Если понижающий трансформатор включить вторичной обмоткой на первичное напряжение

Обновлено: 04.05.2024

Как же все таки работает трансформатор? Или немного о мифах и парадоксах.

Если кратко, автор той статьи утверждал, что магнитный поток не принимает участия в передаче энергии через трансформатор, поскольку теория говорит, что он постоянен. Общий магнитный поток в трансформаторе, идеальном, действительно не зависит от тока нагрузки. В реальном трансформаторе общий магнитный поток имеет некоторую зависимость от тока нагрузки. Поэтому говорят, что он почти не зависит. Тем не менее, магнитный поток принимает самое непосредственного участие в работе трансформатора.

О том, как работает трансформатор, написано много статей. Но чаще всего трансформатор описывается с точки зрения электротехники. Я же опишу его работу с точки зрения и электротехники, и физики. Начнем с самого начала, хоть оно и кажется элементарным.

Электрический ток в направленное движение заряженных частиц. Это могут быть, например, электроны или ионы. А движение заряженных частиц порождает магнитное поле. Магнитное поле характеризуется двумя величинами, вектором напряженности магнитного поля Н и вектором магнитной индукции В. Эти величины связаны между собой

J это магнитный момент, или вектор намагниченности среды в данной точке Мы не будем принимать во внимание какие либо внешние магнитные поля и эффекты, поэтому J=0. μ это относительная магнитная проницаемость среды, а μ0 это магнитная постоянная. Для вакуума μ=1. Если μ не зависит от напряженности магнитного поля, то такую среду называют изотропной. Мы будем рассматривать именно такую среду, а про анизотропность поговорим позднее. Число в скобках это номер формулы, что бы было удобнее ссылаться на них в тексте.

Теперь переходим к рассмотрению катушки с током. Начнем с одного витка, или контура. Текущий по контуру ϒ электрический ток создает в каждой точке пространства r0 магнитное поле с индукцией (для вакуума)

Это закон Био-Савара-Лапласа. Здесь r это положение точек самого контура. Для примера, магнитная индукция поля катушки, длина которой намного больше ее диаметра, намотанная проводом, диаметр которого много меньше диаметра катушки, через которую течет постоянный ток хорошо известна и вовсе не столь устрашающая (с учетом магнитной проницаемости среды)

Обратите внимание на те условия, для которых эта формула применима. Именно эти ограничения позволяют формуле быть такой простой. Теперь введем понятие магнитного потока Ф, который является потоком вектора индукции В через через поверхность S.

При изменении магнитного потока, пронизывающего какой либо контур, в контуре наводится ЭДС. Эта ЭДС прямо пропорциональна скорости изменения потокосцепления контура ψ

Потокосцепление равно алгебраической сумме всех пронизывающих контур потоков. Если все витки обмотки w пронизываются потоком Ф, то ψ=wФ. Нужно отметить, что ψ это полное (результирующее) потокосцепление контура (обмотки). Оно создается не только внешним, по отношению к данному контуру потоком, но и собственным потоком пронизывающим контур при протекании по нему электрического тока.

Наведение ЭДС в контуре при изменении тока протекающего через этот контур называют самоиндукцией. Наведенную ЭДС называют ЭДС самоиндукции.

Формулу (4), с учетом того, что поверхность S у нас не изменяется, и заменив поток на потокосцепление, можно выразить как ψ=Li. Здесь L это коэффициент пропорциональности между ψ и i, который называют индуктивностью. Подставив это в формулу (5) получим

Следовательно, ЭДС самоиндукции в катушке пропорциональна скорости изменения тока в этой катушке. Если ток не меняется, то ЭДС самоиндукции равна 0. Минус означает, что ЭДС самоиндукции препятствует изменению тока в катушке.

Теперь возьмем вторую катушку и расположим ее так, что бы их магнитные потоки частично пересекались. Такие катушки называются магнитно связанными. Теперь у нас изменяющийся магнитный поток первой катушки, при изменении тока в ней, будет наводить ЭДС во второй. А изменяющийся магнитный поток второй катушки, при изменении тока в ней, будет наводить ЭДС в первой. Наведение ЭДС в каком либо контуре при изменении тока в другом контуре называют взаимоиндукцией. А наведенную ЭДС называют ЭДС взаимоиндукции.

Поток Ф1, создаваемый током первой катушки, частично замыкается (Ф11) не проходя через вторую, частично проходит через нее (Ф12). При этом Ф1=Ф11+Ф12. Аналогично для потока второй катушки Ф2=Ф22+Ф21. Полное потокосцепление катушек будет

Если поток взаимоиндукции для катушки направлен согласно потоку самоиндукции, то в формулах (7) ставят знак плюс. При встречном направлении, знак минус. При этом ψ21 пропорционально току i2, а ψ12 пропорционально току i1.

Коэффициенты пропорциональности численно равны друг другу М12=М21=М. Коэффициент М называют взаимной индуктивностью катушек. Полная ЭДС, индуцируемая в катушках будет суммой ЭДС самоиндукции и ЭДС взаимоиндукции.

Взаимная индуктивность М зависит только от взаимного расположения катушек, числа их витков, геометрических размеров и магнитной проницаемости среды.

Я назвал катушки магнитно связанными. Введем понятие коэффициента связи k

Коэффициент связи равен 1 только в том случае, когда весь поток создаваемый первой катушкой, сцепляется со второй, и наоборот.

Собственно говоря, две магнитно связанные катушки это и есть трансформатор. И мы получили все формулы, которые описывают его работу. А теперь рассмотрим частный случай использования трансформатора для передачи энергии из первичной цепи во вторичную. Да, это именно частный случай, но, обычно, трансформатор так и используется.

Мы рассматривали две катушки без сердечника, это так называемый воздушный трансформатор. Но большинство трансформаторов имеют сердечник. Мы, для упрощения, будем рассматривать сердечник магнитная проницаемость которого не зависит от напряженности магнитного поля. Фактически, в нашем случае, сердечник просто концентрирует магнитное поле внутри себя позволяя считать коэффициент связи, формула (10), равным 1.

К первой катушке, называемой первичной обмоткой, прикладывается напряжение u1, а вторичная обмотка (вторая катушка) подключается к нагрузке Z2 с, в общем случае, комплексным сопротивлением. Работа трансформатора описывается уже знакомыми нам формулами (9). При этом обмотки (катушки) включены встречно, то есть, в формулах будет стоять знак минус. Кроме того, вспомним второй закон Кирхгофа. Получим систему уравнений описывающих работу трансформатора

Приложенное к первичной обмотке напряжение вызывает в ней протекание тока i1, который вызывает сцепленный с ней поток Ф1 Этот поток индуцирует в ней ЭДС самоиндукции, а во вторичной обмотке ЭДС взаимоиндукции. ЭДС взаимоиндукции вторичной вызывает протекание в ней тока нагрузки i2. Протекающий по вторичной обмотке ток вызывает сцепленный с ней поток Ф2, который наводит в ней ЭДС самоиндукции, а в первичной обмотке ЭДС взаимоиндукции. Уравнения (11) отражают именно это. Суммарная ЭДС в каждой обмотке является алгебраической суммой ЭДС самоиндукции и ЭДС взаимоиндукции. То есть именно так, как мы ранее и видели. Однако, вместо двух потоков, Ф1 и Ф2, мы можем рассматривать суммарный поток, или общий, магнитный поток Ф равный алгебраической сумме потоков Ф1 и Ф2. С учетом их встречного направления Ф=Ф1-Ф2.

В трансформаторе работающем в установившемся режиме под нагрузкой ЭДС в обмотках индуцируются именно этим общим потоком.

Теперь посмотрим, что будет, если у нас изменится сопротивление нагрузки, например, уменьшится. При этом у нас увеличится ток i2, что вызовет увеличение магнитного потока Ф2 сцепленного с вторичной обмоткой. Это вызовет увеличение ЭДС взаимоиндукции для первичной обмотки, что приведет к увеличению тока i1 в первичной обмотке. Увеличение тока i1 в первичной обмотке вызовет увеличение сцепленного с ней потока Ф1. Если внимательно посмотреть на уравнения (11) и формулу (6), то будет видно, что увеличение потока Ф1 будет равно увеличению потока Ф2. То есть, общий поток у нас не изменится. Это одно из основных свойств трансформатора. Однако, обратите внимание, что не изменится именно общий, суммарный поток. Само изменение тока в цепи первичной обмотки было вызвано взаимоиндукцией, через изменение сцепленных с обмотками потоков. То есть, оба потока, и Ф1, и Ф2, увеличились, а вот их алгебраическая сумма осталась прежней. Нельзя считать, что общий поток это и есть сцепленный с каждой из обмоток поток, которые не меняются. Общий поток это лишь абстракция позволяющая описать установивший режим работы трансформатора, когда напряжение, подаваемое на первичную обмотку, когда неизменно сопротивление подключенной к вторичной обмотке нагрузки. То есть, только для случая постоянства протекающих по обмоткам токов. Это очень важный момент. И именно в этом допустил ошибку автор критикуемой мной статьи.

Чему же равен этот общий поток? Давайте рассмотрим работу трансформатора с не подключенной к вторичной обмотке нагрузке. Это называется режимом холостого хода. В этом случае вторичная обмотка не оказывает влияния на ток первичной обмотки, так как ток в ней отсутствует. Ток холостого хода первичной обмотки будет определяться формулой (6). Общий магнитный поток идеального трансформатора будет равен магнитному потоку холостого хода. И, для установившегося режима, не будет зависеть от тока нагрузки.

что и как изменится в понижающем трансформаторе если вторичную обмотку включить на напряжение первичной??

Трансформатор может иметь обмотку из колючей проволоки, т. к. всё равно читать никто не будет.
Но, если серьёзно, вопрос малопонятен. Понижающий трасформатор будет иметь коэффициент трансформации = 1 и превратится в разделительный. Такую штуку применяют, например, на угольных шахтах для пожарной безопасности (уменьшают так наз. электрическую длину цепи) . Ставят их через 1 м, чтобы искр не было и статич. электрики. Цепь электрич. делится на участки по 1 м длиной, по цепочке которых и подается эл. питание всем шахтным механизмам во взрывопожароопасный забой.
Но это не называется понижающий трансорматор (см. выше) . Это разделительный трансформатор

выкинешь на помойку своё устройство оно сгорит а так будет повышающий трансформатор

для начала он может сгореть, смотря какие будут использованы напряжения. А потом, он будет работать ни как понижающийся, а как повышающий.

Трансформатор должен стать повышающим.
Но!
А выдержит ли вторичная обмотка напряжение первичной?
Например:
U1=220 V
U2=12 V
Если 12 вольтовую обмотку подключить к сети 220, она попросту сгорит.

Имеется трансформатор 220/15 В. Если на вторичную обмотку (15) подать 28 вольт, я могу расчитывать что на первичной обмо

Да, такое может быть.
А вот по-поводу "Ничего не взорвется.. " - вопрос, и очень большой. Если не надолго и с небольшой нагрузкой на высокой стороне, то можно попробовать. Но будьте готовы к тому, что трансформатор будет сильно гудеть и греться.

P.S. И, конечно же, напряжение должно быть той же частоты на которую рассчитан трансформатор.

((Muzaffar Gapparov))

Ничего не взорвется, просто трансформатор сгорит.

Aston Martin

Можете рассчитывать (если, конечно, подадите переменное напряжение!) . Но трансформатор будет здорово греться.

Нина Гончаренко

При более высоком напряжении и ток, протекающий в обмотках будет больше. А они могут быть не рассчитаны на такой ток, так что транс может сгореть. Расчет трансформатора, вообще это целая книга.

Екатерина Конорева Наталья Воронова

само собой все взорвется))))

Алексей Беляев

Сопротивление вторичной обмотки очень маленькое, будет фактически короткое замыкание источника напряжения.

Юлия Спиридонова

нужно увеличить вторичку в 1,8 раза, в вашем случае она станет первичной, иначе она перегреется! Да и учтите подавать на трансформатор необходимо переменное напряжение

Dilshod Bobodzhonov

Сахалинский форум

Технологии, радиотехника. Исключая авто, компьютерную, мобильную, бытовую технику.


19 Января 2013 7 Марта 2013

Тема № 1092852

Вопрос к электрикам, если к вторичной обмотке понижающего силового трансформатора 10/0,4 кВ подвести напряжение 380 В, сможем ли мы путем эффекта обратной трансформации получить на первичной обмотке напряжение 10 кВ


анонимная 89786

7 марта 2013 23:46

7 марта 2013 23:46


FMN

26 янв. 2013 08:10

26 янв. 2013 08:10


рейка

26 янв. 2013 00:00

26 янв. 2013 00:00


Хуторянин

26 янв. 2013 08:02

26 янв. 2013 08:02

(Добавлено через 57 секунд)

Этого инвертора обычно +12.

(Добавлено через 1 минуту)


анонимный 46088

26 янв. 2013 16:53

26 янв. 2013 16:53


Прол_1

24 янв. 2013 07:14

24 янв. 2013 07:14


анонимный 46088

24 янв. 2013 20:51

24 янв. 2013 20:51


анонимный 23102

26 янв. 2013 13:12

26 янв. 2013 13:12


анонимный 46088

26 янв. 2013 16:45

26 янв. 2013 16:45


анонимный 23102

26 янв. 2013 17:35

26 янв. 2013 17:35


анонимный 46088

26 янв. 2013 17:57

26 янв. 2013 17:57


анонимный 23102

26 янв. 2013 18:16

26 янв. 2013 18:16


анонимный 46088

26 янв. 2013 18:27

26 янв. 2013 18:27


анонимный 23102

26 янв. 2013 18:30

26 янв. 2013 18:30


анонимный 46088

26 янв. 2013 18:39

26 янв. 2013 18:39


анонимный 23102

26 янв. 2013 18:41

26 янв. 2013 18:41


Хуторянин

26 янв. 2013 08:04

26 янв. 2013 08:04


volvovich

25 янв. 2013 23:12

25 янв. 2013 23:12


анонимный 50467

24 янв. 2013 20:56

24 янв. 2013 20:56


анонимный 77190

24 янв. 2013 06:42

24 янв. 2013 06:42


Yalga

24 янв. 2013 04:02

24 янв. 2013 04:02


джлондон

24 янв. 2013 03:35

24 янв. 2013 03:35


царь_Герасим_Второй

20 янв. 2013 17:40

20 янв. 2013 17:40


Mrakobes

20 янв. 2013 10:37

20 янв. 2013 10:37


oldz

20 янв. 2013 10:35

20 янв. 2013 10:35


Хуторянин

20 янв. 2013 10:01

20 янв. 2013 10:01


анонимный 23102

19 янв. 2013 19:51

19 янв. 2013 19:51


SCRAMBLER75

19 янв. 2013 18:00

19 янв. 2013 18:00


alexqwert

19 янв. 2013 17:36

19 янв. 2013 17:36


приборист

19 янв. 2013 17:27

19 янв. 2013 17:27


Китаевед, руководитель Центра экономических и социальных исследований Китая Института Дальнего Востока РАН Андрей Островский в беседе с радио «Космольская правда» рассказал о развитии науки в России и Китае. По его словам, в прошлом году в Поднебесной на научные исследования было выделено больше 300 миллиардов долларов.
«В отличие от других стран мира Китай активно реализует научные идеи на практике. Если у нас в России в лучшем случае 4G, то в Китае уже 5G, а то и 6G», — рассказал профессор.
Островский… (читать далее)


Британский стартап под названием Hybrid Air Vehicles представил новый концептуальный дизайн дирижаблей на 100 пассажиров.
Стартап из Великобритании под названием Hybrid Air Vehicles собирается начать производство экологически чистых дирижаблей, который будут выбрасывать куда меньше углерода, чем самолеты.
Конечно, полностью заменить самолеты не получится. Однако компания уверена, что она сможет предоставить людям более экологичный способ полетов на короткие расстояния. По словам представителей Hybrid… (читать далее)

Устройство и принцип работы трансформаторов

Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.

Что такое индукция


Если по проводу пустить электрический ток, то возникнет магнитное поле.

Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.



Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.

А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.

Чем больше материал может создать магнитное поле, тем выше его индуктивность.

Магнитное поле можно увеличить, если сделать катушку.


Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.

Это и есть катушка индуктивности.

Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.

Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.

Изменение магнитного поля создает электрическое поле.

Увеличение индуктивности сердечником

А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.

Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.

Катушка индуктивности и сердечник

Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.

Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.

Взаимоиндукция и принцип передачи тока

Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.

Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.

Что такое взаимоиндукция

При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.

Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.

А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.

Взаимоиндукция принцип действия


Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.

Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.

И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.

Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.

Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.


Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.

Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.

Устройство трансформатора

А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.

Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.

Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.

Классический трансформатор

Как работает трансформатор

Разберем устройство классического трансформатора.

Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.


Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).

На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.

Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.

Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.

Напряжение на обмотках трансформатора

Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.

Обозначение трансформатора на схемах

На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.

Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.

Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.

Начало обмотки у трансформатора

Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.

Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.

Коэффициент трансформации

У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).

Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К<1. А если понижающий, то наоборот К>1. У разделительного коэффициент равен 1.

От чего зависит мощность трансформатора

При расчете учитываются следующие параметры:

  • Размеры магнитопровода (сердечника);
  • Количество витков;
  • Сечение провода;
  • Количество обмоток;
  • Частота работы.

И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.

Типы классических трансформаторов

Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:

Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.

А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.

Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.


Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.

Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.

После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.



Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.


Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.

Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.

Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.

Режимы работы трансформаторов

Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.

2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.

3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.

Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.

Импульсные трансформаторы

Импульсный трансформатор в блоке питания

У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.

Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.

Зачем нужны трансформаторы

Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.

Отличия импульсных трансформаторов от классических

Тезисно можно выделить несколько различий:

  • Частота работы;
  • Состав сердечника;
  • Размеры;
  • Схема работы;
  • Стоимость.

А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.

Почему сердечник не делают сплошным

Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.

Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.

Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.

А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.

Что делает трансформатор

У трансформатора много полезных и важных функций:

  • Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.


  • Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Зачем нужен трансформатор и где он применяется

  • Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.


  • Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Применение трансформаторов в электронике


Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Согласующий трансформатор

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

  • Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Гальваническая развязка и трансформатор


Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

  • Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Вопросы об устройстве трансформатора

-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.

-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.

-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.

-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.

-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.

Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.

Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.


Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.

-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.

Неисправности трансформаторов

К основным неисправностям трансформаторов можно отнести:

  • Коррозия и наличие ржавчины на сердечнике;
  • Перегрев и нарушение изоляции;
  • Межвитковое короткое замыкание;
  • Деформация корпуса, обмоток и сердечника
  • Попадание воды в обмотку.

Как проверить на целостность

Проверка трансформатора мультиметром

Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.

Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.

Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.

Безопасная проверка работы трансформатора

Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.

Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.

Интересные факты про трансформаторы

Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.

Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.

Как определить характеристики трансформатора без маркировки.

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в интернете, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов.

Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?

Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора. Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.

Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток.

Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.

Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.

Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.

Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.

Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.

В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.

На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.

Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.

Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки.

Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.

Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.

Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.

Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.

Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.

Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Читайте также: