Что произойдет с токами двух оставшихся фаз если в соединении звездой с нейтральным проводом

Обновлено: 03.05.2024

Как изменятся фазные токи при обрыве фазного провода?

Звезда-звезда без нейтрального провода..

Обрыв фазного провода (например, фазы А). В этом режиме нагрузки ZB и ZC в двух других фазах оказываются включенными последовательно под линейное напряжение. Напряжение на нагрузках (при их равенстве) станет и, следовательно, уменьшится в раз. При этом появится смещение нейтрали (напряжение между нулевыми точками генератора и нагрузки), равное (рис. 10.4, а). В месте разрыва напряжение UAO' возрастет в 1,5 раза и станет равным 1,5Uф (рис. 10.4, а).

Звезда-звезда с нейтральным проводом. Обрыв фазного провода (например, фазы А). В этом режиме напряжения на нагрузках, включенных в другие фазы, не изменятся, но появится ток в нейтральном проводе.

Нагрузка включена треугольником. В этой схеме возможны обрыв фазного, линейного проводов и короткое замыкание нагрузки.


Обрыв фазного провода (Zab). В этом режиме токи и напряжения в других фазах нагрузки не изменяются, а линейные токи Ia и Ib станут равны фазным токам, т.е. уменьшатся в раза. Линейный ток Ic не изменится (рис. 10.5, а)

Помогите с тестом (Трехфазный ток)

Вопрос номер ОДИН:
Нагрузка соединена по схеме четырехпроводной цепи. Будут ли меняться фазные напряжения на нагрузке при обрыве нулевого провода: 1) симметричной нагрузки 2) несимметричной нагрузки?
1) да 2) нет
1) да 2) да
1) нет 2) нет
1) нет 2)да

Вопрос номер ДВА:
При соединении симметричной трёхфазной нагрузки "звездой" с нейтральным проводом нулевого сопротивления .
линейные и фазные напряжения равны
линейные напряжения опережают соответствующие фазные на угол 30 градусов
линейные токи в 2 раза больше фазных
линейные токи в 2 раза меньше фазных
линейные и фазные напряжения совпадают по фазе

Вопрос номер три:
При соединении трёхфазной нагрузки по схеме "звезда" при наличии нейтрального провода с нулевым сопротивлением .
фазные токи становятся одинаковыми по модулю
фазные токи оказываются сдвинутыми на угол 120 градусов независимо от нагрузки
активные мощности во всех фазах оказываются одинаковыми
напряжения на фазах нагрузки не зависит от величины и характера сопротивлений фаз
полные мощности во всех фазах оказываются одинаковыми

Вопрос номер четыре:
Угол сдвига между тремя синусоидальными ЭДС, образующими трехфазную симметричную систему составляет:
150 градусов
120 градусов
240 градусов
90 градусов
(тут по-моему должно быть 120 градусов)

Вопрос номер пять:
Чему равен ток в нулевом проводе в симметричной трёхфазной цепи при соединении нагрузки в звезду?
Номинальному току одной фазы
Нулю
Сумме номинальных токов двух фаз
Сумме номинальных токов трёх фаз

Вопрос номер шесть:
В трехфазную сеть с линейным напряжением 380 В включают трехфазный двигатель, каждая из обмоток которого рассчитана на220 В. Как следует соединить обмотки двигателя? Можно треугольником, можно звездой
Двигатель нельзя включать в эту сеть
Звездой
Треугольником

Вопрос номер Семь:
Линейный ток равен 2,2 А .Рассчитать фазный ток, если симметричная нагрузка соединена звездой. 2,2 А
1,27 А
3,8 А
2,5 Авопрос номер восемь:

В трехфазной цепи линейное напряжение 220 В, линейный ток 2А, активная мощность 380 Вт. Найти коэффициент мощности.

вопрос номер девять:

В симметричной трехфазной цепи линейный ток 2,2 А. Рассчитать фазный ток, если нагрузка соединена треугольником. 2,2 А
1,27 А
3,8 А
2,5 А

вопрос номер десять:
Может ли ток в нулевом проводе четырехпроводной цепи, соединенной звездой быть равным нулю? Может
Не может
Всегда равен нулю
Никогда не равен нулю

3.5. Несимметричные и аварийные режимы работы трехфазных цепей

Для соединения трехфазной цепи в звезду возможны следующие аварийные режимы работы:

1) обрыв фазы (рис. 3.10);

2) обрыв нулевого провода (рис. 3.11);

3) короткое замыкание фазы при обрыве нуля (рис. 3.12).

4) обрыв фазы и нуля, рис. 3.12.

Для соединения трехфазной цепи в треугольник возможны следующие аварийные режимы:

2) обрыв линейного провода.

Аварийные режимы в нагрузках соединенных звездой

1) При обрыве фазы А , работа нагрузкой не совершается, а остальные нагрузки ( ) свои режимы работы не изменят (рис. 3.13): .

2) Обрыв нулевого провода не всегда вызывает аварию в трехфазных цепях. Если нагрузка симметрична, то обрыв нулевого провода не изменит токов нагрузок, так как для симметричной нагрузки

Для несимметричных нагрузок , и поэтому такой режим может вызвать аварию.

Для того чтобы показать это, используем метод двух узлов:

Напряжение (рис. 3.14) не равно нулю, если нагрузки несимметричны. Фазные токи также будут неодинаковыми.

3) При коротком замыкании фазы А и обрыве нуля напряжение этой фазы равно нулю: , (рис. 3.15).

Нагрузка фазы В увеличится в раз:

Аналогично и в фазе С:

будет увеличен по отношению к исходному в раз.

4) Обрыв фазы и нулевого провода дает:

В оставшихся фазах токи будут одинаковыми, а напряжения на них будут зависеть от сопротивлений нагрузок (рис. 3.16).

Аварийные режимы в нагрузках соединенных треугольником

1) Обрыв фазы.

Ключ к1 замкнут, ключ к2 разомкнут (рис. 3.17). В этом режиме ток в фазе отсутствует, а остальные нагрузки работают как обычно (рис. 3.18). В таком аварийном режиме линейные токи фаз А и В соответствуют фазным токам, а линейный ток фазы С остается таким, каким был прежде.

Обрыв линейного провода. Ключ к1 разомкнут и ключ к2 замкнут (рис. 3.19). Фаза нагрузки с своего режима не изменит, а фазы становятся последовательно соединенными и параллельно подключеннымик линейному напряжению фаз В, С (см. рис. 3.17), то есть цепь становитсяоднофазной. Топографическая и векторная диаграммы в этом случае могут иметьвид, как показано на рис.3.19.

§60. Схема соединения «звездой»

При соединении фазных обмоток источника трехфазного тока (например, генератора) по схеме «звезда с нулевым проводом» концы его трех обмоток соединяют в общий узел 0, который называется нулевой точкой, или нейтралью источника (рис. 206).

Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений

Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений

Приемники электрической энергии объединяют в три группы ZA, ZB и Zc (фазы нагрузки), концы которых также соединяют в общий узел 0′ (нулевая точка, или нейтраль нагрузки). Обмотки источника соединяют с фазами нагрузки четырьмя проводами. Провода 1, 2 и 3, присоединенные к началам фазных обмоток (А, В, С), называют линейными. Провод 4, соединяющий нулевые точки 0 и 0′, называют нулевым, или нейтральным.

Напряжения uА, uв и uс между началами и концами обмоток отдельных фаз источника или фаз нагрузки ZA, ZB и Zc называют фазными. Они равны также напряжениям между каждым из линейных проводов и нулевым проводом. При отсутствии потери напряжения в обмотках источника (при холостом ходе) фазные напряжения равны соответствующим э. д. с. в этих обмотках.

Фазными токами iA, iB, ic называют токи, протекающие по обмоткам источника или фазам нагрузки ZA, ZB и Zc. Напряжения uAB, uBC, uCA между линейными проводами и токи, проходящие по этим проводам, называют линейными.


Примем условно за положительное направление токов iA, iB и ic в фазах источника — от конца соответствующей фазы к ее началу,в фазах нагрузки — от начала к концу, а в линейных проводах — от источника к приемнику.

Будем считать положительными напряжения uА, uB и uC в фазах источника и нагрузки, если они направлены от начала фаз к концам, а линейные напряжения uАВ, uBC, uСА — если они направлены от предыдущей фазы к последующей.

Из рис. 206 следует, что в схеме «звезда» линейные токи равны фазным, т. е. Iл = Iф, так как при переходе от фазы источника или нагрузки к линейному проводу нет каких-либо ответвлений.

Мгновенные значения напряжений согласно второму закону Кирхгофа:

Переходя от мгновенных значений напряжений к их векторам, имеем:

Следовательно, линейное напряжение равно разности векторов соответствующих фазных напряжений.

По полученным векторным уравнениям можно построить векторную диаграмму (рис. 207, а), которую можно преобразовать в диаграмму (рис. 207,б). Из этой диаграммы видно, что в симметричной трехфазной системе векторы линейных напряжений →uAB, →uВС, →uСА образуют равносторонний треугольник ABC, внутри которого расположена симметричная трехлучевая звезда фазных напряжений →uА, →uВ, →uС.

В равнобедренных треугольниках АОВ, ВОС и СОА основание равно Uл две другие стороны — Uф и острый угол между этими сторонами и основанием составляет 30°.

Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»

Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»

Таким образом, в трехфазной системе, соединенной по схеме «звезда с нулевым проводом», линейное напряжение больше фазного в √З раз. Величина √З = 1,73 положена в основу шкалы номинальных напряжений переменного тока: 127, 220, 380 и 660 В. В этом ряду каждое следующее значение напряжения больше предыдущего в 1,73 раза.

В нулевом проводе проходит ток i0, мгновенное значение которого равно алгебраической сумме мгновенных значений токов, проходящих в отдельных фазах: i0 = iA+iB+iC.

Переходя от мгновенных значений токов к их векторам, имеем:

Векторы токов →iА, →iВ и →iС сдвинуты относительно векторов соответствующих напряжений →uA, →uB, →uС на углы →iA, →iB, →iC (рис. 208, а). Значения этих углов зависят от соотношения между активным и реактивным сопротивлениями, включенными в данную фазу.

На этой же диаграмме показано сложение векторов →iА, →iВ и →iC для определения вектора тока →i0. Обычно ток →i0 меньше токов

Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз

Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз

IA, 1В и IC в линейных проводах, поэтому нулевой провод имеет площадь поперечного сечения, равную или даже несколько меньшую площади сечения линейных проводов.

В схеме «звезда с нулевым проводом» приемники электрической энергии можно включать на два напряжения: линейное Uл (при подключении к двум линейным проводам) и фазное UФ (при подключении к нулевому и одному из линейных проводов).

Схема «звезда без нулевого провода».


При равномерной или симметричной нагрузке всех трех фаз, когда во всех фазах включены одинаковые активные и реактивные сопротивления (RA =RB = RC и ХAВС), фазные токи iA, iB и iC будут равны по величине и сдвинуты от соответствующих фазных напряжений на равные углы. В этом случае получаем симметричную систему токов, при которой токи iA, iB, iC будут сдвинуты по фазе друг относительно друга на угол 120°, а ток i0 в нулевом проводе в любой момент времени равен нулю (рис. 208,б).

Очевидно, что при равномерной нагрузке можно удалить нулевой провод и передавать электрическую энергию источника к приемнику по трем линейным проводам 1, 2 и 3 (рис. 209).

Рис. 209. Схема «звезда без нулевого провода»

Рис. 209. Схема «звезда без нулевого провода»

Такая схема называется «звезда без нулевого провода». При трехпроводной системе передачи электрической энергии в каждое мгновение ток по одному (или двум) проводу проходит от источника трехфазного тока к приемнику, а по двум другим (или одному) протекает обратно от приемника к источнику (рис. 210).

Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)

Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)


Векторная диаграмма напряжений для схемы «звезда без нулевого провода» при равномерной нагрузке фаз будет такая же, как и для схемы «звезда с нулевым проводом» (см. рис. 207).

Такими же будут и соотношения между фазными и линейными токами и напряжениями:

Следует отметить, что схема «звезда без нулевого провода» может быть применена только при равномерной нагрузке фаз. Практически это имеет место лишь при подключении к источникам трехфазного тока электрических двигателей, так как каждый трехфазный электродвигатель снабжен тремя одинаковыми обмотками, которые равномерно нагружают все три фазы.

При неравномерной нагрузке напряжения на отдельных фазах нагрузки будут различными. На некоторых фазах (с меньшим сопротивлением) напряжение уменьшится, а на других увеличится по сравнению с нормальным, что является недопустимым.

Практически неравномерная нагрузка фаз возникает при питании трехфазным током электрических ламп, так как в этом случае распределение тока между всеми тремя фазами не может быть гарантировано (отдельные лампы могут включаться и выключаться в индивидуальном порядке). Особенно опасны в схеме «звезда без нулевого провода» обрыв или короткое замыкание в одной из фаз.

Можно показать путем построения соответствующих векторных диаграмм, что при обрыве в одной из фаз напряжение в других двух фазах уменьшается до половины линейного, вследствие чего лампы, включенные в эти фазы, будут гореть с недокалом.


При коротком замыкании в одной из фаз напряжение в других фазах увеличивается до линейного, т. е. в √З раз, и все лампы, включенные в этих фазах, перегорят. Поэтому при схеме «звезда с нулевым проводом» во избежание разрыва цепи нулевого провода в ней не устанавливают предохранители и выключатели.

Сколько соединительных проводов подводят к генератору, обмотки которого соединены звездой?

А. 380 В. Б. 220В. В. 127 В. Г. 400В.

Лампы накаливания с номинальным напряжением 127 В включают в трехфазную сеть с линейным напряжением 220В. Какова при этом схема соединения ламп?

А. Звездой.

Б. Звездой с нейтральным проводом.

В. Треугольником.

Г. Лампы нельзя включать в сеть с линейным напряжением 220В.

В трехфазную сеть с линейным напряжением 220 В включают трехфазный двигатель, каждая из обмоток которого рассчитана на напряжение 127 В. Как следует соединить обмотки двигателя?

А. Звездой.

Б. Звездой с нейтральным проводом.

В. Треугольником.

Г. Двигатель нельзя включать в эту сеть.

Что произойдет с токами двух оставшихся фаз, если в соединении звездой с нейтральным проводом отключить одну фазу?

А. Не изменятся.

Б. Уменьшатся.

В. Увеличатся.

Г. Один уменьшится, другой увеличится.

Вариант 2

Как образуется колебательный контур?

А. Последовательным соединением резистора R и катушки L.

Б. Параллельным соединением резистора R и катушки L.

В. Соединением катушки L и конденсатора C.

Г. Соединением резистора R и конденсатора C.

В какой цепи можно получить резонанс токов?

А. R и L соединены последовательно.

Б. R и C соединены последовательно.

В. L и C соединены последовательно.

Г. L и C соединены параллельно.

3. Сила тока в цепи, содержащей активную нагрузку сопротивлением 50 Ом, изменяется согласно уравнению i = 2 sin 314 t . Определите показания вольтметра и амперметра в этой цепи.

А. 71 В ; 1,42 А.

Б. 100 В ; 2 А.

В. 71 В ; 2 А.

Г. 100 В. 1,42 А.

4. Какая из четырех диаграмм, данных на рис.1, соответствует цепи, приведенной на рис.2?

А . Б . В . Г .

Почему обрыв нейтрального провода в четырехпроводной системе трехфазного тока является аварийным режимом?

А. Увеличивается напряжение на всех фазах потребителя, соединенного треугольником.

Б. На одних фазах потребителя, соединенного треугольником, напряжение увеличивается, на других – уменьшается.

В. На одних фазах потребителя, соединенного звездой, напряжение увеличивается, на других – уменьшается.

Г. На всех фазах потребителя, соединенного звездой, напряжение возрастает

Чему равен ток в нейтральном проводе при симметричной трехфазной нагрузке?

А. Нулю.

Б. Меньше суммы действующих значенийфазных токов.

В. Больше суммы действующих значенийфазных токов.

Г. Больше разности действующих значенийфазных токов..

Симметричная нагрузка соединена звездой. Линейное напряжение 380 В. Каково фазное напряжение?

А. 380 В. Б. 250 В. В. 220 В. Г. 127 В.

Лампы накаливания с номинальным напряжением 220 В включают в трехфазную сеть с линейным напряжением 220В. Какова при этом схема соединения ламп?

А. Звездой.

Б. Звездой с нейтральным проводом.

В. Треугольником.

Г. Лампы нельзя включать в сеть с линейным напряжением 220В.

Трехфазный двигатель с напряжением 127 В включают в трехфазную сеть с линейным напряжением 380 В. Как следует соединить обмотки двигателя?

А. Звездой.

Б. Звездой с нейтральным проводом.

В. Треугольником.

Г. Двигатель нельзя включать в эту сеть.

Каково назначение нейтрального провода?

А. Выравнивать сопротивление фаз.

Б. Выравнивать мощности фаз.

В. Выравнивать фазные напряжения.

Г. Устранять пульсации тока.

Критерии оценки результатов тестирования

5-8 баллов – «удовлетворительно»

9-10 баллов – «хорошо»

Тест 5. Электрические измерения

Инструкция для обучающихся

Работа состоит из десяти заданий. Если какое-то задание вызывает у вас затруднение, пропустите его и постарайтесь выполнить те, в ответах на которые вы уверены. К пропущенным заданиям можно вернуться. Время выполнения 30 минут.

Исследование аварийных режимов трехфазной цепи при соединении нагрузки в «звезду»

Цель работы: Экспериментально исследовать аварийные режимы трёхфазной цепи при соединении нагрузки в «звезду».

Краткая теория

Аварийные режимы возникают при коротких замыканиях в нагрузке или в линиях и при обрыве проводов. Рассмотрим некоторые типичные аварийные режимы.

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рисунок 1). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток I N = I B + I C . Он равен току, который до обрыва протекал в фазе А (рисунок 2).

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RВ и RС оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рисунок 3).

Короткие замыкания

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рисунок 4).

Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.

Порядок выполнения работы

· Собрать цепь согласно схеме (рисунок 5) с сопротивлениями фаз RA=RB=RC=1кОм. (Измерения токов можно производить одним-двумя амперметрами, переключая их из одной фазы в другую, либо виртуальными приборами).


· Убедиться, что обрыв (отключение) нейтрали не приводит к изменению фазных токов.

· Убедиться, что в схеме с нулевым проводом происходит отключение источника защитой при коротких замыканиях как в фазах нагрузки, так и между линейными проводами.

· Убедиться, что в схеме без нулевого провода короткое замыкание в фазе нагрузки не приводит к отключению, а при коротком замыкании между линейными проводами установка отключается.

· Снять измерения токов и напряжений всех величин, указанных в таблице 1 в различных режимах и по экспериментальным данным построить векторные диаграммы для каждого случая в выбранном масштабе.

Режим UA, B UB, B UC, B UnN, B IA, мА IB, мА IC, мА IN, мА
RA=1 кОм RB=680 Ом RC=330 Ом Обрыв нейтрали
RA=RB=RC=1 кОм Схема с нейтралью Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали к. з. фазы А

Контрольные вопросы и задачи:

1 Как изменятся напряжения и токи при отключении нейтрального провода в схеме «звезда» для симметричной и несимметричной нагрузки?

2 Как изменятся напряжения и токи при коротком замыкании фазы в схеме«звезда» с нулевым проводом и в схеме без нулевого провода?

3 Как изменится мощность трехфазной нагрузки при обрыве фазы в схеме с нулевым проводом и без него?

Вопрос № 148

Справедливое соотношение между линейными и фазными напряжениями при соединении нагрузки "звездой" с нейтральным проводом:


·

Вопрос № 149

Если в трехфазной цепи, соединенной "звездой" с нейтральным проводом, отключить одну фазу, то токи двух оставшихся фаз:

Вопрос № 150

Симметричной нагрузкой называется такая, при которой сопротивления всех трех фаз между собой:

Соединение электроприемников звездой


Схема соединения фаз электроприемников «звезда» получила очень широкое распространение в электроэнергетике. Принципиальная схема соединения звездой показана ниже:

soedinenie-faz-elektropriemnikov-v-zvezdu

Из схемы видно, что фазные напряжения приемника Ua, Ub, Uc не равны линейным напряжениям Uab, Ubc, Uca. Если применить к контурам aNba, bNcb, cNac второй закон Кирхгофа получим соотношение для фазных и линейных напряжений:

Если сопротивления нейтрального провода и линейных проводов не учитывать, то можно предположить, что напряжение на клеммах генератора и электроприемника равны. Вследствие указанного равенства векторные диаграммы для источника и приемника электрической энергии будут одинаковы.

Фазные и линейные напряжения приемника, как и источника, будут образовывать две симметричные системы напряжений. Соответственно между фазными и линейными значениями напряжений будет существовать определенная зависимость:

Далее будет показано, что соотношение (2) будет справедливо лишь при определенных условиях, а также в случае отсутствия нулевого провода, то есть в трехпроводной сети.

Исходя из указанного выше соотношения (2) можно сделать вывод, что соединение звездой лучше применять в случае, когда каждая фаза трехфазного электроприемника или однофазные приемники рассчитаны на напряжение в раз меньше, чем номинальное линейное напряжение сети.

Также из схемы соединения звезда (смотри схему выше) видно, что при соединении приемников звездой фазные токи будут равны линейным:

Применив первый закон Кирхгофа можно получить соотношение между токами при соединении электроприемников звездой:

Зная фазные токи с помощью формулы (4) можно вычислить ток нейтрального провода IN. В случае отсутствия нейтрального провода справедливо будет выражение:

Симметричная нагрузка при соединении приемников звездой

Нагрузка считается симметричной тогда, когда реактивные и активные сопротивления каждой фазы будут равны, то есть выполняется равенство:

Условие симметричности также может быть выражено через комплексные сопротивления Za = Zb = Zc.

Симметричная нагрузка в сети возникает при подключении трехфазных электроприемников. Будем считать, что данная система имеет нейтральный провод.

В отношении любой из фаз при симметричной нагрузке будут справедливы все формулы, полученные для однофазной сети, например для фазы А:

Так как в четырехпроводной цепи Ua = Ub = Uc = Uл / , то при симметричной нагрузке:

Векторная диаграмма при симметричной активно-индуктивной нагрузке приведена выше. Из приведенных выражений и векторной диаграммы следует, что при симметричной нагрузке образуется симметричная система токов, поэтому ток в нейтральном проводе будет равен IN = Ia + Ib + Ic = 0.

Отсюда можно сделать вывод, что при симметричной нагрузке отключение нейтрального провода не приведет к серьезным нарушениям работы электроприемников, то есть не произойдет изменение фазных напряжений, углов сдвига, токов, мощностей.

Из сказанного выше следует, что при симметричной нагрузке в нейтральном проводе нет необходимости, и довольно часто в симметричных системах нейтральный провод не применяется.

Мощность трехфазного приемника электрической энергии при симметричной нагрузке можно выразить формулами:

Как правило, для трехфазных приемников электрической энергии в качестве номинальных параметров указываются линейные напряжения и токи. Исходя из этого, целесообразней выражать мощность трехфазной цепи тоже через линейные напряжения и тока, поэтому подставим в формулу (6) линейные значения и получим:

Пример

К трехфазной электрической цепи с линейным напряжением Uл = Uab = Ubc = Uca = 380 В необходимо подключить трехфазный электроприемник, каждая фаза которого рассчитывается на фазное напряжение в 220 В и имеет активное сопротивление rф = 10 Ом и индуктивное сопротивление хф = 10 Ом, которые соединены последовательно. Необходимо определить мощности, углы сдвига между токами и напряжениями (cos φ) и фазные токи.

Решение

Каждая фаза потребителя электрической энергии рассчитана на напряжение в раз меньше номинального, то фазы потребителя нужно соединять в звезду. Поскольку нагрузка в данном случае симметричная, то нулевой провод (нейтраль) к потребителю можно не подводить.

Фазные тока, углы сдвига cos φ, а также полны сопротивления фаз будут иметь вид:

primer-rascheta-trexfaznoj-simmetrichnoj-seti1

Активная, реактивная и полная мощности приемника, а также любой фазы будут равны:

primer-rascheta-trexfaznoj-simmetrichnoj-seti2

Векторная диаграмма для данной системы приводилась выше.

Несимметричная нагрузка при соединении приемников звездой

Нагрузка трехфазной электрической сети будет считаться несимметричной, если хотя бы одно из фазных сопротивлений не равно другим. Проще говоря, сопротивления фаз не равны, например: ra = rb = rc, xa = xb ≠ xc. В общем случае считают, что несимметричная нагрузка возникает при отключении одной из фаз.

Возникает не симметрия чаще всего при подключении к трехфазной сети однофазных электроприемников. Они могут иметь различные мощности, режимы работы, различное территориальное расположение, что тоже влияет на величину фазной нагрузки.

В случае, когда необходимо подключить однофазные потребители электрической энергии, для более равномерной загрузки их делят на три примерно одинаковые по мощности группы.

nesimmetrichnoe-podklyuchenie-elektropriemnikov-zvezdoj

Один вывод однофазных потребителей подключают к одной из трех фаз, а второй вывод подключают к нейтральному проводу. Так как все электроприемники рассчитываются на одно напряжение, то в пределах каждой фазы они соединяются параллельно.

Главной особенностью электрической сети несимметричной нагрузкой является то, что она должна в обязательном порядке иметь нейтральный провод. Это объяснимо тем, что при его отсутствии величины фазных напряжений будут в значительной степени зависеть от величины не симметрии сети, то есть от величин и характера сопротивления каждой из фаз. Поскольку сопротивления фаз могут варьироваться довольно в широких пределах в зависимости от количества подключенных электроприемников, также широко будет варьироваться и напряжения на потребителях электрической энергии, а это недопустимо.

Для иллюстрации выше сказанного ниже приведена векторная диаграмма для трехфазной несимметричной цепи при наличии нейтрального провода:

Ниже приведена приведена векторная диаграмма для этой же цепи, но при отсутствии нулевого рабочего (нейтрального) провода:

Также можно посмотреть видео, где объясняется, что может произойти в электрической цепи при обрыве нулевого провода:

Необходимость нулевого провода станет еще более очевидной, если представить, что вам необходимо подключить однофазного потребителя к одной из фаз, при этом остальные две подключать нельзя, так как приемник рассчитан на фазное напряжение 220 В, а не на линейное 380В, как в таком случае получить замкнутый контур для протекания электрического тока? Только использовать нулевой рабочий проводник.

Для повышения надежности соединения электроприемников в цепь нулевого рабочего проводника не устанавливают коммутационную аппаратуру (автоматические выключатели , предохранители или разъединители).

Фазные токи, углы сдвига, а также фазные мощности при несимметричной нагрузке будут различными. Для вычисления их фазных значений можно применить формулу (5), а вот для вычисления трехфазной мощности формула (6) уже не подходит. Для определения мощностей необходимо пользоваться выражением:

Если существует необходимость определения тока нейтрального провода, то необходимо решать задачу комплексным методом. Если существует векторная диаграмма, то определить ток можно по ней.

Пример

В осветительной электрической сети с напряжением в 220 В в фазе А включено 20 ламп, фазе В – 10 ламп, а в фазе С – 5 ламп. Параметры лампы Uном = 127 В, Рном = 100 Вт. Необходимо определить ток нейтрального провода и каждой лампы.

Решение

Если учесть, что лампы накаливания имеют только активное сопротивление (реактивное слишком мало и им пренебрегают), то по формуле мощности определим ток лампы, а по закону Ома ее сопротивление:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti1

Зная число и сопротивление ламп нетрудно определить сопротивления фаз, а также фазные токи:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti2

Для определения тока в нейтральном проводе IN решим задачу комплексным методом. Так как при сделанных ранее допущениях комплексные напряжения приемника равны комплексным ЭДС источника, получим:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti3

Где комплексные значения фазных сопротивлений будут равны Za = 8,05 Ом, Zb = 16,1 Ом, Zс = 32,2 Ом.

Комплексные значения токов, а также действующее значение тока нейтрального провода будут иметь вид:

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).


Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).


Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.



а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.


Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке




По первому закону Кирхгофа

Для симметричной нагрузки

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22


Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.


Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

При отключении нейтрального провода ток I0 становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).


Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

где U - напряжение, приложенное к обмотке напряжения ваттметра;

I - ток, протекающий по токовой обмотке ваттметра;

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.


Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).


Рис.29. Схема лабораторной установки: А-х, В-y, C-z - трехфазный ламповый реостат, установленный на стенде; А1 - амперметр на ток 1–2 А; А2, А3, А0 - амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).


2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Читайте также: