Что такое сдвиг фаз между напряжением и током

Обновлено: 25.04.2024

Последовательное соединение активного, индуктивного, емкостного сопротивлений. Резонанс напряжений. Коэффициент мощности

Рассмотренные в предыдущих трёх статьях электрические цепи переменного тока. содержащие только активное , только емкостное и только индуктивное сопротивления были взяты для того, чтобы полнее раскрыть свойства перечисленных сопротивлений.

В реальных электрических цепях присутствуют все перечисленные сопротивления: активное, индуктивное, емкостное.

Сейчас будем говорить о цепях, содержащих последовательно соединённые активное сопротивление, катушку индуктивности и конденсатор.

Нам предстоит найти полное сопротивление показанной на рисунке цепи и разность фаз между действующими значениями тока и напряжения в ней.

Мгновенное значение приложенного к цепи напряжения (на зажимах цепи) складывается из мгновенных значений напряжений на каждом сопротивлении, то есть будет равно сумме мгновенных напряжений на активном, индуктивном и емкостном сопротивлениях:

Но действующее значение напряжения на зажимах цепи U не будет равно алгебраической сумме напряжений на каждом участке цепи из-за разности фаз между током и напряжением U на каждом сопротивлении (активном, индуктивном, емкостном).

Для нахождения связи между перечисленными напряжениями удобно пользоваться векторной диаграммой.

Векторная диаграмма - это графическое изображение значений периодически изменяющихся величин и соотношений между ними при помощи направленных отрезков - векторов .

Например, мы знаем, что напряжение на зажимах цепи переменного тока меняется по синусоидальному закону, то есть колебания напряжения сети изображается синусоидой .

Мгновенные значения напряжения внешнего источника можно рассматривать ещё как проекции вектора напряжения U (вектора ОВ) на вертикальную ось при равномерном вращении этого вектора против часовой стрелки.

Точно также векторами можно изобразить переменный ток в цепи, переменные напряжения на активном сопротивлении, на емкостном и индуктивном сопротивлениях.

Колебания перечисленных величин имеют одну частоту , но сдвинуты по фазе относительно друг друга.

Их взаимное расположение со временем не меняется. Тогда все перечисленные вектора можно показать на одной диаграмме.

Действующее значение вектора напряжения внешнего источника U будет равно геометрической сумме векторов напряжений на каждом сопротивлении цепи.

Такое сложение векторов значительно проще сложения синусоид, поэтому векторные диаграммы применяют очень часто.

Ниже рассказано как построена диаграмма, изображённая на рис. 15, которая решает задачу нахождения полного сопротивления рассматриваемой электрической цепи и нахождения сдвига фаз между током и напряжением.

Как видим из формулы закона Ома, полное сопротивление цепи не равно простой сумме активного R и реактивного сопротивлений.

Индуктивное и емкостное напряжения имеют разные знаки - они направлены навстречу друг другу.

Итак, полное сопротивление цепи переменного тока:

На рис 15 прямоугольный треугольник векторной диаграммы составлен следующими векторами: вектором активного напряжения,

вектором индуктивного напряжения

вектором емкостного напряжения:

и вектором действующего напряжения U стороннего источника .

Из диаграммы, применив закон Пифагора, получим выражение для действующего напряжения:

Если каждое из этих напряжений (рис. 15) разделить на ток, то получим такой же треугольник , составленный сопротивлениями.

Прилежащий к углу катет даёт активное сопротивление цепи R , противолежащий катет - общее реактивное сопротивление цепи X , а гипотенуза треугольника даёт полное сопротивление цепи Z , состоящей из последовательно соединённых активного, индуктивного и ёмкостного сопротивлений..

Из представленного треугольника сопротивлений получаем соотношение:

то есть сдвиг фаз (угол фи) между током и напряжением в цепи определяется отношением реактивного сопротивления цепи к её активному сопротивлению.

Возможны следующие случаи :

Когда индуктивное сопротивление больше емкостного, то есть когда в цепи преобладает индуктивность , то ток отстаёт от напряжения на угол "фи".

Когда индуктивное сопротивление меньше емкостного, то есть когда в цепи преобладает емкостное сопротивление, то ток опережает напряжения на угол "фи".

Из треугольника сопротивлений получаем ещё такое выражение:

определяется отношением активного сопротивления цепи к её полному сопротивлению. Его называют коэффициентом мощности .

Значение коэффициента мощности определяет активную (полезную) мощность цепи.

Посмотрим, как получают выражение для мощность цепи переменного тока.

Мгновенное значение мощности равно произведению мгновенных значений напряжения и силы тока, которые выражаются формулами:

Взяв произведение мгновенных значений тока и напряжения и проанализировав полученное выражение, придём к выводу, что мощность может быть как положительной (когда энергия от источника поступает в цепь), так и отрицательной (когда уходит из цепи в источник).

Практически важно знать среднюю за период мощность, так как только средняя мощность характеризует энергию, потребляемую цепью за единицу времени.

После математических преобразований получается следующее выражение для средней мощности , которую можно называть просто мощностью цепи:

то есть мощность электрической цепи переменного тока равна произведению действующих значений напряжения и силы тока на косинус угла между током и напряжением ,

Косинус сдвига фаз между током и напряжением назвали коэффициентом мощности .

Видим, что коэффициент мощности оказывает очень большое влияние на мощность электрической цепи.

Коэффициент мощности достигает максимального значения, равного единице, при угле "фи" (сдвиге фаз) равном нулю или когда индуктивное сопротивление равно емкостному сопротивлению:

При этом условии цепь переменного тока имеет минимальное сопротивление, равное активному сопротивлению цепи.

Ток же в цепи в этом случае достигает максимального значения (явление резонанса ).

Приложенное к цепи напряжение U равно активному напряжению (напряжению на активном сопротивлении R ).

Но при этом есть и индуктивное напряжение и равное ему по модулю, но противоположное по направлению (сдвинутое по фазе на половину периода) емкостное напряжение.

Причём они могут достигать достаточно больших значений, гораздо больших, чем напряжение сети U. Реактивные напряжения (индуктивное, емкостное) будут превышать напряжение сети U во столько раз, во сколько раз реактивные сопротивления (индуктивное, емкостное) будут больше активного сопротивления R .

Поэтому рассмотренное явление резонанса называется резонансом напряжений .

При резонансе мгновенные мощности в реактивных участках цепи (в катушке индуктивности и конденсаторе) равны и противоположны по знаку. Это значит, что увеличение энергии магнитного поля в катушке индуктивности происходит в результате уменьшения электрической энергии запасённой в конденсаторе, и наоборот, а энергия генератора расходуется только на активном сопротивлении.

Для электрической цепи промышленного тока резонанс вреден , так как может привести к пробою изоляции катушки и конденсатора.

По этой причине коэффициент мощности на предприятиях поднимают до 0,9 - 0,95, чтобы получить большую мощность, но чтобы не получить явление резонанса.

Какие меры применяются для повышения коэффициента мощности на промышленных предприятиях будет сказано позднее.

В цепь переменного тока (120В, 50 Гц) последовательно включены катушка с активным сопротивлением 3 Ом и индуктивным сопротивлением 4 Ом и конденсатор. При какой ёмкости конденсатора наступит резонанс напряжений? Какими будут при этом ток в цепи, активное, индуктивное и емкостное напряжения?

Что такое фаза, фазовый угол и сдвиг фаз


GeekBrains

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс, то и функция, описывающая данный процесс, - гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Что такое фаза, фазовый угол и сдвиг фаз

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

Что такое фаза

Напряжение в однофазной сети

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Фазовый угол

Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Фазовый сдвиг

Фазовый сдвиг

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Фазовый сдвиг на осциллографе

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Фаза тока, что это такое. Простым и понятных языком.

Давайте рассмотрим, что же все таки такое - фаза тока.

Ист очник фото Яндекс Фаза тока Ист очник фото Яндекс Фаза тока

Практически все новички и собственники домов часто сталкиваются с проблемой: что же такое фаза тока в обычной электрической проводке? Такие вопросы возникают чаще всего в процессе ремонта каких-то электроприборов.

При возникновении такой ситуации, в первую очередь, нужно думать и соблюдать технику безопасности. А знания и умения должны отойти на второй план. Глубокие познания об самых простых законах образования тока и различных процессов, которые происходят непосредственно в бытовых приборах. Эти знания не только могут помочь найти решение проблем множества неисправностей, которые возникают в электроприборах, но и решить их самым простым и надежным способом.

Практически все конструкторы и инженеры работают над тем, чтобы сократить количество несчастных случаев в процессе ремонтных работ с электросетью либо электроприборами. Основная цель потребителей – соблюдать четко прописанные нормы и стандарты.

Давайте детальнее поговорим о токе:

  • однофазном;
  • двухфазном;
  • трехфазном.

Однофазный ток.

Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.

Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:

1.Один провод это, непосредственно, фаза;
2.Второй – ноль.

В этих проводах напряжение 220 В.

Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:

1.Двух проводов;
2.Трех проводов.

Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.

Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.

Двухфазный ток.

Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.

Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстветак, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля. В результирующем магнитном поле вектор будет вращатьсяс одной и той же скоростью и под одинаковым углом. В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самымприводить в движение различные частицы.
Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Под трехфазной системой электрических цепей – принято понимать систему, состоящую из трех цепей. В этих цепях имеются переменные, ЭДС с одинаковой частотой, которые одинаково сдвинуты по фазе и по отношению друг к другу на 1/3 периода(=2/3). Каждый отдельный кусочек такой цепи можно смело назвать его фазой. А совокупную систему принято считать трехфазным током. Трехфазный ток без особого труда можно передавать на достаточно большие расстояния. Паре фазных проводов свойственно напряжение 380В. Если в паре фаза и ноль – 220В.

Распределить трехфазный ток по домостроениям можно такими способами:

Четырехпроводное подключение – происходит с использованием трех фаз и одного нулевого провода. Такая система до распределительного щитка, после используют два стандартных провода – фазу и ноль, чтобы иметь напряжение 220В.

При пятипроводном подключении трехфазного тока к уже привычной схеме нужно добавить еще провод, который обеспечивает защиту и заземление. В трехфазной сети все фазы имеют одинаковую нагрузку, чтобы избежать перекоса фаз. От используемой в домостроении проводки зависит и возможность подключения к сети тех или иных электроприборов. Например, заземление просто необходимо если в сеть планируют включать достаточно мощные электроприборы, такие как холодильник, печь, обогреватель, компьютер, телевизор, джакузи, душевая кабинка. Трехфазный ток применяют как источник электропитания двигателей, которые пользуются большой популярностью у потребителей.

Как устроена бытовая проводка

Изначально электроэнергию получают на электростанциях. Потом с помощью промышленной электросети ее передают на трансформаторную подстанцию, а там уже и происходит преобразование напряжения в 380В. Обмотки понижающего трансформатора соединены по принципу «звезда»: все три контакта необходимо подключить к точке «0», а оставшиеся контакты к клеммам «A», «B» и «C».

Все контакты «0», которые были объединены необходимо подключить к заземленному проводу на подстанции. Именно на территории подстанции и происходит расщепление ноля на:

1.Рабочий ноль;
2.PE-проводник, который выполняет защитную функцию.

После выхода из понижающего трансформатора все нули и фазы тока поступают в распределительный щиток домостроения. В результате получается трехфазная система, которая распределяется по всем щиткам многоэтажки. К конечному потребителю попадает напряжение 220В, проводник РЕ выполняет именно эту защитную функцию.

Теперь давайте более детально рассмотрим, что же представляет собой ноль и фаза тока? Нулем принято считать проводник тока, который подключают к контуру заземления в понижающем трансформаторе. Он предназначен для образования нагрузки фазы тока. Присоединять проводник необходимо к обмотке трансформатора. Так же есть такое понятие «защитный ноль» - это именно РЕ-контакт, который мы описывали ранее. Основное его предназначение – отвод тока в случае возникновения поломок либо неисправностей в цепи.

Такой метод пользуется огромной популярностью при подключении к электросети многоэтажных домов. Пользуются им уже много десятилетий. Случаются случаи, когда в системе возникают неисправности. В основном, причиной этому служит низкое качество соединения в цепи либо порыв на линии.

Что происходит в нуле и фазе при обрыве провода.

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль.

То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения.

К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

Как же определить фаза это или ноль?

Для определения ноль это либо фаза рекомендуют пользоваться специальным оборудованием – отверткой-тестером.

Функционирует этот прибор по принципу проведения тока с низким напряжением через тело человека, который его использует. Отвертка имеет такие составляющие:

1.Наконечник, с помощью которого есть возможность подключаться к фазе в розетке;
2.Резистор, который снижает разницу электротока до достижения им безопасного уровня;
3.Светодиод, который загорается, если это фаза;
4.Плоский контакт, который способствует возникновению сети с участием тела оператора.

Помимо отверток-тестеров имеются и иные варианты определения какой именно из контактов в розетке имеет поломку. С помощью такого оборудования электрики и определяют фазу и ноль в розетке. Кому-то привычнее использовать более точный тестер, который функционирует как вольтметр.

По показателям вольтметра можно сказать:

1.О наличии напряжения 220В между нулем и фазой;
2.О напряжении между нулем и землей либо его отсутствии;
3.О напряжении между нулем и фазой либо его отсутствии.

Трёхфазный ток. Фазное и линейное напряжение. Перекос фаз.

В прошлой статье я обещал рассказать что такое трёхфазный ток и что такое фазное и линейное напряжение. Пожалуй, начнём.

Что такое полная фаза колебания? - это аргумент периодической функции, описывающей колебательный или волновой процесс.

Так же существует ещё и начальная фаза колебания. Это значение полной фазы в начальный момент времени, т. е. при t=0.

Математически это выражается так:

изображение автора изображение автора

При однофазном токе пси=0. Когда же мы начинаем рассматривать трёхфазный ток, то тут появляется сразу три разные линии с пси равным 0, 120 и соответственно 240 гр., т.е. фазы повёрнуты друг относительно друга на 120 гр.

Теперь рассмотрим устройство трёхфазного генератора:

изображение из открытых источников. изображение из открытых источников.

Следовательно в статоре генератора размещены 3 обмотки, сдвинутые относительно друг-друга на 120 гр.

Магнит, размещённый на роторе, обычно на роторе стоит отдельная обмотка, вращаясь создаёт вращающееся магнитное поле. При этом в обмотках статора наводится ЭДС, индуцирующее ток в соответствующих обмотках.

Обмотки соединяются либо по схеме "треугольник":

изображение из открытых источников изображение из открытых источников

Либо по схеме "звезда"

изображение из открытых источников изображение из открытых источников

Схема "звезда" чаще всего применяется в низковольтных сетях 380/220В.

Фазное и линейное напряжение

Фазным напряжением называется напряжение, измеренное между любым из фазных проводников и нейтралью.

Линейным напряжением называется напряжение, измеренное между любыми парами фаз.

Так как в схеме "треугольник" нейтральный проводник отсутствует, следовательно напряжение там линейное.
Ниже приводятся функции фазного напряжения на каждой из фаз.

изображение автора изображение автора

Линейное же напряжение выглядит так:

изображение автора изображение автора

При этом линейное и фазное напряжение соотносятся между собой так:

изображение автора изображение автора

Перекос фаз

А это вообще весьма распространённое явление. Его основная причина - не симметрия фазных нагрузок. Дело в том, что в случае, когда токи во всех фазах одинаковы в нулевом проводнике ток отсутствует. Он попросту говоря в такой ситуации не нужен. Но в условиях современных реалий добиться одинаковых токов во всех трёх фазах практически невозможно.
В результате, вследствие наличия тока в нулевом проводе на нём появляется некоторое напряжение, зависит оно ещё и от сопротивления самого провода. Это приводит к изменению фазных напряжений. При этом на наиболее загруженной фазе напряжение будет наименьшим, а на наименее загруженной - наибольшим.

На рисунке ниже приведена векторная диаграмма фазных и линейных напряжений при симметричной нагрузке:

Сдвиг фаз между током и напряжением. Понятие двухполюсника

Угол сдвига фаз между током и напряжением

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

Фазометр может производить измерение угла сдвига в границах от 0 о до 360 о в некоторых случаях от -180 о С до +180 о С, а диапазон измеряемых частот сигналов может колебаться от 20Гц до 20 ГГц. Измерение гарантируется в том случае если напряжение входного сигнала равно от 1 мВ до 100 В, если же напряжение входного сигнала превышает эти границы точность измерения не гарантируется.

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

  1. Использование двухлучевого или двухканального осциллографа.
  2. Компенсационный метод основан на сравнении измеряемого фазового сдвига, с фазовым сдвигом, который предоставляется образцовым фазовращателем.
  3. Суммарно-разностный метод, он заключается в использовании гармонических или сформированных прямоугольных сигналов.
  4. Преобразование сдвига фаз во временном интервале.

Как измеряется угол сдвига фаз осциллографом

Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5 о . Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:

  1. Применение линейной развертки.
  2. Метод эллипса.
  3. Метод круговой развертки.
  4. Использование яркостных меток.

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения , токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

  1. Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
  2. Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
  3. Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

Сдвиг фазы для реактивных нагрузок

Частотно-зависимый сдвиг фазы происходит из-за влияния реактивных компонентов: конденсаторов и катушек индуктивности. Это относительная величина, и поэтому она должна быть задана как разность фаз между двумя точками. В данной статье «сдвиг фазы» будет означать разницу по фазе между выходом и входом. Говорят, что конденсатор вызывает отставание напряжения от тока на 90°, в то время как индуктивность вызывает отставание тока от напряжения на 90°. В векторной форме это обозначается +j или -j в индуктивном и емкостном реактивном сопротивлении соответственно. Но емкость и индуктивность в некоторой степени существуют во всех проводниках. Так почему же они не вызывают сдвиги фаз на 90°?

Все наши эффекты сдвига фазы будут моделироваться цепями RC и RL. Все схемы могут быть смоделированы как источник с некоторым внутренним сопротивлением, рассматриваемая схема и нагрузка, следующая за схемой. Внутренний импеданс источника также называется его выходным сопротивлением. Я считаю, что проще всего говорить о входном и выходном импедансе и о каскадах, поэтому позвольте мне перефразировать: все схемы могут быть смоделированы как выход одного каскада с некоторым выходным импедансом, питающий следующий каскад, который нагружен входным импедансом следующего каскада. Это важно, потому что это уменьшает сложность цепей до гораздо более простых RLC-цепей, фильтров и делителей напряжения.

Взгляните на следующую схему.

Рисунок 1 Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм


Рисунок 1 – Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм

Это будет моделировать некоторую цепь источника (например, усилитель) с выходным сопротивлением 50 Ом, который имеет нагрузку 10 кОм и шунтируется конденсатором 10 нФ. Здесь должно быть понятно, что схема, по сути, является RC-фильтром нижних частот, выполненным из R1 и C1. Из базового анализа цепей мы знаем, что сдвиг фазы напряжения в RC-цепи будет изменяться от 0° до -90°, и моделирование подтверждает это.

Рисунок 2 Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором


Рисунок 2 – Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором

Для низких частот фаза выходного сигнала не зависит от конденсатора. Когда мы доберемся до частоты среза (fср) RC-фильтра, фаза падает до -45°. Для частот выше частоты среза фаза приближается к своему асимптотическому значению -90°.

Эта фазо-частотная характеристика моделирует сдвиг фазы, вызванный любым шунтирующим конденсатором. Шунтирующий конденсатор вызовет сдвиг фазы на резистивной нагрузке между 0° и -90°. Конечно, также важно помнить и об ослаблении.

Аналогичный взгляд на последовательный конденсатор (например, конденсатор емкостной связи по переменному току) показывает типовой эффект подобной схемы.

Рисунок 3 Схема с последовательным конденсатором.


Рисунок 3 – Схема с последовательным конденсатором…

Рисунок 4 . и графики ее амплитудно-частотной и фазо-частотной характеристик


Рисунок 4 – … и графики ее амплитудно-частотной и фазо-частотной характеристик

В этом случае сдвиг фазы начинается с +90°, а фильтр является фильтром верхних частот. За пределами частоты среза, в конечном итоге, устанавливается значение 0°. Итак, мы видим, что последовательный конденсатор всегда будет вносить сдвиг фазы между +90° и 0°.

Что такое фаза, фазовый угол и сдвиг фаз

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс

, то и функция, описывающая данный процесс, — гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Что такое фаза, фазовый угол и сдвиг фаз

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

Читайте также: