Как подобрать амперметр и трансформатор тока

Обновлено: 23.04.2024

Простой расчет трансформаторов тока и датчиков тока для схем защиты ИИП

Трансформаторы тока используются в схемах защиты силовых ключей от перегрузки по току в импульсных источниках питания (ИИП). Еще одним фактором применения трансформатора тока в ИИП является необходимость потенциальной развязки цепей схемы управления ИИП и цепей силовой части. Поэтому их расчет является актуальным при создании ИИП.

В данной статье мы рассмотрим детально простой расчет трансформаторов тока одно и двухтактных ИИП.

Расчет однотактного трансформатора тока.

Исходные данные.

Амплитуда тока силового ключа Iкл_max=3 А .

Напряжение срабатывания защиты схемы управления Uзащ=1 В .

Максимальная длительность импульса tимп.макс.=25 мксек .

Минимальная длительность импульса tимп.мин.=10 мксек .

Частота переключения fп=20 кГц .

Рисунок 1. Предлагаемое решение получения сигнала для схемы защиты верхнего силового ключа с помощью трансформатора тока в ШИМ регуляторе тока нагрузки.

Решение включает в себя трансформатор тока Т1, датчик тока - резистор R2, фильтр низких частот – резистор R1 и конденсатор C1.

Данное решение применимо для так же и для понижающего ИИП.

Расчет.

Для нормальной работы защиты схемы управления и исключения ложных срабатываний сигнал, подаваемый на вход защиты должен быть уменьшен на 25-30%. Таким образом рабочее напряжение на датчике тока R2 должно быть: Uдт=Uзащ-30%=0,7 В .

Для расчета трансформатора тока необходимо задаться коэффициентом трансформации. Рекомендации по выбору коэффициента трансформации основаны на уменьшении тока вторичной обмотки до десятков или сотен миллиампер. Оптимальным является диапазон 50÷100 mА. В нашем случае примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= ( Iкл_max)/(Iw2_max)= 3/0,1=30 . Обычно у трансформаторов тока первичная обмотка делается одним витком. Тогда число витков вторичной обмотки w2= Kтр*w1=30*1=30 витков . Рассчитаем сопротивление датчика тока R2= ( Uдт)/(Iw2_max )= 0,7/0,1=7 Ом . Выберем в соответствии с рядом сопротивлений Е24, R2=7,5 Ом. Тогда рабочее напряжение датчика тока и рабочее напряжение на входе схемы защиты Uдт= Iw2_max*R2=0,1*7,5=0,75 В . Это значение соответствует условиям рекомендаций.

Расчет мощности выделяемой на резисторе R2 произведем по формуле PR2=( Iw2_rms) 2 *R2 .

В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((tимп.макс.)/T) .

Где T= 1/fп = 1/20000=0,00005=50*10 -6 ,сек. - период частоты переключения.

Следовательно PR2= 0,0707 2 *7,5=0,0375 Вт . Мощность выделяемая на резисторе R2 имеет низкое значение.

Для выбора сердечника трансформатора тока руководствуемся следующими рекомендациями.

Для высокочастотных (десятки-сотни кГц) ИИП в качестве материала сердечника применяются в основном ферриты. Тип сердечника может быть любой, но предпочтение отдается кольцевым сердечникам. Кольцевой сердечник легко можно одеть на силовой провод или на вывод компонента ИИП. Например, в блоках питания персональных компьютеров часто встречается такое конструктивное решение. Трансформатор тока там установлен на выводе разделительного конденсатора.

Провод, напрямую пропущенный сквозь кольцо, представляет собой 1 виток.

Определяем требуемое сечение сердечника по формуле Sст= (Uдт*tимп.макс.)/(w2*dB) мм 2 .

Sст – сечение сердечника в квадратных миллиметрах.

Uдт – рабочее напряжение на датчике тока, вольт.

tимп.макс. – максимальная длительность импульса в микросекундах.

w2 - число витков вторичной обмотки, витков.

dB – перепад магнитной индукции за время импульса, Тесла.

Рекомендация по выбору dB.

Для однотактных применений dB не должно превышать значения 0,05 Тл. Иначе сердечник может войти в насыщение и форма импульса на датчике тока будет далека от реальной.

Выбираем сердечник из феррита марки 2000НМ1 типоразмер К16×10×4,5 с сечением сердечника Sст=13,5 мм 2 . Сечение выбранного сердечника должно быть обязательно больше расчетного.

Выбор сердечника обязательно должен учитывать способ крепления трансформатора тока. Например, если трансформатор тока крепится винтом, то внутренний диаметр сердечника должен позволить поместить обмотки, винт, изоляцию. При таком способе крепления винт можно использовать в качестве витка первичной обмотки.

Фильтр низких частот R1 – C2 предназначен для фильтрования высокочастотных помех, неизбежно появляющихся при переключении силового ключа.

Рекомендация по выбору: постоянная времени фильтра должна быть гораздо меньше минимальной длительности импульса τ=R1*C2≪ tимп.мин. . Делается это для того чтобы избежать искажения формы импульса. Примем τ=(1/20)*tимп.мин.= (1/20)*10*10 -6 =0,5 мксек .

Зададимся значением емкости конденсатора из ряда Е24, С2=470 pF . Тогда R1= τ/C2= (0,5*10 -6 )/(470*10 -12 )=1064 Ом . Выбираем значение резистора R1 из ряда Е24 1,1 кОм.

Еще одной из главных причин применения трансформаторов тока является выделение большой мощности на датчике тока при бес трансформаторной схеме. В сильноточных ИИП применение в качестве датчика тока просто резистора приводит к выделению мощности на нем в несколько ватт.

В качестве примера рассмотрим случай, когда ток ключа составляет 10 А и в качестве датчика тока применяется просто резистор. Остальные исходные данные такие же, как в нашем расчете приведенном выше. Тогда для обеспечения Uдт=0,7 В датчик тока должен иметь сопротивление

Тогда Iкл_rms=Iкл_max*√(tимп.мкса./T)=10*√(25*10 -6 )/(50*10 -6 )=7,07 А .

Мощность выделяемая на датчике тока составит PR_дт = (7,07 2 )*0,07=3,5 Вт.

Для надежной работы ИИП придётся установить резистор мощностью не менее 5 ватт. Применение в этом случае трансформатора тока приведет к сокращению мощности выделяемой на датчике тока в десятки раз.

Расчет окончен.

Моделирование работы однотактного трансформатора тока в программе Multisim.

Рисунок 2 . Модель ключа с трансформатором тока.

Как видно из скриншота, Пробник 1 (подключен к нагрузке) показывает амплитуду тока через нагрузку 3,01 А. Пробник 2 (подключен к датчику тока) показывает амплитудное значение тока через датчик тока 100 mА. Действующее значение тока 70,8 mА. Амплитуда напряжения на датчике тока 751 mВ. Частота 20 кГц. Ваттметр, подключенный к датчику тока, показывает мощность 37,4 милливатт. Все значения подтверждают расчет.

Рисунок 3. Осциллограммы напряжения на датчике тока и конденсаторе фильтра.

Как видно из осциллограмм амплитуда напряжения на датчике тока составляет 751 mВ и соответствует расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

ВАЖНО! При установке трансформатора тока в однотактных ИИП необходимо соблюдать фазировку обмоток! Иначе импульс напряжения на датчике тока будет иметь минусовую полярность, и схема защиты работать не будет.

Расчет двухтактного трансформатора тока.

Исходные данные.

Максимальный ток силовых ключей Iкл_max=2 А .

Напряжение срабатывания схемы защиты Uзащ=1 В .

Максимальная длительность импульса tимп.макс.=10 мксек .

Минимальная длительность импульса tимп.мин.=5 мксек .

Частота переключения fп=40 кГц .

Рисунок 4. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в полу мостовом ИИП.

Решение включает в себя трансформатор тока Т1, датчик тока - резистор R1, выпрямитель VD3 – VD6, регулировочный резистор R3, фильтр низких частот – резистор R2 и конденсатор C4.

Расчет.

Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В .

Рабочее напряжение на датчике тока должно учитывать падение напряжения на двух диодах выпрямителя. Для быстродействующих импульсных диодов падение напряжения в открытом состоянии при малых токах составляет около 0,7 В.

Примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= Iкл_max/Iw2_max = 2/0,1=20 . Тогда число витков вторичной обмотки w2= Kтр*w1=20*1=20 витков . Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 2,9/0,1=29 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=30 Ом.

Расчет мощности выделяемой на резисторе R1 произведем по формуле PR1= (Iw2_rms) 2 *R1 . В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T) . Где T= 1/fп = 1/40000=0,000025=25*10 -6 ,сек. - период частоты переключения.

Тогда Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,1*√(2*10*10 -6 )/(25*10 -6 )=0,089 А . Следовательно PR1= 0,089 2 *30=0,24 Вт . Мощность выделяемая на резисторе R1 имеет низкое значение. Для нормальной работы необходимо выбрать резистор с мощностью рассеяния не менее 0,5 Вт.

Определяем требуемое сечение сердечника.

Рекомендация по выбору dB.

У феррита марки 2000НМ1 значение магнитной индукции насыщения составляет 0,34 Тл. Максимальное рабочее значение магнитной индукции составляет 0,31 Тл. Однако при таком значении индукции и высокой частоте переключения потери в сердечнике значительны. Производители ферритов нормируют значение потерь при максимальной индукции 0,2 Тл и частоте 16 кГц. При этом считается, что потери в сердечнике приемлемы и не вызывают сильного перегрева сердечника. Поскольку у нас частота переключения составляет 40 кГц, необходимо максимальное рабочее значение индукции снизить еще. Поэтому выбираем максимальное рабочее значение магнитной индукции

Вмакс=0,1 Тл. Тогда dB=2*Вмакс=2*0,1=0,2 Тл .

Выбираем сердечник из феррита марки 2000НМ1 типоразмер К10×6×4,5 с сечением сердечника Sст=9 мм 2 . Конструктивно трансформатор тока располагаем на печатной плате, причем один из выводов разделительного конденсатора проходит через окно сердечника и является витком первичной обмотки. Количество витков вторичной обмотки не велико и позволит разместить обмотку в один слой. Исходя из вышеизложенного типоразмер сердечника не изменяем.

Регулировочный резистор R3 позволит произвести настройку порога срабатывания. Номинал резистора R3 должен быть много больше номинала резистора датчика тока. Это необходимо для исключения влияния сопротивления резистора R3 на формирование падение напряжения на датчике тока R1. Поэтому выбираем номинал резистора R3 – 1 кОм, что много больше номинала R1.

Примем τ=(1/20)*tимп.мин.= ( 1/20)*5*10 -6 =0,25 мксек . Зададимся значением емкости конденсатора из ряда Е24, С4=240 pF . Тогда

R1= τ/C2= (0,25*10 -6 )/(240*10 -12 )=1041 Ом . Но! Поскольку мы ведем расчет на 50% движка резистора R3, значит, резистор R3 будет оказывать влияние на заряд конденсатора C2. При 50% установке движка соответственно это 500 Ом. Тогда значение сопротивления резистора

R1 = 1041 – 500 = 541 Ом. Выбираем значение резистора R1=510 Ом.

Фазировку обмоток при установке трансформатора тока в двухтактных ИИП соблюдать нет необходимости.

Моделирование работы двухтактного трансформатора тока в программе Multisim.

Рисунок 5 . Модель полумостового ИИП с трансформатором тока.

Как видно из скриншота, Пробник 1 (подключен к коллектору верхнего транзистора) показывает амплитуду тока через ключ 2,02 А. Ваттметр, подключенный к датчику тока, показывает мощность 236 милливатт. Эти значения соответствуют исходным данным и расчету.

Рисунок 6 . Осциллограммы напряжения на датчике тока.

Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 3,049 В и соответствует расчету. Небольшое падение амплитуды напряжения на датчике тока к концу импульса обусловлено частичным зарядом разделительного конденсатора.

Рисунок 7 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра.

Осциллограмма напряжения на регулировочном резисторе полностью повторяет форму тока обеих ключей. Амплитуда напряжения на регулировочном резисторе составляет 1,657 В. Это значение немного выше расчетного в 1,5 В. Амплитуда напряжения на конденсаторе фильтра составляет 788 mВ, что очень близко к расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

Существует еще одно схемное решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в двухтактном ИИП. Оно связано с применением выпрямителя со средней точкой. Для этого вторичную обмотку трансформатора тока необходимо намотать со средней точкой. Этот прием сократит количество диодов до двух.

Рисунок 8. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока со средней точкой в полу мостовом ИИП.

В этом случае меняется расчет датчика тока.

Резистор датчика тока R1 в схеме трансформатора тока со средней точкой подключен параллельно двум последовательно соединенным полу обмоткам. Тогда напряжение одной полу обмотки будет составлять половину падения напряжения на резисторе R1. После выпрямления получим амплитуду сигнала равную напряжению одной полу обмотки минус падение напряжения на диоде. Т.е. в половину меньше, чем требуется. Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В .

Таким образом для получения требуемого уровня сигнала для схемы защиты напряжение на датчике тока должно быть равно

При токе вторичной обмотки 0,1 А, действующее значение тока вторичной обмотки составит 0,089 А. А мощность рассеиваемая на резисторе R1 равна PR1=Iw2_rms*Uдт=0,089*4,4=0,392 Вт. Это достаточно много. Для уменьшения мощности рассеиваемой на резисторе R1, примем ток вторичной обмотки Iw2_max=50 mA. Тогда коэффициент трансформации Kтр= (Iкл_max)/(Iw2_max) = 2/0,05=40 .

Тогда число витков вторичной обмотки w2= Kтр*w1=40*1=40 витков . Число витков одной полу обмотки соответственно – 20 витков. Т.е. обмотка состоит из двух полу обмоток 20 + 20 витков. Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 4,4/0,05=88 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=91 Ом.

Действующее значение тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,05*√(2*10*10 -6 )/(25*10 -6 )=0,045 А Мощность выделяемой на резисторе R1

PR1= (Iw2_rms) 2 *R1=(0,045 2 )*91=0,184 Вт . Это вполне приемлемо.

Моделирование работы двухтактного трансформатора тока со средней точкой в программе Multisim .

Моделирование проведем по упрощенной схеме.

Рисунок 9. Модель с трансформатором тока со средней точкой.

Полумостовой ИИП заменен на биполярный источник тока с амплитудой 2 ампера.

Ваттметр, подключенный к датчику тока, показывает мощность 179 милливатт. Это значение очень близко к расчетному.

Рисунок 10 . Осциллограммы напряжения на датчике тока.

Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 4,51 В и соответствует расчету.

Рисунок 11 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра.

Амплитуда напряжения на регулировочном резисторе составляет 1,607 В. Это значение чуть выше расчетного в 1,5 В. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Амплитуда напряжения на конденсаторе фильтра при 50% повороте движка R3 составляет 0,803 В. Это чуть выше расчетного значения. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

SERGR Опубликована: 16.02.2021 0 2


Вознаградить Я собрал 0 2

В чем отличие амперметра постоянного тока от амперметра переменного тока


GeekBrains

Амперметрами называются приборы для измерения силы тока, величины тока. Данные приборы всегда включаются последовательно в цепь, измерение тока в которой требуется произвести. Амперметры, в отличие от вольтметров, обладают при включении в цепь чрезвычайно малым сопротивлением, чтобы процесс измерения минимально влиял бы на показания. Итак, амперметры служат для измерения величин токов.

Шунт в цепи постоянного тока

При измерении значительных токов, через рабочую катушку прибора протекал бы недопустимо большой ток, что потребовало бы усложнять конструкцию, по этой причине, для возможности безопасного измерения больших токов прибегают к шунтированию рабочей катушки прибора, чтобы через саму катушку протекал не весть измеряемый ток, а только малая его часть. То есть измеряемый постоянный ток разделяют на ток шунта и ток рабочей катушки измерительного прибора, при этом шунт пропускает через себя почти весь ток измеряемой цепи.

Шунт подбирают таким образом, чтобы соотношение токов в нем и в рабочей катушке получалось 10 к 1, 100 к 1 или 1000 к 1, то есть соотношением сопротивлений шунта и измерительной цепи добиваются приемлемого режима работы измерительного прибора. Амперметры для измерения небольших токов градуируются в миллиамперах, и называются миллиамперметрами, также есть и микроамперметры.

токовые клещи

Если нужно измерить ток переменный, да еще и немалый, как это делают при помощи токовых клещей, то здесь в схему добавляется измерительный трансформатор тока. Трансформатор тока имеет вторичную обмотку из множества витков, нагруженную резистором, а первичной обмоткой выступает один виток провода, просто пропущенного через окно сердечника трансформатора тока. По сути получается, что амперметр подключается ко вторичной обмотке токового трансформатора.

трансформатор тока

Когда изготавливают трансформатор тока для амперметра переменного тока, рассчитывают витки и резистор вторичной обмотки так, чтобы если измеряемый ток составляет 1000 ампер, то ток вторичной обмотки не превышал бы 0,5 ампер. Шкалу прибора градуируют на наибольший измеряемый ток, текущий в обмеряемом проводе, то есть на максимальный ток первичной обмотки токового трансформатора прибора.

Амперметр переменного тока никогда не включают в работу при разомкнутой вторичной обмотке токового трансформатора, поскольку в этом случае наведенная ЭДС попросту сожжет прибор, и амперметр станет опасным для персонала.

Применение в амперметрах трансформаторов тока позволяет безопасно проводить измерения в цепях высокого напряжения, поскольку вторичная обмотка, соединенная непосредственно с измерительным прибором, всегда надежно изолируется.

Часто корпус прибора для пущей безопасности заземляют, как и вторичную обмотку измерительного токового трансформатора, чтобы даже в случае пробоя изоляции между обмотками, персонал остался в безопасности.

Магнитоэлектрический амперметр

Магнитоэлектрические амперметры используются только в цепях постоянного тока. В поле постоянного магнита перемещается катушка измерительного прибора, связанная со стрелкой. Магнитное поле катушки, по которой проходит ток, взаимодействует с магнитным полем постоянного магнита, и стрелка отклоняется на соответствующий угол в ту или иную сторону.

Если такой прибор включить в цепь переменного тока, и попытаться провести измерения, то ничего не выйдет, ведь стрелка просто будет колебаться с частотой тока возле нулевого положения, и прибор может сгореть.

Решается проблема применением схемы выпрямления. Выпрямительная система позволит измерить переменный ток частотой до 10кГц, при условии, что форма тока — синус.

Аналоговый амперметр переменного тока

Аналоговые амперметры по сей день не потеряли популярность. Им не нужно питание от батареек, измеряемая цепь дает им питание. Стрелка наглядно отображает показания. Но стрелочные приборы имеют недостаток — они довольно инертны.

Цифровой амперметр

Цифровые амперметры содержат аналого-цифровой преобразователь, и на ЖК-дисплее отображаются просто готовые цифры, показывающие результат измерений. Цифровые приборы лишены инертности, обладают высокой частотой опроса схемы, и наиболее современные дорогие амперметры могут выдавать до 1000 результатов измерения за одну секунду. Минус один — нужен дополнительный источник питания такому прибору.

Схема выпрямления для измерения переменного тока

В завершении отметим, что если у вас нет под рукой амперметра для измерения переменного тока, но есть амперметр постоянного тока, а необходимо здесь и сейчас измерить переменный ток, то вам поможет схема выпрямления, которую просто добавляют в цепь, и при помощи обычного амперметра постоянного тока можно будет измерить переменный ток, без необходимости прибегать к использованию трансформатору тока.

Надеемся, что эта краткая статья помогла вам понять, чем отличается амперметр постоянного тока от амперметра переменного тока, и теперь вы сможете измерить даже переменный ток амперметром постоянного тока, без необходимости покупать токовые клещи. Конечно, для измерения больших токов токовые клещи незаменимы, однако в любительской практике порой необходимы простые и практичные решения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Выбор трансформатора тока для расширения пределов измерений


GeekBrains

Как правильно выбрать трансформатор тока для расширения пределов измерений амперметров в цепях переменного тока.

При измерении силы переменного тока амперметром следует показания снимать в конце шкалы прибора. Если значение измеряемого тока меньше верхнего предела измерений, указанного на приборе, то последний включают непосредственно в сеть последовательно с нагрузкой.

Если измеряемый ток больше верхнего предела измерений, указанного на приборе, то для расширения пределов измерений обычно применяют измерительный трансформатор тока.

Зная номинальный коэффициент трансформации трансформатора тока K н I и показание амперметра I2 , можно определить силу измеряемого тока : I1 = I2 х K н I

При измерении больших токов первичную обмотку трансформатора тока включают последовательно в цепь измеряемого тока, а во вторичную обмотку включают амперметр с малым сопротивлением (не более 2 Ом). Предельное значение сопротивления, на которое может быть замкнута вторичная обмотка, приводится в паспорте трансформатора тока. Амперметр обычно рассчитан на ток 5 А. Вторичную обмотку трансформатора тока заземляют.

Измерительный трансформатор тока выбирают в зависимости от условий работы и значения измеряемого тока . Например, если требуется измерить ток порядка 80 А, то необходимо взять трансформатор тока, рассчитанный на номинальный первичный ток 100 А, то есть с K н I = 100/5 = 20. Допустим, показания амперметра равны 3,8 А, тогда действующее значение измеряемого тока I1 = 3,8 х 20 = 76 А.

Схемы включения амперметров при помощи измерительных трансформаторов тока: о — в однофазной сети, б — в трехфазной сети.

Схемы включения амперметров при помощи измерительных трансформаторов тока: о — в однофазной сети, б — в трехфазной сети.

Переносные трансформаторы тока выполняют обычно многопредельными. Их первичная обмотка либо имеет несколько секций, включенных последовательно, параллельно или смешанно (чем изменяют предел измерений), либо от нее делают отводы.

Для дополнительного расширения пределов измерений в корпусах переносных трансформаторов тока имеется окно, через которое можно намотать нужное число витков проводом, подключающим измерительную цепь, создавая тем самым витки первичной обмотки.

Число витков и площадь сечения кабеля первичной обмотки зависят от значения измеряемого тока, их определяют по таблице, размещенной на лицевой стороне трансформатора тока. Необходимо следить за тем, чтобы общее сопротивление подключаемых ко вторичной обмотке проводов не превышало значения, указанного в табличке на трансформаторе тока.

При работе с измерительными трансформаторами тока необходимо следить за тем, чтобы вторичная обмотка при подключенной первичной не оставалась разомкнутой.

Если нагрузка изменяется в узких пределах, то можно брать определенный измерительный трансформатор тока, например типа ТК в низковольтной и типа ТПОЛ-10 в высоковольтной сети.

Если измеряемые токи не превышают 50 А, то удобно пользоваться универсальными трансформаторами тока типа И54 , имеющими семь первичных номинальных токов: 0,5; 1,0; 2; 5; 10; 20; 50 А и вторичный номинальный ток 5 А. Как видно, измерительный трансформатор тока может не только, уменьшать ток, но и увеличивать его. Например, при номинальном токе 0,5 А измерительный трансформатор тока увеличивает первичный ток в 10 раз.

Если в низковольтной сети измеряемые токи достигают 600 А, то в этом случае удобны универсальные измерительные трансформаторы тока типа УТТ , которые имеют собственную первичную обмотку, рассчитанную на ток 15 и 50 А, и могут иметь наружную обмотку, наматываемую на сердечник при больших токах. Число витков выбирают по таблице, укрепленной на трансформаторе. Изменяя число витков катушки, можно устанавливать различные номинальные токи.

Очень удобны измерительные клещи , отличающиеся от измерительных трансформаторов тока наличием разъемного магнитопровода, что позволяет измерять ток в проводах без их предварительного разрыва. Измерительные клещи включают в цепь только во время измерения. Основной их недостаток — меньшая точность измерений.

Схемы подключения амперметра через трансформатор тока, как выбрать

трансформатор

Вопрос-ответ

Измерение тока в сетях производят с помощью электродинамических приборов. Но для того, чтобы проверить мощность, необходимо правильно подсоединить устройства к цепи. В статье представленная описательная схема подключения амперметра через трансформаторы тока. Силовые сети находятся под высоким напряжением, поэтому подключить напрямую обычные средства проверки не получится. Для этих целей существуют понижающие блоки. Они понижают мощность до пределов, необходимых для измерительных приборов.

Содержание

Назначение и конструктивные особенности измерительных трансформаторов

Понижающие блоки используют в измерительно-вычислительных системах. Они имеют одну основную и несколько дополнительных катушек. Амперметры подключают во вторичную цепь, где первичный и вторичный токи прямо пропорциональны друг другу. Сила тока зависит количества витков и внутреннего сопротивления проволоки. Такое напряжение безопасно для обслуживающего персонала и позволяет проводить работы без риска для жизни.

Обмотки измерительных блоков выполнены на ферритовом стержне. При подаче напряжения на главную катушку генерируется магнитное поле, которое меняется в пространстве. Такие колебания порождают электродвижущую силу во второстепенных обмотках.

Подключение амперметров через трансформаторы тока

Для учета активной энергии в сетях переменного тока с разным количеством фаз используют индукционные или электронные амперметры, которые обеспечивают точность измерений, соответствующие классу устройства. С увеличение сопротивления он будет уменьшаться.

В простой схеме измерительный инструмент подключают последовательно с добавлением нагрузки.

Он снимает показания с потребителя энергии. Такая схема обеспечивает оптимальный вариант замеров, так как общее сопротивление цепи минимально. Однако существуют более сложные схемы, конструктивная особенность зависит от целей и задачей учета.

Однофазная цепь

Эта сеть является самой простой с точки зрения обслуживания и замеров показателей. Поскольку она имеет всего один силовой кабель, по которому проходит напряжение. Амперметр подсоединяют к нему, дополнительно в цепь включают нагрузку в качестве потребителя. Сила всегда измеряется последовательно. Один щуп идет на вывод трансформатора, другой на контакт силового объекта.

Поскольку сопротивление незначительно, то точность показаний всегда близко к реальным значениям. Напряжение во вторичной обмотке должен быть меньше предельных значений прибора. Максимальный показатель рассчитывают по сечению провода, количеству витков и сопротивлению цепи.

Трехфазная

Трехфазная сеть содержит три силовых кабеля и один нулевой, по которым проходит напряжение. Схема подключения трансформатора к такой цепи отличается от одинарных цепей. Часто бывает достаточно проверить одну жилу и затем сложить показания, поскольку они идентичны друг другу. Но для полноты и точности измерений, достаточно снять показания со двух контактов.

Для того чтобы проверить напряжение сети необходимо использовать два трансформатора и амперметра. Они подключаются параллельно друг другу и последовательно относительно нагрузки. Каждый прибор снимает одно линейное значение, в сумме они равны третьему с обратным знаком.

С промежуточным трансформатором

Когда измеряемые показания превышают предельные значения измерительного инструмента, то используют параллельную схему подключения из двух трансформаторов. Ее называют промежуточной, поскольку второй снимает нагрузки с первого, в каждом протекает половины от номинального тока. На первый блок подается сетевое напряжение. Контакты вторичной катушки соединяются со вторым трансформатором, который, в свою очередь, понижает его напряжение до необходимых значений.

С выключателем амперметров

Во время эксплуатации силового оборудования возникает необходимость в обслуживании измерительных приборов. Он требуют проверки точности и калибровки. Поэтому для таких случаев разработали схемы с отключением устройств учета.

Амперметр подключается в цепь последовательно с выключателем. Пока тумблер находится в активном положении, по нему протекает электрический ток. После перевода рукояти в положение ВЫКЛ, сеть обесточивается, и прибор перестает снимать показания.

Трехфазная цепь с тремя амперметрами

С целью получения точных результатов измерений сетей с несколькими силовыми жилами используют количество амперметров, равное числу проводов. Для тестирования применяют два трансформатора, подключенных параллельно другу друга, каждый к своей фазе. На основные катушки подают номинальное напряжение.

Амперметры включают в сеть параллельно, контакты замыкаются на вторых выводах второстепенной обмотки. Общее значение двух приборов равно показателю третьего с противоположным показателем. Результат соответствует правилу, когда сумма трех линейных значений тока равна нулю.

Как выбрать трансформатор

При выборе конвертера необходимо всегда учитывать нагрузку, создаваемую потребителями тока. Их одновременное включение в сеть в несколько раз увеличивает мощность, что приводит к нагреву блоков питания. Основные характеристики всегда пишут на шильдике, поэтому номинал напряжения, которое потребуется для обеспечения электроэнергией, рассчитывают по формуле I1+I2+…In, где I – ток потребления электроприбором.

Необходимо также учитывать класс точности объекта, который позволит вести точный учет потребления энергии.

Применение

Измерительные блоки применяют в схемах учета электроэнергии. Одну из обмоток с низким коэффициентом погрешности используют для того, чтобы подключить средства измерения. Приборы контролируют рабочие параметры сети и позволяют избежать перегрузок сети.

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд - ударный ток короткого замыкания

kу - ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях - 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт - полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф - однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр - сопротивление реле

rпер - переходное сопротивление контактов

rпр - сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди - 57, алюминия - 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета - проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить - а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной - не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений - 0,4; 6,3; 10,5. И последние три столбца - это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы - инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Подключение амперметра к трансформатору тока

Если при измерении электрического тока Вы используете амперметр с пределом 1, 5 или даже 10А, а нагрузка будет составлять значение больше этой предельной величины амперметра, то Вам может помочь измерительный трансформатор тока с необходимым коэффициентом.

схема подключения амперметра к трансформатору тока

Напомню, что амперметр включается в электрическую цепь последовательно. А как же будет подключаться амперметр при использовании трансформатора тока?

В общем случае на тт будут два измерительных вывода для подключения амперметра. Подключение же первичного тока к тт происходит последовательно, но имеет особенности в зависимости от типа аппарата, о чем и поговорим ниже.

Подключение амперметра к утт5

вид УТТ-5М для подключения к амперметру

Начнем с простого: у нас есть один амперметр и один ТТ с необходимым коэффициентом. Например, амперметр Э-59 и трансформатор тока УТТ-5.

На тт есть выходы измерительные (и1, и2) для подключения вторичного тока (к амперметру) и выходы первичные (общий, 15а, 50а). Так же есть отверстие, через которое можно протянуть кабель по которому будет течь ток, в случае, если известно, что его величина будет более 50А. В принципе все просто: и1 и и2 к амперметру напрямую, нагрузку же либо витками через отверстие, либо на зажимы (общий, 15а, 50а).

Подключение амперметра к и54

вид И54 для подключения к амперметру

Также может встретиться трансформатор тока И54. У него также есть измерительные колки (и1, и2), к которым подключается амперметр напрямую для измерения вторичного тока. Отверстие, куда можно продевать кабель отсутствует. И есть колки первичного тока (л1, л2). Вся магия данного тт состоит в колках, которые расположены в верхней части прибора.

В принципе, на корпусе расположена схема, взглянув на которую можно обо всем догадаться, при условии наличия опыта. Плюс, всегда перед работой с прибором необходимо прочитать документацию на него.

Верхний колок используется при транспортировке и на выключенном приборе. В центральном положении он замыкает первичную обмотку. Левое и правое отверстия нужны для установки в них колка во время работы, чтобы не потерять его вероятно. Доставая колок из центрального отверстия мы размыкаем верхнюю цепочку первичной обмотки тт.

Второй колок, расположенный ниже, используется для выбора коэффициента трансформации. То есть у нас две параллельные ветки.

Порядок такой - верхний колок в центральное положение, нижний в гнездо тока требуемой величины, к и1 и и2 подключаем амперметр, затем подключаем л1 и л2 последовательно в цепь, после чего верхний колок ставим в боковое отверстие или убираем.

Следует помнить, что запрещено раскорачивать вторичную обмотку под нагрузкой, так как это приведет к увеличению погрешности и может вывести тт из строя, пробив изоляцию.

Пересчет тока амперметра при использовании ТТ

Для определения точного значения тока, измеренного по амперметру через трансформатор тока необходимо знать:

  • Предел амперметра по току
  • Шкалу амперметра в единицах
  • Коэффициент трансформации ТТ
  • В некоторых случаях надо знать число витков измеряемого кабеля через тт, для определения коэффициента тт по табличке самого аппарата

Допустим предел амперметра 2,5 А, число делений 150, коэффициент трансформации 100/5. И получили при измерении 67 делений. Сколько же это в амперах?

Получаем: вся шкала 2,5А - 150 делений; Значит Х ампер это 67 делений. Из этой пропорции получаем вторичный ток =2,5*67/150=1,117 А. Далее этот вторичный приводим к первичному умножив на коэффициент трансформации равный 20. Получаем, что измеряемый ток равен 22,3 А. Примерно так можно считать.

Читайте также: