают несколько вариантов развития подобных событий и предлагают технические решения для спасения от них. Это важно хорошо понимать.

Какие опасности скрыты в схеме существующей бытовой сети

Современные квартиры буквально напичканы электрическими помощниками, облегчающими наш быт. Их производители стремятся максимально обезопасить пользователей, но от них не все зависит.

Любая техника имеет ограниченный ресурс, а качество ее изготовления, складского хранения и эксплуатации не всегда соответствует техническим нормативам. Поломки возникают случайно в самых неожиданных местах.

Например, через сгоревший ТЭН с нарушенной изоляцией фаза элементарно распространяется через окружающую его водную среду в стиральной или посудомоечной машине.

Сгоревший ТЭН

Подобное повреждение диэлектрического слоя происходит довольно часто. При включении электрического прибора с нарушенной изоляцией высокий потенциал фазы переходит на токопроводящий корпус.

Стоит человеку до него дотронуться, как он попадает под напряжение, а через его тело начинает протекать опасный ток.

Как бьет током

Его величина по закону Ома ограничивается только общим сопротивлением участка цепи, которое носит случайный характер. Сила протекающего тока может иметь значения от десятых долей ампера и значительно больше. Исход получения электротравмы предсказуем.

Если же корпус бытового прибора надежно заземлен, то картина протекания тока через человека резко меняется.

Как работает заземление

Сопротивление заземляющего контура строго регламентируется и поддерживается на безопасном пределе. За счет этого потенциал фазы стекает с корпуса. Когда к нему дотронется человек, то создаваемая нагрузка через его тело своей силой не сможет причинить большого вреда организму.

А чтобы его еще уменьшить в схему вводятся:

    , реагирующие даже на перегруз, а не только короткие замыкания; , срабатывающие от утечек.

Однако в этом вопросе тоже не все так просто, ибо даже правильно настроенный автомат может банально не сработать из-за того, что при его выборе не учтено сопротивление петли фаза ноль. Таких случаев встречается много: проводка выгорает (возможно и здание), а защита не отрабатывает.

По этой причине включение УЗО в схему обязательно: оно отработает от возникшей утечки.

Как можно получить удар током от случайных источников напряжения

Жилые и производственные помещения содержат в своей конструкции не только закрытое изоляцией электрическое оборудование, но и массу технических систем (водопроводы, газопроводы, антенны, воздуховоды, арматура стен, рельсы и шахты лифтов…) выполненных из стальных или иных токопроводящих материалов.

В силу различных обстоятельств на них может быть подано напряжение (удар молнии, пробой изоляции бытовой сети, ошибки электриков или домашних мастеров…).

Когда человек прикоснётся к такому предмету, то через него может потечь опасный разряд.

Удар током

Его величина не предсказуема, зависит от многих случайных факторов, но она весьма опасна для жизни.

Поэтому все токопроводящие магистрали, даже не относящиеся к электрической схеме, подключаются к контуру заземления здания. Такое их соединение называется ОСУП — основная система уравнивания потенциалов. Она призвана надежно отводить случайно появляющийся опасный потенциал из зоны обитания людей.

В многоэтажных зданиях современного панельного или монолитного строительства подобные технические системы, например, трубопроводы различного назначения имеют большую протяженность, достигая нескольких сотен метров.

Если через них станет проходить ток большого разряда, то на такой длине, имеющей увеличенное сопротивление, возникает падение напряжения. Оно тоже опасно для людей, поэтому подлежит снижению.

С этой целью во всех квартирах все токопроводящие части, не относящиеся к электрической схеме (трубы, краны, батареи, даже акрилловые ванны, собирающие статическое электричество), тоже подлежат подключению к контуру заземляющего устройства здания.

Такое соединение называется ДСУП или дополнительная система уравнивания потенциалов.

Система уравнивания потенциалов

Здесь тоже важно использовать защиты типа УЗО или дифавтоматы.

Все эти процессы важно представлять для того, чтобы не совершать грубых ошибок и не нарушать действующие правила безопасности.

А как работает заземляющая конструкция в этих ситуациях я рассказываю дальше.

Каким 4 главным требованиям должно отвечать любое заземление

1. Защитное заземляющее устройство создается для эффективного отвода опасных потенциалов на контур земли, случайно проникающих на токопроводящие конструкции, не предназначенные для работы в составе электрической схемы.

2. ЗУ должно надежно соединять все составные части электроустановки, включая конструкции открывающихся металлических дверок шкафов и щитов. Обычно для этого используют гибкие медные проводники с оболочкой желто-зеленого цвета.

Заземление щита

3. Общее сопротивление электрических контактов системы заземления регламентировано пунктом 1.7.103. ПУЭ. Оно не должно быть выше, чем 4÷30 Ом.

Сопротивление заземлителей

Этим достигается надежность протекания аварийных токов на глухозаземленную нейтраль генератора в сети 220 вольт.

Глухозаземленная нейтраль

4. На этапе строительства необходимо предусматривать равномерность распределения нагрузок за счет монтажа системы выравнивания потенциалов.

Полезная информация

Во многих ситуациях вопрос обеспечения безопасности электроустановки можно решить не только за счет установки ЗУ, но и переводом сети электроснабжения со схемы с глухозаземленной нейтрали на изолированную простым подключением к разделительному трансформатору.

Сеть с изолированной нейтралью

Этот способ широко применяется на всем медицинском оборудовании, а разделительные трансформаторы имеются в продаже.

4 основных системы заземления жилых зданий

Электрическая связь потребителей с глухозазмеленной нейтралью подстанции может выполняться разными способами. При этом цепочка прохождения аварийных токов претерпевает изменения, что сказывается в конечном счете на безопасности людей.

Кратко разберем четыре наиболее распространенные электрические схемы.

Самая старая система заземления TN-C

От трансформаторной подстанции 0,4 кВ к потребителям по кабельной линии подводятся три потенциала фаз звезды и общая нейтраль, заземленная на стороне генератора. На стороне потребителя смонтировано повторное заземление.

Система заземления TN-C

Нейтраль используется для совмещенной передачи как рабочих нагрузок, так и аварийных токов.

Корпуса электрических приборов не заземляются. При пробое изоляции высокий потенциал напряжения проникает на корпус, а прикоснувшийся к нему человек попадает под действие тока.

Система заземления TN-C

Это наиболее опасная схема. Для снижения рисков при работе со сложным электротехническим оборудованием в ней раньше применялось зануление.

Суть этого технического мероприятия состоит в том, что корпус прибора, а чаще всего это были инструменты типа электродрели, преднамеренно до начала работы подключался к нулевому проводу.

Когда происходил пробой изоляции, то фаза попадала на корпус. Сразу в сети питания возникало короткое замыкание. Его должен был отключить автоматический выключатель. За счет его срабатывания выполнялась защита работника.

Зануление повышает безопасность пользования электрическим инструментом в схеме TN-C, но решает этот вопрос только частично.
  • для обеспечения защитной функции работнику необходимо точно выполнить ряд организационных и технических мероприятий;
  • ток возможного КЗ следует надежно отгородить от тела работника, что требует обязательного использования диэлектрических перчаток и обуви, а также защиты глаз;
  • в случае зануления стационарно установленного электроприбора нельзя путать местами ноль с фазой, что часто допускают даже электрики. В такой ситуации опасный потенциал автоматически попадает на открытый корпус, резко увеличивая риск получения электротравмы.

Использование зануления в быту может быть выполнено простым соединением нулевого и заземляющего контактов в розетке. Но делать это нельзя потому, что вместо повышения безопасности можно создать массу неприятностей не только себе, но и окружающим людям.

Схема TN-C дорабатывает свой срок на старом оборудовании прошлого века, а во вновь монтируемом уже не монтируется.

Самая безопасная система заземления TN-S

Здесь в кабельную линию дополнительно подключается пятая жила за счет деления нейтрали на две отдельные магистрали, предназначенные для протекания:

  • рабочих нагрузок по N проводу;
  • аварийных токов по PE проводнику.

Система заземления TN-S

К магистрали РЕ проводника предъявляются очень жесткие требования по монтажу и эксплуатации. Внутри него, в отличие от рабочего нуля, запрещено устанавливать любые коммутационные аппараты.

За счет этого он имеет минимально возможное электрическое сопротивление, по которому отводятся токи аварийных режимов.

Система заземления TN-S

Единственный недостаток этой схемы — повышенные материальные затраты на дорогие кабельные линии.

Современная модификация системы заземления TN-C-S

Поскольку оперативно перевести все здания страны со старой схемы TN-C на новую TN-S практически невозможно, да и очень затратно, то сейчас разработан и реализуется проект TN-C-S.

В нем от ТП 0,4 кВ идет старый кабель с четырьмя жилами. Внутри вводного силового щита монтируется главная защитная шина (ГЗШ), которая подключается на контур повторного ЗУ.

Система заземления TN-C-S

PEN проводник, приходящий от трансформаторной подстанции, на ГЗШ расщепляется на два потока:

  • рабочий ноль N;
  • защитный PE.

В этой схеме для отвода аварийных токов внутри здания работает уже отдельный РЕ проводник. За счет его использования безопасность пользования электрическими приборами значительно повышается.

Перевод зданий с TN-C на TN-C-S выполняют профессиональные бригады электриков по специально выданному наряду на производство работ. Они уже учтены в новом проекте электроснабжения здания.

Любые самостоятельные эксперименты по подключению своих электроприборов к самодельным контурам ЗУ владельцами квартир многоэтажных зданий неуместны. Причин для этого очень много, а использовать уже заземленные трубопроводы и металлоконструкции — опасно.

Они, благодаря неумелым действиям, в большинстве случаев только повышают риски поражения людей электрическим током.

Эффективная система заземления TT для частных зданий, питаемых воздушными линиями электропередач

Воздушные ЛЭП массово распространены в сельской местности. Они монтируются по старой четырехпроводной схеме.

Система заземления TT

Владельцы частных домов могут значительно повысить свою безопасность за счет создания дополнительного контура ЗУ и подключения к нему РЕ проводниками токопроводящих корпусов всех бытовых приборов.

Эту работу можно выполнять самостоятельно.

2 типа устройств заземления, разработанные по научным рекомендациям для частного дома

Домашние мастера, начитавшись упрощенных рекомендаций в интернете, часто допускают серьезные ошибки при монтаже контура ЗУ своими руками. Важно понимать, что надежно обеспечить электрическую безопасность жилища могут только конструкции, отвечающие требованиям научных разработок.

Для самостоятельного изготовления контура необходимо выполнить требования ПУЭ, изложенные в главе 1.7.

Потребуется рассчитать его размеры и заглубление конкретно под ваши условия местности, исходя из круглогодичного состояния сопротивления почвы и ряда других факторов. Им нельзя придавать какие-то усредненные значения.

Размеры контура заземления

После монтажа контура потребуется выполнить контрольные замеры и при необходимости внести коррективы в конструкцию. Возможно, придется доставлять дополнительный электрод.

Однако этот процесс можно значительно упростить. Современная промышленность выпускает модульное штыревое заземление, продаваемое готовым для сборки комплектом.

Штыревое заземление

Его монтаж на большую глубину выполняется относительно просто за счет применения специальных мощных перфораторов.

Работа перфоратором

Штыревое заземление монтируется довольно быстро, но его приобретение обходится дороже.

Обе технологии сборки этих ЗУ у меня расписаны отдельной статьей на блоге. Приглашаю ознакомиться.

Почему заземляющее устройство не всегда работает эффективно и как повысить электрическую безопасность жилого дома

Если анализировать рабочие режимы ЗУ, то здесь обычно проблем не возникает, да и вопрос этот домашнего мастера практически не касается. Поэтому чуть подробнее рассмотрим работу заземления при аварийных ситуациях, когда по ним стекают огромные токи КЗ либо других повреждений.

Нас должно интересовать поведение ЗУ при:

  • ударе молнии в дом, питающую линию электропередачи или просто в близкорасположенный грунт;
  • возникновении токов утечек через поврежденную изоляцию бытового прибора;
  • обрыве рабочего нуля.

Как заземление защищает здание от удара молнии

В системе молниезащиты здания мощный разряд молнии бьет по молниеприемнику и переходит на молниетвод, а затем стекает через заземляющее устройство на потенциал земли минуя здание.

Молниезащита

Все эти три элемента работают последовательно. Причём каждое из них должно надежно передавать огромные мощности энергии, при этом остаться целым, не сгореть. Иначе молния пройдет на дом.

Однако следует учесть еще один момент: удар атмосферного электричества может прийтись не только на молниеприемник, но и на:

  1. питающую воздушную ЛЭП;
  2. близкорасположенные деревья или строения;
  3. почву.

Внутренняя молниезащита

Во всех этих ситуациях на вводе здания окажется импульс перенапряжения порядка 6 кВ. Он может причинить много бед. Поэтому его постепенно снижают в трех зонах здания различными классами модульных УЗИП — устройствами защиты от импульсного перенапряжения.

Классы УЗИП

В ограничении импульса перенапряжения качество монтажа заземления играет далеко не последнюю роль.

Какая роль отведена заземляющему устройству в защитах с УЗО и дифавтоматами

Орган сравнения фаз устройства защитного отключения постоянно вычисляет момент возникновения тока утечки.

Как работает УЗО

Когда потенциал фазы прошел на корпус бытового прибора, подключенного к заземлению, то возникшую утечку сразу же почувствует УЗО и снимет питание с поврежденного оборудования.

Если же корпус изолирован от земли, а на нем присутствует опасный потенциал, то никакой утечки просто не будет — тогда УЗО не сработает. В этой ситуации человек может создать путь тока через свое тело. Только в этом случае защита отключит питание.

Вот таким образом способы подключения УЗО и заземляющего контура влияют на безопасность человека:

  • в первом случае удар током вообще исключен (системы заземления TN-S, TN-C-S, TT);
  • во втором (TN-C) —пострадавший попадает под действие тока на время, необходимое защите для вычисления утечки и оперативного снятия питания.
УЗО и дифавтомат выполняют свои защитные функции даже в схеме двухпроводного электроснабжения, значительно ограничивая пребывание пострадавшего под действием тока.

Таким образом ЗУ повышает защитные функции модулей, работающих с органом сравнения фаз.

Роль заземления в ограничении высокочастотных помех современных электронных устройств

Компьютеры, микроволновки и другая
бытовая техника с импульсными блоками питания предназначены для надежной работы в трехпроводной схеме с заземляющим РЕ проводником.

Если их подключить к обычной двухпроводной схеме, которая до сих пор распространена в наших старых домах, то относительно их корпуса и земли, например, близкорасположенного водопроводного крана или батареи отопления, можно замерить 110 вольт.

Напряжение микроволновки

Объясняется это конструкцией фильтров, предназначенных для подавления высокочастотных помех.

фильтр высокочастотных помех

Заземляющий контакт их вилки питания через шнур надежно соединен с металлическим корпусом, а последний через конденсаторы фильтра связан с потенциалами рабочего нуля и фазы.

Универсальный фильтр

За счет образованного таким образом емкостного делителя на корпусе присутствует половина фазного напряжения сети. Однако в трехпроводной схеме этот потенциал надежно отводится по PE проводнику на контур здания, что обеспечивает безопасность пользования прибором.

В двухпроводной схеме заземления нет, потенциалу стекать некуда. При возникновении контакта между человеком и землей ток пойдет через наше тело.

Поэтому исключайте такую возможность хотя бы отодвиганием подальше подобной техники от заземленных конструкций.

Чем опасен обрыв нуля в трехфазной схеме TN-C

Это еще один случай, когда электрики энергоснабжающей организации могут доставить большие неприятности своим потребителям. Он характерен не только для сети TN-C, но и TN-C-S.

Обрыв нуля в трехфазной сети

Более детально этот вопрос раскрыт статьей про формулу электрического напряжения. Нас в этой ситуации может спасти только реле РКН. Без его использования могут погореть холодильники, микроволновки и другая дорогая техника.

Это еще одна веская причина для перехода на современную систему заземления TN-S с более безопасной схемой подключения заземляющего устройства.

Заканчивая статью рекомендую посмотреть видеоролик владельца Алекс Жук «Что такое заземление», где он простыми словами показывает его роль при ликвидации аварийных процессов.

Напоминаю, что сейчас вам удобно прокомментировать статью или задать вопрос для его выяснения.

Как работает и для чего нужно заземление - расставим точки над i

На вопрос «зачем нужно заземление» есть простой ответ – для защиты от удара током. Но это на бытовом языке, а что именно делает заземление с точки зрения профессионалов – каким оно должно быть , чтобы иметь право так называться?

В этой статье мы разберёмся, не углубляясь в дебри, что именно должно делать заземление и в чём разница между заземлением и занулением .

Две задачи: как работает заземление

Качественное заземление должно выполнять две задачи :

- снижать напряжение прикосновения ;

- отключать участок проводки, в котором возникла утечка тока – автоматически .

Снижение напряжения прикосновения Снижение напряжения прикосновения

Давайте разберём эти пункты подробнее .

Напряжение прикосновения это напряжение на корпусе прибора, например стиральной машины, которое там возникает, если внутри машины оголится провод и напряжение попадёт на стальную оболочку прибора. Без заземления это напряжение будет равно 220 Вольт, то есть оно будет смертельно опасным .

Цитата из ПУЭ 7:

1.7.24. Напряжение прикосновения — напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Когда мы подключаем корпус прибора к заземлению, мы создаём для тока утечки путь с низким сопротивлением , а как мы знаем из курса физики, напряжение на участке цепи тем меньше, чем меньше сопротивление этого участка. Если заземление выполнено как следует, такое напряжение не превысит нескольких Вольт .

Отличие зануления от заземления Отличие зануления от заземления

Цитата из ПУЭ 7:

1.7.38. Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Автоматическое отключение неисправного участка работает двумя способами – и именно здесь возникает разница между заземлением и занулением . При занулении (система TN-S или TN-C-S), когда корпус прибора и заземляющее устройство соединяются с нулём в щитке на вводе, автоматическое выключение выполняют обычные автоматы или пробки.

А при заземлении (система ТТ), когда земля и ноль это два совершенно разных провода, автоматическое отключение выполняет УЗО и именно поэтому УЗО для «чистого» заземления это обязательное требование .

Давайте подытожим . Правильное заземление должно уводить ток утечки обратно на подстанцию, через ноль или землю – чтобы аварийные приборы не «бились током», а при сильной утечке, в результате которой может возникнуть пожар – этот участок проводки должен отключаться . Только при этих условиях можно считать, что заземление выполнено правильно и работает как следует.

Спасибо за чтение – пусть ваша провода будет безопасной, а отдельное спасибо за лайк и подписку – оставайтесь на нашем канале!

Читайте также: