Как измерить сопротивление заземления прибором ис 20

Обновлено: 03.05.2024

Как проверить качество заземления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

Проверка заземления

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Проверка заземления 2

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

Безопасность

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Заземление 2

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Проверка заземления 3

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Проверка заземления 4

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Проверка заземления 6

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

Проверка заземления 7

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

ИС-20/1 Измеритель сопротивления заземления с измерительными клещами 80 мм

скачать описание ИС-20/1 Измеритель сопротивления заземления с измерительными клещами 80 мм

Вы можете купить ИС-20/1 с доставкой по России. Измеритель сопротивления заземления ИС-20/1, предназначен для измерения сопротивления, напряжения, силу тока. ИС-20/1 подходит для многокомпонентной системы заземления, в которой нет возможности отключения контура заземления. Принцип действия приборов основан на измерении напряжения в цепи, при приложении испытательного тока. ИС-201/ применяется при измерении: сопротивления металлосвязи, сопротивления заземления без и с отключением контура заземления со штырями, сопротивления заземления без отключения контура заземления с клещами, измерения сопротивления грунта.

В ИС-20/1 имеется возможность измерения сопротивление заземления с использованием измерительных клещей, что позволяет определять сопротивление единичного заземлителя без его отсоединения от многоэлементной системы заземления. Клещи передающие КП-20/1 дополнительная опция необходимы для измерения сопротивления заземлителя с применением двух клещей без штырей. Это необходимо где нет возможности использования штырей, например засфальтированной площадки.

Характеристики ИС-20:

  • Измерения сопротивления: 1мОм. 9,99 кОм;
  • Измерения сопротивления двумя клещами: 10 мОм. 100 Ом;
  • Измерение тока: 1мА. 2,5А;
  • Память: 10000 измерений;
  • Защищенность корпуса: IP 54;
  • Межповерочный интервал: 2 года;
  • Максимальный тестовый ток: 250 мА/128 Гц;
  • Разрешение: 0,001 Ом;
  • Погрешность: 3%;
  • Измерение напряжения: до 300 В;
  • Диапазон рабочих температур: -15°С. 55°С;
  • Питание: аккумулятор или батарейки 5шт;
  • Габариты: 350х180х310 мм;
  • Масса: 4 кг
Комплектность ИС-20:
  • прибор ИС-20/1;
  • блок питания;
  • струбцина 1 шт;
  • зажим типа крокодил 2 шт;
  • провод 1,5 м с щупами 2 шт;
  • провод 40 м на катушке 2 шт;
  • клещи измерительные 80 мм КТИ-20/2;
  • адаптер Bluetooth в комплекте с 10.03.2021 отсутствует;
  • руководство по эксплуатации;
  • сумка для переноски.


Опции ИС-20:

  • клещи передающие КП-20/1 50 мм.
  • 4 штыря длиной 1м с сумкой РЛПА.305177.004;

Функция измерения сопротивления единичного заземлителя без разрыва системы заземления с помощью клещей КТИ-20/2 (80 мм, входят в базовый комплект поставки). Измерение сопротивления заземления без вспомогательных электродов с применением двух клещей от 0,01 до 100 Ом (нужны дополнительно клещи передающие КП-20/1, приобретаются дополнительно). Измерение сопротивления элементов заземления двух-, трёх- или четырёхпроводным методом в диапазоне 1мОм-10 кОм. Память на 10000 измерений, беспроводная связь с компьютером. Межповерочный интервал 2 года

Измеритель сопротивления заземления ИС-20



Предназначен для измерения сопротивления элементов заземления, металлосоединений, непрерывности защитных проводников в различных режимах: по двух-, трёх- или четырёхпроводному методу и измерения с автоматическим вычислением удельного сопротивления грунта.

В меню прибора можно выбрать один из трёх языков: английский, французский, русский.

Особенности
  • автоматический выбор диапазонов измерения;
  • ударопрочный, пыле- и влагозащищенный корпус, степень защиты IP54;
  • автоматический переход в энергосберегающий режим через 2,5 минуты после окончания измерений;
  • ЖК дисплей;
  • индикация состояния внутреннего источника питания;
  • система защиты аккумулятора от перезаряда;
  • защита от неправильного включения;
  • высокая помехоустойчивость;
  • память на 10000 измерений;
  • связь с компьютером.
Технические характеристики

Диапазоны измерения сопротивления

Допускаемое значение сопротивления в цепях подключения, не более

Пределы допускаемой основной абсолютной погрешности измерений сопротивления для четырехпроводного метода измерений

потенциальных П1 - П2

от 1 до 999 мОм

от 0,01 до 9,99 Ом

от 0,1 до 99,9 Ом

от 1,00 до 9,99 кОм

Максимальное амплитудное напряжение помехи для диапазонов измерений электрического сопротивления, В

от 1 до 999 мОм

от 1,00 Ом до 9,99 кОм

Учебный фильм http://www.youtube.com/watch?feature=player_detailpage&v=GUKqUYtYlhQ Документы и инструкции Руководство по эксплуатации ИС-20 Спецраздел. МИНОБОРОНЫ РФ Измеритель сопротивления заземления ИС-20:
Размер в упаковке ШхГхВ - 310х110х250
Размер прибора - 88х105х245
Брутто (масса прибора в упаковке) - 2960 гр.
Масса нетто (масса прибора) - 800 гр Лицензии и сертификаты Программа для работы с ПК

Требования к системе: Windows XP SP2 и выше.

Требования к ПК: наличие встроенного Bluetooth модуля или внешнего Bluetooth USB адаптера с установленными для него на ПК драйверами.

Перед загрузкой убедитесь у системных администраторов, что на Вашем компьютере не стоит запрет на загрузку и установку сторонних программ.

Внимание! В некоторых случаях возможна некорректная работа операционной системы Вашего компьютера с некоторыми Bluetooth USB адаптерами.

Если при работе с программой не удается установить связь прибора с ПК, то:

- убедитесь, что на панели задач отображается символ Bluetooth и адаптер установлен как «Устройство Bluetooth»;

- проверьте, что имя и номер подключаемого прибора отображаются в окне «Устройства Bluetooth» компьютера.

В противном случае:

- подключите Bluetooth USB адаптер к другому USB порту компьютера;

- установите соответствующий драйвер для Bluetooth USB адаптера;

- замените Bluetooth USB адаптер.

Комплект поставки

КП ИС-20.jpg

Загрузить файл

Как выполняется измерение сопротивления заземления

Защитное действие заземления всецело связано с величиной его сопротивления, а последнее зависит от многих факторов, метеорологических и гидрологических, не говоря уже о состоянии самих заземлителей и заземляющих проводов.

Поскольку величина сопротивления заземления подвержена большим колебаниям, становится ясным то громадное значение с точки зрения безопасности, которое приобретает испытание заземления, выражающееся главным образом в измерении сопротивления, заземления. При этом важно не только начальное испытание перед сдачей в эксплуатацию, но и периодические испытания, через определенные промежутки времени.

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Содержание статьи

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

Путь тока через контур заземления при пробое изоляции

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Путь тока через человека при пробое изоляции

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

Равномерное распределение тока аварии по контуру заземления

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Коррозия металла контура заземления

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Принцип замера электрического сопротивления контура заземления вольтметром и амперметром

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Принцип замера сопротивления заземлительного устройства

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Современные приборы

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

Подключение прибора к контуру заземлительного устройства

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Установка основного и дополнительного электродов

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Подключение проводников к прибору и замер

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Принцип замера сопротивления зазаемлительного устройства четырехпроводным методом

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Принцип замера без разрыва цепи заземлителей

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления заземления с помощью токоизмерительных клещей

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Замер сопротивления заземления с помощью двух токоизмерительных клещей

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Измерение сопротивления контура заземления

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

Измеритель сопротивления заземления ис-20

Осенью-зимой у нас было много монтажей контуров функционального заземления. В этих работах нам неоценимую помощь оказала ЭТЛ Юрия Михайловича. При этом использовались несколько моделей измерителей сопротивления заземления. Мне понравился своей неприхотливостью и простотой ИС-10 компании «Радио-Сервис». Поэтому, принимая решение о покупке прибора для себя, я обратил внимание в первую очередь именно на приборы этого производителя.

Изучив списки приборов измерений, рекомендованных рядом ключевых заказчиков, я выбрал обновленную версию – ИС-20, о которой и хочу рассказать.

Итак, на первом фото представлено то, что получаете, купив прибор ИС-20 вместе с опциональным комплектом заостренных измерительных штырей (4 штуки метровых штырей в отдельном чехле).


На втором фото собственно комплект поставки прибора:

- прибор с установленным аккумулятором 6В 2000мАч ;

- сумка;

- два измерительных шнура 40м на катушках;

- два провода измерительные 1,5м;

- два острых зонда;

- два зажима «крокодил»;

- струбцина для подключения к шине заземления;

- зарядное устройство;

- адаптер для батарей типа АА;

- Bluetooth-USB адаптер


Внешний вид лицевой панели прибора при включении


Корпус прибора удобен и в руке и устойчив на любом грунте


На задней панели виден закрываемый четырьмя винтами отсек для аккумулятора/батареек.


Один из аргументов, определивших мой выбор:


Четкий экран с подсветкой на котором хорошо читаются как результаты измерения, так и режимы измерения


Прибор имеет габариты105х120х250 мм, вес 800гр и позволяют измерить сопротивление контура заземления с точностью +/- 3%, автоматически выбирая диапазон измерения в пределах от 0,001 Ом до 999 МОм.

Детальные характеристики прибора, сертификаты и документацию можно на сайте �.

Какие бывают измерители сопротивления заземления

Измерение сопротивления заземления направлено на определение наивысшего ожидаемого значения заземления, чтобы проверить, соблюдены ли условия защиты от поражения электрическим током, перенапряжения и молнии в контексте применимых технических требований.

Многофункциональный измеритель сопротивления заземления

Заземляющее устройство состоит из заземлителя и соединяющих проводов (или шин).

Заземлитель, в виде металлической трубки или прута, закапывается в землю и обеспечивает контакт между заземляющим устройством и грунтом. Соединительные провода предназначаются для соединения заземлителя с металлическими частями электроустановок, изолированных от токонесущих элементов.

Общее сопротивление заземляющего устройства определяется главным образом сопротивлением заземлителя растеканию тока в земле, или, как часто говорят, сопротивлением растекания контура защитного заземления. Величина этого сопротивления зависит от конструкции заземлителя (в частности, от площади его соприкосновения с грунтом) и от удельного сопротивления грунта.

Последнее зависит в свою очередь от времени года и состояния погоды, поэтому сопротивление растеканию тока может изменяться в широких пределах. Общее сопротивление заземляющего устройства включает и сопротивление соединяющих проводов. Однако в отличие от сопротивления заземлителя это сопротивление практически не изменяется в течение года и не зависит от состояния погоды.

Из сказанного следует, что для проверки технического состояния заземляющего устройства необходимо прежде всего измерить сопротивление заземлителя растеканию тока. Эта задача обычно решается с помощью специальных приборов — измерителей заземлений.


Простые приборы, с помощью которых можно измерять сопротивление заземление, могут проводить технический тест

К популярным типам устройств этого типа относятся токовые клещи для безэлектродных методов измерения, простые тестеры-измерители и усовершенствованные модели, которые могут сочетать в одном устройстве несколько методов измерения сопротивления заземления — трехпроводный и четырехпроводный технический метод (метод вольтметра и амперметра), двухпроводный метод при отсутствии свободного места для второго штыря, компенсационный метод, импульсный метод, измерение сопротивления заземляющих устройств опор ВЛ, измерение удельного сопротивления почвы (грунта).

Наиболее часто используется классический технический метод с трех или четырехпроводным подключением (трехзажимный и четырехзажимный). Оба способа подключения могут быть реализованы в одном измерительном приборе. Заземляющие устройства молниезащиты чаще всего тестируются импульсным методом.

Fluke 1621

Fluke 1621 - это простой в использовании тестер заземления

Т естер сопротивления заземления Extech 382-252:

Современные приборы позволяют производить измерения методом компенсации, при котором полностью исключается зависимость показаний приборов от сопротивлений вспомогательного заземлителя и зонда.

В некоторых моделях измерение проводится током с частотой 125 Гц, благодаря чему достигается высокий уровень устойчивости к помехам от электросети

Измеритель параметров заземляющих устройств Sonel MRU-200

Самое главное в этом вопросе — знание методов измерения. Но что такое метод измерения? Это серия действий, которые выполняются для определения результата измерения. На практике могут использоваться различные типы методов измерения, в зависимости от природы измеряемой величины и необходимой точности измерений.

Подробно обо всех основных методах измерения, используемых на практике смотрите здесь: Как выполняется измерение сопротивления заземления

Простые измерительные приборы (тестеры) считаются простейшими приборами для измерения сопротивления заземления. Некоторые модели предназначены для контроля заземления автоцистерн, железнодорожных цистерн, судов и самолетов во время погрузки и заправки.

Прибор для реализации метода измерения с двумя зажимами

Полезным решением является метод измерения с двумя зажимами, а в некоторых случаях измерение без необходимости использования вспомогательных щупов, вбитых в землю

Многофункциональные измерительные приборы для электроустановок пользуются большой популярностью у электриков. Несмотря на то, что они небольшие, они позволяют измерять основные параметры электроустановок.

Функциональность этого типа устройства определяется способностью выполнять измерения электрических величин, таких как полное сопротивление петли короткого замыкания, сопротивление заземления, полного сопротивления сети.

Многие современные приборы могут также проводить измерение сопротивления изоляции с номинальным напряжением при помощи переменного или увеличивающегося испытательного напряжения при малоомных измерениях, определять непрерывность проводников защитного заземления и системы уравнивания потенциалов.

Измерение сопротивления заземления техническим методом (3п, 4п)

Современные измерительные приборы высоко ценятся. В некоторых технически продвинутых устройствах предусмотрены все известные методы измерения сопротивления заземления.

Некоторые модели позволяют точно измерять полное сопротивление петли короткого замыкания L-PE цепей в сетях с УЗО без необходимости блокировки выключателя (измерение с током 15 мА, разрешение 0,01). На рынке также доступны модели, благодаря которым пользователь получает возможность записывать переменные ток и напряжения, а также измерять мощность и проверять последовательность фаз.

Такие приборы можно использовать для проведения диагностических работ при техническом обслуживании электрооборудования во всех сетях переменного и постоянного тока с напряжением 1000 В.

Интересными решениями являются многофункциональные измерительные приборы, которые также выполняют функции анализатора качества электроэнергии. Функции, связанные с измерением и записью напряжений, токов, активной, реактивной и полной мощности, косинуса φ, определением частоты и коэффициента искажения для тока и напряжения, а также гармоник напряжений и токов, а также аномалий напряжения, безусловно, окажутся полезными.

Фотографии для статьи предоставлены компанией Fluke. Также использованы фотографии компании Sonel.

Fluke предлагает обширную линейку цифровых мультиметров, анализаторов электроэнергии, тепловизионных камер, тестеров сопротивления изоляции, аксессуары и интегрированные портативные диагностические инструменты из серии ScopeMeter.

Они используются все большим числом электриков, сервисных техников, инженеров по промышленным системам, монтажников и специалистов по техническому обслуживанию. Эти инструменты дают им возможность быстро диагностировать современные и сложные системы и быстро обнаруживать имеющиеся проблемы.

Читайте также: