Для увеличения пределов измерения счетчика трансформатор тока подключают так

Обновлено: 01.05.2024

КАК ОБМАНУТЬ СЧЕТЧИК ЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОРОМ

Бесплатное Электричество с помощью Трансформатора
Знание о том, что обмотка трансформатора проводит ток позволяет некоторым электрикам делать заявления о том, что с помощью трансформатора можно пользоваться бесплатным электричеством если подключать его ОСОБЫМ образом.

Такая Супер секретная технология и схема сейчас прямо перед вами

Подключение трансформатора последовательно нагрузке Подключение трансформатора последовательно нагрузке

Суть схемы сводится к тому, что подключив одну из обмоток трансформатора последовательно нагрузке, например лампе накаливания или электроплите, мы получаем собиратель реактивной мощности которая не учитывается счетчиком и уходит обратно в сеть.

Вторичная обмотка трансформатора позволяет использовать всю реактивную мощность для своих нужд.

Проверка наличия Халявной Энергии Проверка наличия Халявной Энергии

Подключив прибор и включив установку собранную по такой схеме, мы сразу обнаруживаем, что Халявное напряжение и Ток есть на Собирающей обмотке. Пора кричать УРА и тихо пользоваться халявной энергией!
Но все совсем не так просто!

Да , трансформатор включенный последовательно с нагрузкой будет работать как . обыкновенный трансформатор который включили через дополнительное активное сопротивление и будет на вторичной обмотке выдавать нам мощность которую мы можем использовать. Но счетчик этим не обманешь!
Если мы станем подключать к вторичной обмотке нагрузку, то трансформатор автоматически увеличит ток на первичной обмотке по законам электромагнитной индукции и все это увеличение будет учтено счетчиком и отразится в показаниях.
Так что увы , я вас разочарую! Не смотря на то, что такие сказки рассказываются регулярно и даже продаются такие устройства экономии (воровства), все это не стоит выеденного яйца, как говорят Хранцузы!

Как расширить пределы измерения приборов в цепях переменного тока


GeekBrains

Для расширения пределов измерения переменного тока у амперметров и других приборов, имеющих токовые обмотки (счетчики, фазометры, ваттметры и т. д.), применяют измерительные трансформаторы тока. Они состоят из магнитопровода, одной первичной и одной или нескольких вторичных обмоток.

Первичная обмотка трансформатора тока Л1 - Л2 включается последовательно в цепь измеряемого тока, во вторичную обмотку И1 - И2 подключается амперметр или токовая обмотка другого прибора.

Вторичная обмотка трансформатора тока выполняется обычно на ток 5 А. Встречаются также трансформаторы с номинальным вторичным током в 1 А и 10 А. Первичные номинальные токи могут быть от 5 до 15 000 А.

Измерительные трансформаторы тока

При включенной первичной обмотке Л1 - Л2 вторичная обмотка И1 - И2 должна быть обязательно замкнута на токовую обмотку прибора или закорочена. В противном случае во вторичной цепи возникает большая электродвижущая сила (1000 - 1500 В), опасная для жизни людей и изоляции вторичной обмотки.

У трансформаторов тока один конец вторичной обмотки и кожух заземляются.

Измерительный трансформатор тока выбирают по следующим данным:

а) по номинальному первичному току,

б) по номинальному коэффициенту трансформации. Он указан в паспорте трансформатора в виде дроби: в числителе - номинальный первичный ток, в знаменателе - номинальный вторичный ток, например, 100/5 А, т. е. кт = 20,

в) по классу точности, который определяется величиной относительной погрешности при номинальной нагрузке. При увеличении нагрузки вторичной цепи трансформатора тока выше номинальной погрешности сильно возрастают. По степени точности трансформаторы тока делятся на пять классов: 0,2, 0,5, 1,0, 3,0, 10. Для уменьшения погрешности, вносимой трансформатором тока в процессе измерения, необходимо вторичную цепь трансформатора тока выполнять проводами относительно большого сечения и по возможности меньшей длины,

г) по номинальному напряжению первичной цепи.

Измерительные трансформаторы тока

Трансформаторы тока имеют сокращенные обозначения: Т - трансформатор тока, П - проходной, О - одновитковый, Ш - шинный, К - катушечный, Ф - с фарфоровой изоляцией, Л - с изоляцией из синтетической смолы, У - усиленный, В - встроенный в выключатель, Б - быстронасыщающийся, Д, 3 -наличие сердечника для защиты дифференциальной и от коротких замыканий, К - для схем компаундирования синхронных генераторов, А - с алюминиевой первичной обмоткой.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения применяют для расширения пределов измерения напряжения у вольтметров и других приборов, имеющих обмотки напряжения (счетчики, ваттметры, фазометры, частотомеры и т. д.).

Первичная обмотка трансформатора А - Х включается параллельно под полное напряжение сети, вторичная обмотка а-х присоединяется к вольтметру или обмотке напряжения более сложного прибора.

Все трансформаторы напряжения обычно имеют вторичное напряжение 100 В. Номинальные мощности трансформаторов напряжения 200 - 2000 ВА. Чтобы избежать ошибок при измерениях, к трансформатору необходимо подключить такое количество приборов, при котором потребляемая прибором мощность в сумме не была бы выше номинальной мощности трансформатора.

Опасным режимом для трансформатора напряжения является замыкание накоротко зажимов вторичной цепи, так как в этом случае возникают большие сверхтоки. Для защиты трансформатора напряжения от сверхтоков в цепи первичной обмотки устанавливают предохранители.

Измерительные трансформаторы напряжения выбирают но следующим данным:

Измерительные трансформаторы напряжения

а) по номинальному напряжению первичной сети, которое может быть равным 0,5, 3,0, 6,0, 10, 35 кВ и т. д.,

б) по номинальному коэффициенту трансформации. Он обычно указан на паспорте трансформатора в виде дроби, в числителе которой указано напряжение первичной обмотки, в знаменателе - напряженке вторичной обмотки, например, 3000/100, т. е. Кт=30,

в) по номинальному вторичному напряжению,

г) по классу точности, который определяется величиной относительной погрешности при номинальной нагрузке. Трансформаторы напряжения делятся на четыре класса точности: 0,2, 0,5, 1,0, 3,0.

Трансформаторы напряжения бывают сухие или маслонаполненные, однофазные и трехфазные. При напряжении до 3 кВ они выполняются с сухим (воздушным) охлаждением, свыше 6 кВ - с масляным охлаждением.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Для увеличения пределов измерения счетчика трансформатор тока подключают так

Счетчики, как уже говорилось ранее, в основном выпускают на Для расширения пределов измерения счетчика по току используют трансформаторы тока, которые рассчитаны на следующие значения токов (А): 10/5, 15/5, 20/5, 30/5, 40/5, 50/5, 60/5, 75/5, 100/5 и т. д Соответственно коэффициенты трансформации равны 2, 3, 4, 6, 8', 10, 12, 15, 20 и т.д. Цифра в числителе указывает номинальный ток первичной обмотки, включаемой последовательно с потребителем тока, а цифра в знаменателе — номинальный вторичный ток, равный номинальному току счетчика На рисунке 12.5 приведена электрическая схема включения счетчика с трансформатором тока ТТ. Расход энергии W определяется как показание счетчика Wсч, умноженное на коэффициент трансформации к трансформатора тока, то есть W= k W.

Risunki_12.5-12.6-12.7-12.8

При измерении энергии, потребляемой в трехфазной трехпроводной цепи, используют два однофазных счетчика, которые включают по схеме, указанной на рисунке 12.6, а. Общий расход энергии в этом случае равен сумме показаний обоих счетчиков. При очень низком coscp диск одного из счетчиков может .вращаться в обратную сторону. Два однофазных счетчика могут быть заменены одним трехфазным трехпроводным счетчиком типа САЗ (рис. 12.6, б). Он скомбинирован из двух однофазных счетчиков, диски которых насажены на общую ось и работают на один счетный механизм.

Для измерения электрической энергии в трехфазных четырехпроводных сетях (рис. 12.7, а) используют три однофазных счетчика или один комбинированный (рис. 12.7, 6), состоящий из трех однофазных, диски которых сидят на одной общей оси и работают на общий счетный механизм. Общая энергия, измеренная в этом случае, равна сумме показаний трех счетчиков:

Если все три счетчика включены с трансформаторами тока, имеющими одинаковый коэффициент трансформации k, то общий расход энергии

Пример 1. Показания трех счетчиков на 1 февраля: первого — 845 кВт•ч, второго 590 кВт • ч, третьего — 905 кВт • ч; показания на 1 марта: соответственно 890, 620 и 940 кВт•ч Счетчики включены с трансформаторами тока 50/5. Определить расход энергии за февраль

1-й счетчик зарегистрировал: 890 — 845 =45 кВт•ч

2-й » » 620—590 = 30 кВт•ч

3-й » » 940 —905 =35 кВт•ч

Общий расход с учетом коэффициента трансформации

При включении счетчиков в высоковольтную сеть, кроме трансформаторов тока, используют и трансформаторы напряжения. Схема включения трехфазного счетчика активной энергии в сеть высокого напряжения приведена на рисунке 12.8.

Для защиты обслуживающего персонала и включенных во вторичную цепь приборов от высоких потенциалов, которые могут появиться вторичной стороне в случае пробоя изоляции, вторичные обмотки трансформаторов тока и напряжения нужно заземлять.

Электроснабжающие организации ведут также учет и реактивной мощности. Для этой цели применяют счетчики реактивной энергии. На рисунке 12.9 показана схема включения трехфазного счетчика реактивной энергии.

Схемы включения амперметров через трансформаторы тока


GeekBrains

Схемы включения амперметров через трансформаторы тока

В схемах измерения тока как при непосредственном включении приборов, так и при включении их через измерительные трансформаторы тока применяют только амперметры.

Схемы включения амперметров через трансформаторы тока показаны на рис. 1.

Трансформатор тока обеспечивает погрешность измерения, соответствующую его классу точности только при измерении тока в определенном диапазоне, причем сопротивление нагрузки во вторичной обмотке не должно превышать заданного значения. Так, класс точности трансформаторов тока типа ТС-0,5 при сопротивлении нагрузки 1,6 Ом будет 1,0. При увеличении сопротивления нагрузки до 3 Ом класс точности снижается до 3,0, а при включении во вторичную обмотку нагрузки сопротивлением 5 Ом становится равным 10,0.

Сопротивления при составлении реальной схемы могут быть оценены приблизительно следующим образом.

Суммарное сопротивление контактных соединений Rк может быть принято равным 0,05 - 0,1 Ом.

Сопротивление прибора Z может быть найдено в справочнике, указано в паспорте прибора или на его шкале.

Схемы включения амперметров через трансформатор тока

Рис. 1. Схемы включения амперметров через трансформатор тока: а — простая, б — с промежуточным трансформатором, в — для измерений токов, превышающих номинальный ток трансформатора, г — с промежуточным трансформатором, по с несколькими амперметрами, д - с выключателем амперметра, с — в трехфазной цепи тремя амперметрами, ж — то же с одним амперметром с переключателем.

Наиболее простая и распространенная схема измерения тока с трансформатором в цепи приведена на рис. 1, а.

Ток, измеренный с помощью этой схемы I = (I т n1 х I п х n)/(I т n 2 х N) = ktn х n х D п,

где I т n1 и I т n 2 — номинальные первичный и вторичный токи трансформатора тока; ktn = It1/It2 — коэффициент трансформации; D п = Iп/N - постоянная прибора; D = Dп х k х т n — постоянная измерительной схемы, n - показания прибора в делениях шкалы, N - число делений, нанесенных на шкале прибора, I п - ток полного отклонения стрелки.

Класс точности трансформатора выбирают но классу точности измерительного прибора в соответствии с табл. 1.

Пример. Пусть амперметр РА имеет шкалу с N =150 делениями и предел измерений I п = 2,5А. В измерительной схеме на рис. 1, а он включен через трансформатор тока с номинальными первичным и вторичным токами I т n1 = 600 А и I т n 2 - 5 А соответственно. При измерении тока стрелка измерительного прибора остановилась против деления n = 104.

Найдем измеренный ток. Для этого вначале определим постоянную прибора: D п = Iп/N = 2,5/100 = 0,025 А/дел.

Тогда постоянная схемы с измерительным трансформатором и прибором D = (I т n1 / I т n 2) D п = (600 х 0,25)/5 = 3 А/дел.

Измеренный ток находим как результат умножения постоянной схемы на число делений, показываемых стрелкой прибора: I = nD = 104 х 3=312 А.

При дистанционном измерении тока, когда длина соединительных проводов между трансформатором тока и амперметром превышает 10 м, или для одновременного повторения показаний в разных местах во вторичную обмотку трансформатора тока требуется включить нагрузку, сопротивление которой превышает допустимое значение. В этом случае используют схемы, приведенные на рис. 1,б,в, в которых применен промежуточный трансформатор тока с первичным током 5 А и вторичным током 1 или 0,3 А.

В первом случае сопротивление нагрузки вторичной обмотки промежуточного трансформатора может быть увеличено до 30 Ом, а во втором — до 55 Ом. Для определения тока с помощью этой схемы необходимо значение тока умножить на коэффициент трансформации промежуточного трансформатора тока.

Если при проведении испытаний в установках до 1000 В возникает необходимость переключений во вторичной цепи трансформатора тока, то следует применять схему, изображенную на рис. 17, д, в которой используется любой переключатель с двумя полюсами. После замыкания вторичной обмотки трансформатора можно производить необходимые переключения в точках 3 и 4 схемы. Вторичная обмотка при всех переключениях замкнута через контакт выключателя, подключенный к точкам 1 и 2. Переключения в главной цепи трансформаторов тока производят только при снятом напряжении.

Для измерения тока, превышающего номинальный ток одного трансформатора тока, можно применять схему, приведенную на рис. 1, в . Трансформаторы тока T1 N и T 2N включены так, что по первичным обмоткам протекает только половина тока I . Вторичные обмотки этих трансформаторов включены в первичную обмотку промежуточного трансформатора T 3 N, измеряющую сумму вторичных токов трансформаторов T 1 N и T2N, а амперметр — во вторичную обмотку промежуточного трансформатора.

Первичная обмотка промежуточного трансформатора должна быть рассчитана на сумму вторичных токов трансформаторов T 1 N и T2N. Тогда справедливо соотношение I = (kt1n + kt2n) х kt3n х D п х n = Dn, где все обозначения соответствуют приведенным ранее.

Измерение тока

Иногда при испытаниях возникает необходимость измерять ток в трехфазных трех и четырехпроводных сетях. В трехпроводных трехфазных цепях без нулевого провода для измерения тока каждой фазы используют измерительные схемы с двумя трансформаторами тока (рис. 1, е).

В этом случае через амперметр РА1 протекает ток Iв фазы В, через амперметр РА2 — ток Iс фазы С, а через амперметр РАЗ — ток Ia = Iв + Iс фазы А. Ток, измеряемый каждым из приборов, находят по выражению I = (I т n1 х I п х n)/(I т n 2 х N) = ktn х n х D п = Dn.

При испытаниях трехфазных электрических машин для измерения тока в фазах чаще используется модификация этой схемы, отличающаяся наличием переключателя S1 (рис. 1,ж). Переключатель позволяет применять только один амперметр и уменьшить погрешность измерения тока в фазах за счет исключения разницы в показаниях приборов в пределах их класса точности. Контакты этого переключателя должны обеспечивать безобрывное переключение вторичных цепей трансформаторов тока.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Назначение и применение трансформаторов тока

Июль 24th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

transformatory_toka_трансформаторы_тока

Мы уже с Вами много говорили про трансформаторы тока (ТТ) и сегодня я решил открыть новый раздел на сайте, посвященный полностью этой теме.

Чтобы начать изучать данный раздел, необходимо точно понимать их смысл и назначение.

Вторым назначением трансформаторов тока является отделение низковольтных приборов учета и реле, подключенных ко вторичной обмотке, от первичного высокого напряжения сети. Этим обеспечивается электробезопасность оперативного и ремонтного персонала электрослужбы.

Трансформаторы тока нашли широкое применение в цепях релейной защиты. С помощью трансформаторов тока получают питание токовые цепи защиты. В случае повреждений или ненормальных режимов работы электрооборудования от ТТ зависит правильное и надежное срабатывание устройств релейной защиты.

Также трансформаторы тока применяются для питания цепей измерения и учета электроэнергии.

Пример 1

В первом примере я покажу Вам как выполнен учет электроэнергии на мощном потребителе с током нагрузки примерно 400 (А). Соответственно, при таком большом токе нагрузки подключать электросчетчик и другие приборы учета (амперметр) прямым включением в сеть НЕ ДОПУСТИМО. Они сгорят и выйдут из строя. Поэтому в этом случае необходимо применить ТТ с коэффициентом трансформации 400/5 или еще больше.

transformatory_toka_трансформаторы_тока

А ко вторичным обмоткам ТТ подключен трехфазный счетчик электрической энергии САЗУ-ИТ и щитовой амперметр Э378.

transformatory_toka_трансформаторы_тока

transformatory_toka_трансформаторы_тока

Трехфазный индукционный счетчик САЗУ-ИТ.

transformatory_toka_трансформаторы_тока

Вторичные провода выполняются медным проводом сечением 2,5 кв.мм. В начале вторичные провода с трансформаторов тока идут на промежуточный клеммник, а с него уже на приборы учета. На этот же клеммник подключаются цепи напряжения.

transformatory_toka_трансформаторы_тока

Про все действующие схемы подключения счетчика через трансформаторы тока я уже Вам рассказывал и на этом останавливаться сейчас не буду. Вот знакомьтесь:

transformatory_toka_трансформаторы_тока

В этом случае первичные обмотки трансформаторов тока подключены последовательно во всех фазах. Вторичные обмотки соединяются проводами с электросчетчиком через испытательную переходную коробку (КИП).

Пример 2

Аналогично можно сказать и про цепи релейной защиты.

Во втором примере я покажу Вам как выполняется релейная защита на потребителе напряжением 10 (кВ), с током нагрузки примерно 1000 (А). Соответственно, при таком большом токе нагрузки и высоком напряжении сети, подключать реле прямым включением в сеть НЕ ДОПУСТИМО.

В этом случае нам необходимо применить высоковольтные трансформаторы тока ТПЛ-10 с коэффициентом трансформации 1000/5 (для питания обмоток токовых реле) и измерительные трансформаторы напряжения, например, НТМИ-10, с коэффициентом 10000/100 (для питания обмоток реле напряжения и электросчетчиков).

transformatory_toka_трансформаторы_тока

В релейном отсеке ячейки КРУ установлены токовые реле защиты на базе РТ-40.

transformatory_toka_трансформаторы_тока

На двери релейного отсека размещены трехфазный счетчик СЭТ-4ТМ.03М.01 и щитовой амперметр Э30.

С помощью ТТ возможно установить приборы учета и реле, подключенные ко вторичным цепям, на значительные расстояния от контролируемых и измеряемых участков сети.

Например, амперметры всех потребителей подстанции, могут быть установлены в удобном и отапливаемом помещении (щитовой или пульте учета) для контроля их нагрузки.

transformatory_toka_трансформаторы_тока

Ниже я представляю Вашему вниманию список статей на тему ТТ (список будет пополняться по мере написания статей):

Для увеличения пределов измерения счетчика трансформатор тока подключают так


Журнал №3(21) 2003

Точность учета электроэнергии зависит от правильности выбора и подключения измерительных трансформаторов


Николай Даниелян, к.т.н., директор фирмы «KWK Messwandler»

В последнее время в энергетике России возросли требования к точности учета измерений потребляемой мощности, особенно в сетях низкого напряжения. В связи с этим происходит повсеместная замена индуктивных счетчиков электрической энергии на электронные с более высоким классом точности. Однако на практике это часто не дает ожидаемых результатов. Точность измерений, вместо того чтобы возрастать, может значительно ухудшаться. Попробуем разобраться, почему это происходит.

  • - при изменении мощности вторичной нагрузки. Например, при замене индуктивных счетчиков на электронные, мощность потребления которых на порядок меньше, или при увеличении длины измерительных линий, приводящем к значительному увеличению мощности нагрузки;
  • - при изменении потребляемой мощности объектами и связанным с этим изменением величины первичного тока. Например, при значительном уменьшении или увеличении объема производства, что характерно в настоящее время.

Класс точности зависит от нагрузки
Мощность вторичной нагрузки измерительных трансформаторов состоит из мощности измерительного прибора плюс мощность проводов:
Ризм = Рприб + Рпров , где Ризм - нагрузка измерительного трансформатора;
Рприб - нагрузка измерительного прибора;
Рпров - нагрузка проводов.
Для измерительных трансформаторов нагрузка по ГОСТ должна составлять от 25 до 100% номинальной. Только тогда они работают в своем классе точности. Если нагрузка вторичной цепи выходит за пределы этого интервала, то необходима соответствующая корректировка. Рассмотрим наиболее часто встречающиеся случаи, требующие корректировки мощности нагрузки.

  • уменьшается количество соединительных кабелей, вследствие чего повышается точность измерений;
  • требуется меньше времени и места для монтажа приборов;
  • они безопасны при обслуживании;
  • длина измерительной линии мало влияет на точность измерений.
  • использование измерительных трансформаторов тока с расширенным диапазоном измерений. Например, класса точности 0.5S и 0,2S, что расширяет допустимый по ГОСТ интервал измерений до 1% номинального тока. Если необходимо увеличить диапазон измерений в сторону больших токов (больше 120%), то необходимо использовать трансформаторы с увеличенным диапазоном, например 150 или 200%, что позволяет расширить диапазон первичного тока соответственно до 150 или 200% от номинального;
  • использование трансформаторов тока с возможностью переключения в цепи первичной обмотки, что позволяет применять один и тот же трансформатор тока с одним и тем же классом точности для двух номинальных первичных токов. Например трансформаторы тока с номинальным первичным током 800 А и 400 А, 600 А и 300 А, 1500 А и 750 А и т. д. Этот подход позволяет еще больше расширить диапазон измерений по первичному току, в котором будет выполняться класс точности трансформаторов тока. В их конструкции, в зависимости от схемы включения первичной обмотки, сердечник может иметь один или два витка первичной обмотки, что позволяет использовать один и тот же трансформатор на два первичных тока, один из которых составляет ровно половину другого. Такой тип трансформаторов тока позволяет в два раза повысить номинальный первичный ток трансформатора, сохраняя при этом класс его точности;
  • использование трансформаторов тока с дополнительными отводами в цепи вторичной обмотки.

Устранение ошибки в подключении трехфазного счетчика электрической энергии

Октябрь 12th, 2015 Рубрика: Учет электроэнергии, Электролаборатория

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика

В сегодняшней статье я хотел бы рассказать Вам об ошибке при подключении трехфазного электросчетчика, которую я буквально на днях устранил на одной из высоковольтных подстанций.

Ошибка довольно распространенная, поэтому я и решил написать о ней отдельную статью. В общем дело было так.

Отдел учета и планирования энергоресурсов на нашем предприятии передал замечание, что на одном из фидеров имеется недоучет.

Распределительное устройство типа КРУ, т.е. комплектное. Напряжение электроустановки 10 (кВ).

С ячейки №11 (см. схему) с помощью силового кабеля ААШВ (3х120) запитан силовой масляный трансформатор мощностью 1000 (кВА).

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_1

Как видите, на выкатном элементе (каретке) установлен высоковольтный масляный выключатель ВМПЭ-10 номинальным током 630 (А) с электромагнитным приводом ПЭВ-14.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_4

Кстати, привод ПЭВ-14 достаточно надежный и легко-эксплуатируемый по сравнению с теми же ВИЕЮ-30, ПЭВ-2 или ПС-10. Правда привод ПЭ-11 все равно в моем рейтинге занимает самое первое место.

nemeckie_razemy_harting_немецкие_разъемы_хартинг_7

nemeckie_razemy_harting_немецкие_разъемы_хартинг_8

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_2

Счетчик ПСЧ-4ТМ.05М.01 подключен через трансформатор напряжения НТМИ-10 (про НТМИ-10 более подробно читайте здесь), установленный на сборных шинах КРУ (ячейка №15), и два трансформатора тока ТПЛ-10 с коэффициентом 150/5, установленных в кабельном отсеке КРУ, соответственно, в фазах А и С (схема неполной звезды).

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_3

Такую схему подключения я уже подробно рассматривал в одной из своих статей (вот ссылочка). Здесь же речь пойдет несколько о другом.

Итак, перейдем непосредственно к нашей проблеме недоучета.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_5

Вот изначальный вид векторной диаграммы.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_6

По ней отчетливо видно, что вектор тока фазы А (желтого цвета) находится явно не на своем месте (значительно опережает вектор напряжения фазы А), т.е. он как-бы перевернут на 180°, что и подтверждается отрицательной активной мощностью «-13,79 (Вт)» (выделил красной окружностью). Вектор тока фазы В тоже опережает вектор напряжения фазы В, но это по причине тока в фазе А, т.к. фаза В здесь мнимая (схема неполной звезды).

Старшему мастеру оперативного персонала я подал заявку на вывод фидера в ремонт, потому что в любом случае нужен доступ к трансформаторам тока. Оперативный персонал, согласно задания наряда-допуска, подготовил рабочее место: отключил масляный выключатель, выкатил каретку, включил заземляющие ножи на кабель 10 (кВ), а также выполнил все остальные необходимые технические мероприятия. Более подробно и наглядно о технических мероприятиях я рассказывал в статье про вывод в ремонт масляного выключателя, правда в распределительном устройстве КСО, а не КРУ, но суть одинаковая.

dopusk_brigady_k_rabote_v_elektroustanovkax_po_naryadu_допуск_бригады_в_электроустановках_по_наряду_4

И вот только после всех описанных выше обязательных организационных и технических мероприятий мы приступили к поиску неисправности в цепях подключения электросчетчика.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_7

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_8

Сначала мы с коллегами решили прозвонить вторичные цепи от трансформаторов тока до самого первого клеммника в релейном отсеке.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_9

Вторичная коммутация трансформатора тока фазы А выполнена проводами черного цвета.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_10

Вторичная коммутация трансформатора тока фазы С выполнена проводами синего цвета.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_11

Для этого отключаем провода от обмоток трансформаторов тока и с клеммника, и прозваниваем жилы в следующем порядке:

  • А421 (И1 на ТТ фазы А) - А421 (на клеммнике)
  • O421 (И2 на ТТ фазы А) - О421 (на клеммнике)
  • С421 (И1 на ТТ фазы С) - С421 (на клеммнике)
  • O421 (И2 на ТТ фазы С) - О421 (на клеммнике)

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_13

На клемнике провода О421 от разных ТТ соединяются между собой с помощью перемычки и далее на испытательную коробку (КИП) идет уже общий нулевой провод О421, а также два фазных провода А421 и С421.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_15

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_27

Точка заземления может быть, как непосредственно у трансформаторов тока, т.е. в кабельном отсеке КРУ, так и на ближайшем клеммнике, т.е. в релейном отсеке, как в нашем случае.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_12

Прозвонка показала, что маркировка и схема подключения вторичных цепей трансформаторов тока правильная.

Теперь осталось проверить маркировку первичных выводов трансформаторов тока (Л1-Л2) по отношению к источнику питания и друг другу.

Питание на трансформаторы тока подходит снизу (с нижних разъемов выкатного элемента), поэтому там и должен быть расположен вывод Л1. Отходящий силовой кабель подключается сверху на вывод Л2.

На фазе С трансформатор тока установлен в прямом направлении (Л1-Л2).

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_16

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_17

Маркировка первичной обмотки (Л1-Л2) находится с правой стороны и из-за силового кабеля трудно было подлезть к трансформатору тока на фазе А, поэтому пришлось воспользоваться зеркалом.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_14

Не удивительно, когда обнаружилось, что на фазе А трансформатор тока установлен наоборот по отношению к фазе С, ну и соответственно, к источнику питания.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_18

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_19

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_20

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_21

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_22

После этого, на всякий случай, я решил измерить следующие параметры обоих трансформаторов тока.

1. Омическое сопротивление вторичных цепей ТТ (измерительная обмотка и обмотка для релейной защиты).

  • Rизм.А = 0,37 (Ом)
  • Rизм.С = 0,36 (Ом)
  • Rрел.А = 0,38 (Ом)
  • Rрел.С = 0,38 (Ом)

2. Сопротивление изоляции вторичных цепей ТТ

  • Rизол.изм. = 100 (МОм)
  • Rизол.рел. = 200 (МОм)

3. Вольтамперная характеристика (ВАХ) трансформаторов тока

Снял ВАХ у измерительных обмоток (1И1-1И2) каждой фазы. Для этого, естественно, что нужно отключить заземление вторичных обмоток.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_23

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_24

У обмоток для релейной защиты (2И1-2И2) ВАХ снимать не стал, т.к. эти работы будут производиться отдельно, согласно имеющегося у нас графика ППР.

4. Коэффициент трансформаторов тока

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_25

5. Заключение

Сделал заключение, что трансформаторы тока со вторичными цепями исправны и фидер можно вводить в работу. Подал заявку мастеру оперативной службы на сборку силовой схемы.

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_26

Общий вектор полной мощности теперь располагается в нужном первом квадранте. Токи фаз также на своих местах с нормальными углами сдвига.

Как измерить электроэнергию с током больше 100 Ампер? Всё, что вам нужно знать про трансформаторы тока!

Обычный электрический счётчик , через который проходит весь ток, потребляемый домом или квартирой, называется счётчиком прямого включения , потому что он включается напрямую в линию. Однофазный счётчик бывает на ток до 80 Ампер , а трёхфазный - до 100 . А как быть, если ток, который проходит через счётчик больше 100 Ампер, например, если нужно померить потребление гаражного массива или дачного посёлка?

Выход есть и называется он " трансформаторы тока ". О том, как подключаются трансформаторы тока - наша небольшая, но очень полезная статья.

Что такое трансформатор тока?

Внутри измерительных клещей тоже скрывается трансформатор тока Внутри измерительных клещей тоже скрывается трансформатор тока

Трансформатор тока, как и трансформатор напряжения, преобразует, только не Вольты, а Амперы. Он состоит из первичной обмотки , которую заменяет шина , проходящая сквозь его корпус и вторичной - катушки из провода небольшого сечения.

Если замкнуть выводы вторичной обмотки на строго определённое сопротивление, то сила тока в ней будет пропорциональна силе тока в шине, но в несколько раз меньше . Скажем, в трансформаторе 200/5 ("двести на пять"), сто ампер в шине превращаются в 2,5 Ампера на вторичной обмотке.

Как подключаются трансформаторы тока?

Для того, чтобы измерить электроэнергию с большой силой тока, вам понадобится:

  • трёхфазный счётчик на 5 Ампер, например, Меркурий 230 АМ-03 ;
  • трансформаторы тока на каждую фазу (три штуки) с током, превышающим наибольший ток, который вы измеряете;
  • испытательная коробка , для соединения трансформаторов и счётчика.

Всё это вам нужно соединить по схеме ниже :

Схема соединения трёхфазного счётчика и трансформаторов тока Схема соединения трёхфазного счётчика и трансформаторов тока

Иногда бывает так, что подключать провод к шине трансформатора тока неудобно . В этом случае можно использовать трансформаторы вообще без шины - с отверстием в корпусе . Для измерения, через это отверстие пропускается провод , по которому течёт общий ток - каждой из трёх фаз.

Это важно знать!

Трансформаторы тока с надетыми крышками для опломбировки Трансформаторы тока с надетыми крышками для опломбировки

Помните, что к трансформаторам тока предъявляются те же требования , что и к счётчику : они должны иметь паспорт с отметкой о поверке не более года до момента подключения. После подключения, на трансформаторы надеваются крышки , которые затем пломбируются , так же, как и крышки счётчика и испытательной коробки.

Разумеется, если вы используете счётчик для внутреннего учёта , не связанного с энергосетями, пломбы можно не ставить - достаточно надеть крышки на счётчик и испытательную коробку, чтобы никого случайно не ударило током.

При считывании показаний, цифра на счётчике умножается на коэффициент трансформаторов , например если их номинал равен 400/5, показания нужно умножать на 80 - это и будет реальное число потраченных киловатт-часов.

Читайте также: