Что можно использовать в качестве естественного заземления

Обновлено: 05.05.2024

ликбез от дилетанта estimata

Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.

понедельник, 18 февраля 2019 г.

Что можно и что нельзя использовать в качестве естественного заземлителя

В статье Чем отличается зануление от заземления простыми словами было упомянуто заземление.
В этой же статье постараюсь указать что можно, а что нельзя использовать в качестве естественного заземлителя, т.е. такого заземлителя, который не надо делать специально при подключении заземления.
Не учитывание ниже приведенной информации может привести к несчастному случаю, в том числе массовому.

Что можно использовать в качестве естественных заземлителей

На момент написания статьи действовала 7 редакция правил устройства электроустановок (ПУЭ-7). Согласно этих правил, в пункте 1.7.109 указано что может быть использовано в качестве естественных заземлителей. Это

Виды и правила заземления электроустановок

Заземление электроустановок необходимо для их безопасной эксплуатации. Если заземлительная система отсутствует или установлена неправильно, резко повышается вероятность травматизма и выхода из строя электрооборудования.

Заземляющее устройство

Система заземления представляет собой совокупность заземляющего контура и проводников, позволяющих безопасно отвести ток в грунт. Существует два типа заземлителей — естественные и искусственные. Естественные заземлители представляют собой металлические конструкции, основное предназначение которых не связано с обеспечением электробезопасности. Согласно ПУЭ, к естественным заземлителям относятся:

  1. Каркасы сооружений (из железобетона или чистого металла), имеющие контакт с почвой.
  2. Водопроводные трубы, находящиеся под землей. Запрещено использовать для заземления нефте- и газопроводы, а также любые другие трубопроводы, предназначенные для транспортировки горючих веществ.
  3. Опоры ЛЭП.
  4. Нетоковедущие железнодорожные пути (только при условии наличия сварных соединений между рельсами).

Искусственный заземлитель — это конструкция, сооруженная специально для защиты от тока. В качестве искусственных заземляющих устройств используют:

  • неокрашенные металлические пруты (минимальный диаметр — 10 миллиметров);
  • стальной уголок (толщиной от 4 миллиметров);
  • листы стали (толщина — от 4 миллиметров и сечение в разрезе — свыше 48 квадратных миллиметров).

Для сооружения искусственных заземлительных систем пруты закапывают или вбивают в почву. Длина электрода не должна быть меньше 2,5 метров. После установки проводников в землю, их сваривают между собой. Надземная часть заземлительного контура должна находиться на определенном расстоянии от земли (не менее 50 сантиметров).

Обратите внимание! Согласно требованиям Правил устройства электроустановок, контур должен иметь, по крайней мере, два соединения с проводниками.

По предназначению оборудование принято делить на две разновидности — защитную и рабочую. Защитные заземлительные устройства обеспечивают безопасность жильцов или персонала и предотвращают риск поражения тока из-за случайного касания корпуса электрической установки.

Защитное заземление обустраивается для:

  • всего электрооборудования и машин, не установленных на глухозаземленных опорах;
  • электрических шкафов, металлических коробов распредщитов;
  • трубопроводов с силовыми кабелями;
  • оплеток силовых кабелей.

Рабочие заземлительные устройства применяют в случаях, когда, несмотря на повреждение изоляционного слоя и последовавшего за этим пробоя на корпус, необходима бесперебойная работа оборудования. К примеру, рабочим заземлением оснащают нули трансформаторов и электрогенераторов. Также рабочим считается заземление молниеотводов.

Обратите внимание! По нормативам ПУЭ заземление электрических сетей с номиналом напряжения 42 вольта (при переменном токе) или 110 вольт (при постоянном токе) осуществляется в обязательном порядке.

Маркировка заземлительных систем

Заземлительные устройства отличаются схемой соединения и количеством проводников. Выделяют такие системы:

В названии заземления первая буква указывает на разновидность источника питания:

Вторая буква информирует о способе заземления открытых токопроводящих элементов электрической установки:

  • N — прямой контакт с местом заземления источника питания;
  • T — непосредственная связь с грунтом.

Буквы после дефиса сообщают информацию о методе обустройства защитного проводника (PE) и нуля:

  • C — задачи проводников выполняются одним проводником PEN;
  • S — функции проводников выполняются несколькими проводящими устройствами.

Система заземления TN-C

Заземление электроустановок типа TN-C применяется в трехфазных четырехпроводных и однофазных двухпроводных электросетях. Чаще всего подобные заземлительные системы встречаются в сооружениях старой постройки. Преимущества TN-С состоят в простоте и доступности системы. Однако уровень безопасности системы оставляет желать лучшего. Поэтому в современных зданиях TN-C не используется.

Заземление электроустановок по схеме TN-C

Система заземления TN-C-S

Защитное заземление электроустановок TN-C-S чаще всего применяется при проведении реконструкций старых электросетей с объединенными рабочими и защитными проводниками на вводе. Таким образом, чтобы установить в здании систему TN-C-S, в нем должно существовать более старое заземление — TN-C-S. Усовершенствованная система также отличается простотой установки и эксплуатации, но при этом более надежна.

Система заземления TN-S

В TN-S рабочие и нулевые проводники располагаются по отдельности. При этом нуль (PE) объединяет все токоведущие элементы электрической установки. Во избежание повторного заземления обустраивают трансформаторную подстанцию с основным заземлением. Достоинствами TN-S считаются небольшая длина проводника от кабельного входа в установку до системы заземления, а также низкая вероятность электромагнитных помех.

Система заземления TT

Данный тип заземления характерен тем, что все токоведущие компоненты имеют непосредственный контакт с землей. При этом заземлители установки электрически не связаны с заземлителем нейтрали электроподстанции.

Система заземления IT

Характерная особенность заземления IT — изолированность нейтрали от грунта или ее заземления через элементы с высоким сопротивлением. В результате такого решения удается значительно уменьшить воздействие тока утечки на корпус. IT применяют в строениях, работающих в условиях жестких требований по электробезопасности.

Схема устройства заземления IT

Правила заземления электродвигателя

По установленным нормативам электрические двигатели подлежат обязательному заземлению. Данное требование не распространяется на ситуации, когда корпус электродвигателя смонтирован на металлической основе, имеющей контакт с грунтом через металлические элементы или заземляющий проводник. Во всех других ситуациях корпус двигателя соединяют проводником с заземлительным контуром.

Все электрические устройства должны иметь выделенные соединения с контуром заземления. Последовательное объединение двигателей с контуром не допускается, поскольку при нарушении любого из соединений вся цепь потеряет функциональность.

Чтобы правильно установить защитный заземлитель, понадобится дополнительный заземляющий элемент в силовом кабеле. Один конец проводника присоединяют к клеммной коробке электрического двигателя, а второй — к корпусу шкафа, где находится блок управления электроустановкой.

Обратите внимание! Прежде чем выполнять подключение, необходимо соединить с грунтом электрошкаф.

При пробое между проводником заземления и токопроводом возникает короткое замыкание, в результате чего размыкается защитное или коммутирующее устройство.

Сечение проводника для заземления должно соответствовать нормативам, указанным в ПУЭ (приведены в таблице ниже).

Таблица для выбора сечения проводника для заземления

Заземление сварочных аппаратов

Кроме корпуса сварочного аппарата заземлению подлежит один из выводов вторичной обмотки оборудования (ко второму подключается держатель электродов). Заземляемый вывод вторичной обмотки обозначают графически и оснащают стационарным выведенным фиксатором (для надежной стыковки с заземлителем).

Уровень переходного сопротивления заземлительного контура не должен быть выше 10 Ом. Если нужно поднять электропроводимость контура, контактную площадь делают больше стандартной.

Как и в случае с другими электроустановками, последовательное объединение сварочного оборудования не разрешается. Каждый аппарат должен иметь выделенное соединение с магистралью заземления здания.

Схема заземления сварочного аппарата

Правила расчета

Заземление электроустановок должно осуществляться после предварительных расчетов. Планирование позволяет установить характеристики контура, в том числе его разновидность, геометрическую форму, площадь, размеры, количество электродов и дистанцию между ними. Все указанные данные, в совокупности с показателем токопроводимости земли, имеют непосредственное влияние на общее сопротивление системы.

Особое значение при проведении расчетов имеет удельное сопротивление грунта. Также при осуществлении расчетов учитывают сезонный фактор, делая на это соответствующие поправки.

Правила для переносных установок

В некоторых ситуациях допускается отказ от местного заземлителя для электрооборудования, оснащенного автономными источниками питания с нейтралью, не вступающей в контакт с грунтом. Обычно переносное заземление используется для защиты установок, не питающих другое оборудование. При этом источники питания должны иметь собственные заземлители, а все элементы установки — стыковаться с корпусом источника электропитания.

Работы по заземлению мобильных электрических установок выполняют в соответствии с требованиями к напряжению или сопротивлению. Показатель сопротивления не должен превышать 25 Ом. Устройства с автономными источниками электропитания и изолированными нейтралями всегда контролируются по уровню сопротивления изоляции. Кроме того, нужно обеспечить постоянный доступ для проведения проверок работоспособности изоляции.

Заземление для переносных электроустановок

Переносные заземлительные установки монтируются во время перерывов в работе электрооборудования. Установка защиты начинается только после отключения напряжения в электросети. Заземление устанавливается на все отключенные фазы. Причем установка осуществляется со всех сторон, откуда подается напряжение.

К монтажу переносных систем в электрических установках с напряжением свыше 1000 вольт допускаются исключительно специалисты, обладающими группой электробезопасности не меньше четвертой. Для установок с напряжением менее 1000 вольт необходима третья или выше группа электробезопасности.

Обратите внимание! Нельзя задействовать в качестве заземляющих устройств элементы, непредназначенные для этой цели. Также недопустимы скрутки.

Заземление электроустановок на предприятиях

На производстве нередко возникают ситуации, когда напряжение в корпусе вышедшего из строя оборудования отмечается не только между открытыми участками агрегата и грунтом, но и между корпусами разных устройств. Также напряжение фиксируют между корпусом оборудования и различными элементами сооружения, трубами и другими металлическими частями.

Для защиты оборудования используются обширные системы, включающие и связывающие между собой элементы установок, способные производить ток, а также металлические элементы технологических устройств и всего сооружения в целом. Задача проводимых мероприятий состоит в выравнивании потенциалов всех элементов цехов. В результате все заземляемые станки на предприятии входят в единую систему.

Заземление промышленных электроустановок

Защита необязательна для приборов с номинальным напряжением до 42 вольт переменного тока и до 100 вольт постоянного.

Технология заземления

Предпочтение при организации защиты отдается естественным заземлителям. Не допускается использование алюминия (кабельные оболочки, неизолированные провода), поскольку этот материал подвергается окислению в грунте, а окись — отличный изолятор.

Если нет естественных заземлительных элементов, изготавливают искусственные. Электроды (прутки, полосы, уголки или трубы) устанавливают по вертикали в грунт на глубину 2,5–3 метра. Причем верхний конец штыря должен быть выше уровня земли на 60–70 сантиметров. Установленные штыри соединяют между собой стальной полоской (толщина не меньше 4 миллиметров).

Электрод должен соответствовать определенным параметрам:

  • диаметр трубы — 30–50 мм и толщина стенок — 3,5 мм;
  • диаметр стержня — 10–123 мм;
  • толщина угловой стали — от 4 мм.

Альтернатива вертикальному заземлению — горизонтальное. Однако такое решение требует больших ресурсов рабочего пространства. Горизонтальные полосы кладут на ребро в заранее выкопанную траншею (глубина ее составляет от 60 до 70 сантиметров).

Если систему устанавливают в агрессивной среде (кислые или щелочные почвы), в качестве конструкционного материала выбирают медь или оцинковку.

Строительство заземляющего устройства подстанции

В помещениях проводку для заземления прокладывают в виде магистралей. Ее располагают таким образом, чтобы она была доступна для контроля, но при этом защищена от повреждений механического характера. Если в помещении происходит выделение едких газов, проводку прокладывают по стенам с использованием скоб.

Соединение проводников с корпусами и кожухами электрооборудования осуществляется сваркой или болтами. Все контакты зачищают и покрывают лаком.

Проверка заземляющих устройств

Чтобы поддерживать заземляющие устройства в надлежащем техническом состоянии, необходимы регулярные проверки оборудования. В перечень проверочных мероприятий входят следующие действия:

  1. Внешний осмотр наземной части оборудования.
  2. Тестирование наличия электроцепи между заземляющим устройствам и подзащитными компонентами.
  3. Замер сопротивления контура.
  4. Мониторинг пробивных трансформаторных предохранителей.
  5. Тестирование надежности соединений с естественными заземлительными устройствами.
  6. Замеры сопротивления петли фаза–ноль.
  7. Измерение удельного сопротивления земли для опор линий электропередачи, если напряжение превышает 1 кВт.
  8. Вскрытие почвы в отдельных местах для визуального контроля за элементами системы.

Проверка присутствия электроцепи между заземлением и защищаемым электрооборудованием осуществляется для подтверждения непрерывности и надежности системы. В ней недопустимы обрывы или некачественные контакты. В простых сетях (без больших разветвлений) сопротивление переходных контактов замеряют непосредственно между защитным и защищаемым элементом системы. Для сложных сетей используется другая тактика: вначале делается замер между заземлителем и отдельными частями магистрали, а уже затем — между участками и заземленными элементами.

Для измерений используют специальный аппарат — омметр (например, М-372). Также применяют измерительные мосты (типы приборов — УМВ, МMB, MBУ) или измерительное устройство типа МC-08. Непосредственно замеры сопротивления заземляющего контура выполняют измерителями М-416б ИСЗ-01, МС-08, М-1103.

Чтобы защитить электросети (до 1 кВт) с отведенной от земли нейтралью от перенапряжений, трансформаторы оснащают пробивными предохранителями. Надежность функционирования предохранителей зависит от правильности сборки и регулярного контроля за их техническим состоянием. В связи с этим проверка предохранителей проводится как при пусковых работах, так и при ремонте оборудования или перестановке данных устройств. Также предохранители проверяются при наличии предположения об их возможном срабатывании.

В случае повреждения участка и если показатель тока однофазного замыкания 1К соответствует следующему ниже условию, сеть отключается.

Формула расчета тока замыкания

Чтобы определить ток однофазного замыкания, делают замер полного сопротивления электроцепи однофазного замыкания на корпус устройства или грунт. Самым простым способом измерения считается замер сопротивления петли ноль–фаза. Для этого используют вольтметр и амперметр.
Все устройства, используемые для измерений, должны иметь технический паспорт. В документе указывается схема заземления, результаты последних замеров и проверок состояния системы, данные о действиях, осуществленных при проведении ремонтных работ и внесенных изменениях.

Что можно использовать в качестве естественного заземлителя?

Монтаж заземлителя такого типа производится при соответствии параметров заземляющего устройства с профильными требованиями. При выявлении несоответствующих технических характеристик у заземлителя предусмотрено обязательное доведение их до нормативных. Основой естественного заземлителя может служить металлическая конструкция любого внешнего вида.

Естественный заземлитель: что можно использовать

Стандартизация применения заземлителей в электроустановках зданий регламентируется в материалах следующей документации:

Основным требованием при применении естественного контура выступает его устойчивость к протекающим токам короткого замыкания. Исключается вариант возможного нарушения работоспособности связанных с заземлителями устройств.

Естественный заземлитель предусматривает строение конструкции, которая постоянно находится в земле. В качестве заземляющих устройств такого типа принято использовать:

  1. Металлическую или железобетонную конструкцию (арматура, железобетонные фундаменты объектов, находящиеся в соприкосновении с почвой).
  2. Водопроводные трубы из металла, проходящие под землей.
  3. Трубы буровых скважин обсадного типа.
  4. Металлические сваи (шпунты) ГТС.
  5. Оболочки металлического состава различных бронированных кабелей, проходящих под землей.
  6. Железнодорожные колеи неэлектрифицированных дорог при обязательном наличии перемычек.

Соответствие требованиям ПУЭ по соотношению сечения проводимости — общеобязательный аспект выбора любого устройства в качестве заземляющего элемента. Естественный заземлитель соединяется с заземляющей магистралью электроустановки в двух и более местах.

В качестве естественного контура запрещено применять:

  1. Конструкции металлических труб горючих или токсичных веществ, газов.
  2. Трубы с коррозионно-стойкой изоляцией.
  3. Проводники отопительных систем или канализационных магистралей.

Естественный заземлитель используется повсеместно — лишь при необходимости уменьшения потенциалов протекающих по нему токов, которые уходят в землю, предусматривается использование искусственных заземляющих устройств.

Искусственный и естественный заземлитель: преимущества

Искусственный контур специально выполняется для реализации заземления. Производятся соответствующие расчеты, определяется, какое оптимальное количество стержней необходимо смонтировать для реализации надлежащего сопротивления. Работа трудоемкая, требуется закупка определенных материалов для создания конструкции.

Примеры специальных заземляющих устройств:

Преимуществом электромонтажа заземления с применением естественного заземляющего устройства выступает его бюджетность:

  • минимальные затраты на материал;
  • монтаж заземляющего контура не требует значительных капиталовложений.

Очень распространена технология производства заземления с использованием железобетонного фундамента в качестве естественного заземлителя.

Заземление посредством железобетонного фундамента

Выбор такой конструкции в качестве заземлителя можно осуществить лишь при соответствии физических основ фундамента (гидрофильность бетона) с количественными показателями влажности грунта.

Допускается реализация такого технологического варианта заземления только при условии наличия влажности грунта, на котором находится объект, свыше 3 %. Меньший показатель такой характеристики почвы отразится на гидрофильности бетона: произойдет мощное электрическое сопротивление, железобетонная конструкция потеряет свойства заземлителя.

Естественный заземлитель посредством железобетонного фундамента практичнее применять при таких условиях:

  • наличие неагрессивной среды (грунтовые воды с минимальным показателем жесткости);
  • отсутствие гидроизоляции;
  • наличие дополнительной защиты фундамента (битумное покрытие).

Нормативная стандартизация применения такого типа заземлителя предусматривает варианты, когда его запрещено использовать в системе заземления объекта.

Железобетонный фундамент в качестве естественного заземлителя

Когда не применяются железобетонные конструкции

Сборный железобетонный фундамент обладает хорошими структурными характеристиками как по прочности конструкции, так и по долговечности. Подводить заземляющий проводник к такому фундаменту не запрещено.

Главное — произвести правильное соединение элементов конструкции. Скрепив между собой арматуру соседних блоков, можно удостовериться в надежности конструкции, а потом приступить к производству заземляющего устройства.

Если выполнить такое соединение нет возможности, лучше прибегнуть к применению искусственного заземлителя. Производить соединения такого типа конструкций нужно с учетом профильной стандартизации производства таких работ.

Принцип соединения железобетонных конструкций

Соединения между деталями производятся, ориентируясь на образование между ними электрической цепи (проходит по металлу). Заблаговременно подготавливаются закладные элементы внутри железобетонных конструкций, посредством которых реализуется соединение технологического или электрического оборудования для последующего заземления.

Наличие болтов, заклепок, сварки или аналогичных соединений позволит смонтировать постоянную коммутационную электрическую цепь. При отсутствии подобных соединений предусмотрен вариант создания аналогичных соединений с использованием гибких перемычек. Эти элементы привариваются к частям конструкции. Стандартизация сечения перемычек составляет 100 кв. мм и выше.

Заключение

Реализуется естественное заземление в соответствии с нормативными стандартами, с учетом внешних и внутренних факторов воздействия, исходя из анализа строительных особенностей объекта.

Естественный заземлитель может выступать в качестве основного заземляющего устройства, но только когда реализуется основная функция заземления — обеспечение надлежащего уровня электробезопасности.

Какой заземлитель эффективнее: естественный или искусственный?

Существует два вида заземления: искусственное и естественное. Роль естественного заземления выполняют части металлических конструкций объекта, постоянно находящиеся в земле: арматура фундамента, водопровод, обсадные трубы и т.д. Искусственное заземление - это отдельная самостоятельная конструкция, монтирующаяся в землю. Практически каждый подрядчик сталкивается с вопросом при установке заземления, какой заземлитель лучше: искусственный или естественный?

Для ответа на данный вопрос обратимся к нормативным документам, а именно к пунктам 1.7.54 и 1.7.109 “Правил Устройства Электроустановок” (ПУЭ). Здесь мы видим ответ: для заземления подойдут как естественные, так и искусственные заземлители. Давайте выясним, в каких случаях правильнее применить тот или иной способ? Разберем подробнее каждый из вариантов.


Вариант 1. Естественный заземлитель

Если вы решили использовать естественный заземлитель, то вам нужно знать о многих факторах: типе фундамента объекта, его материале, а также об агрессивности грунта. В разделе ПУЭ 1.7.109 изложены варианты конструкций объекта, которые можно применить в качестве заземлителя. Самым распространенным из них является фундамент. Различают несколько видов фундамента: ленточный, столбчатый, свайный и плитный. Выбор основы зависит от плотности грунта, сейсмической активности, рельефа поверхности, уровня грунтовых вод и глубины промерзания грунта. В качестве материала используют: арматуру, бетон, кирпич, дерево, бут, асбестоцементные или металлические трубы. Подробную информацию о фундаменте можно найти в нормативной документации (СНБ 5.01.01-99 Основания и фундаменты зданий и сооружений). Таким образом, при решении использования вашего фундамента в качестве заземлителя, нужно удостовериться, что он имеет электрически связанные металлические части.

Все элементы естественного заземлителя должны быть объединены в общий контур и контактировать с землей для отвода токов непосредственно или через бетон. Также, выбранный заземлитель должен удовлетворять требованиям ПУЭ касательно величины площади поперечного сечения проводника (Таблица 1.7.4). В процессе эксплуатации естественного заземлителя, нельзя допустить разрушение его структуры или нарушение работы устройств, связанных с ним.

Не допускаются в качестве заземлителя трубы канализации и центрального отопления, а также трубопроводы для горючих и взрывоопасных смесей. Трубы легко поддаются коррозии металла, разрывая при этом электрический контакт. Данный вид заземления безусловно более экономичный: не требует затрат на материалы, монтаж и демонтаж заземляющего устройства, но в ходе его длительной эксплуатации, ремонт поврежденных участков будет стоить не меньше, чем установка отдельного заземления.

Естественный заземлитель


Естественный заземлитель

Вариант 2. Искусственный заземлитель

Представляет собой совокупность электродов, установленных в земле и объединенных с электрооборудованием с помощью заземляющего проводника. В качестве материала электродов применяют омедненную сталь, оцинкованную сталь или черные металлы:

Омедненная сталь - имеет наиболее высокую электропроводность и сцепление с различными материалами. Соединение меди и стали крепче, чем с цинком, поэтому омедненные стержни прочнее, чем оцинкованные. Медь менее электрохимически активная, чем цинк и сталь, что увеличивает срок службы до 100 лет.

Оцинкованная сталь - коррозионностойкий материал с низким удельным сопротивлением. Электроды из данного металла имеют высокую устойчивость к кислотным средам со средним сроком службы 30 лет.

Черные металлы - имеют высокую механическую прочность, но быстро разрушаются при эксплуатации в агрессивной среде грунта, образуя ржавчину и коррозию. И, как следствие, получаем высокое сопротивление растекания тока, представляющее опасность для жизни человека.

Размеры проводников должны соответствовать требованиям ГОСТ Р 50571.5.54-2013. Множество вариантов установки заземляющего устройства помогает обеспечить нужную площадь контакта поверхности заземлителя с грунтом, что в свою очередь позволяет влиять на значение сопротивления растеканию тока. Преимуществом искусственного заземлителя является то, что его можно установить глубоко в землю, где удельное сопротивление ниже за счет грунтовых вод, которые стекают вниз. Это обеспечивает стабильность итогового сопротивления.

Искусственный заземлитель


Искусственный заземлитель


Подведем итоги: можно выбрать в качестве заземлителя любой из описанных выше вариантов, главное подойти к данному вопросу ответственно. Для безопасности вашего дома и продолжительного срока службы, выбирайте заземление с антикоррозионным покрытием, изготовленным в соответствии с нормативными правилами. Позвоните или напишите в наш Технический центр и мы подберем для вашего объекта нужный комплект заземления.

Что можно использовать в качестве естественного заземлителя?

Нередко при организации заземления на объекте у монтажников и заказчиков возникает вопрос — можно ли использовать элементы строений и смежных конструкций в качестве заземлителей: трубы, фундаменты, опоры забора и пр.?

Ответ на этот вопрос представлен в Правилах устройства электроустановок 7 изд.:

1. Согласно пункту 1.7.109 в качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
2) металлические трубы водопровода, проложенные в земле;
3) обсадные трубы буровых скважин;
4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т. п.;
5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
6) другие находящиеся в земле металлические конструкции и сооружения;
7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.

Естественное заземление
Естественное заземление2
На фото: использование естественных конструкций в качестве заземлителей


2. Пункт 1.7.110. гласит:

Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с пунктом 1.7.82.

Система уравнивания потенциалов
На фото: заземляющий проводник подключен к трубопроводу, используется в системе уравнивания потенциалов


Занимайтесь заземлением и молниезащитой правильно! Получите бесплатно консультацию по выбору, расчётам и монтажу у наших технических специалистов!

Заземлитель

Заземлитель - это основной элемент заземляющего устройства. Заземлитель представляет собой одиночный заземляющий электрод или группу электродов (контур заземления), находящихся в электрическом контакте с землей.

Функциональность заземлителя определяется прежде всего сопротивлением заземления, которое должны быть минимально низким. Для этого используются различные методы, в том числе глубинные заземлители.

Глубинный заземлитель

Использование глубинного заземлителя позволяет существенно уменьшить площадь, занимаемую заземлителем на поверхности, а также повысить его эффективность (уменьшить сопротивление заземления), так как электрод(ы) такого заземлителя находится в слоях грунта с меньшим удельным сопротивлением, чем у поверхностных слоев (за счет большей влажности и плотности почвы).

Этот способ строительства заземлителя в прошлом не часто использовался из-за сложности монтажа, где требовалось привлечение специальной строительной техники - буровой установки.

В настоящем, с широким распространением модульного заземления, монтаж глубинных заземлителей стал простым и быстрым без привлечения спецтехники. Простота позволяет производить работы в подвальных помещениях.

Естественный заземлитель

Естественными заземлителями называют металлические сооружения, имеющие контакт с грунтом и которые можно использовать для заземления.
В качестве естественных заземлителей используют например:

  • металлические конструкции и арматуру железобетонных конструкций зданий и сооружений, контактирующие с грунтом
  • проложенные в земле водопроводные и другие металлические трубопроводы, а также обсадные трубы

Естественные заземлители должны быть связаны с объектом не менее чем двумя заземляющими проводниками, присоединенными к такому заземлителю в разных местах.

В качестве естественных заземлителей нельзя использовать :

  • трубопроводы горючих жидкостей, горючих или взрывчатых газов
  • трубопроводы, покрытые изоляцией для защиты от коррозии
  • трубопроводы канализации и центрального отопления

В тех случаях, когда естественные заземлители отсутствуют либо имеют слишком высокое сопротивление заземления, используют искусственные заземлители.

Искусственный заземлитель

Искусственными заземлителями называются устанавливаемые в земле металлические конструкции, специально предназначенные для целей заземления.

В качестве искусственных заземлителей применяют:

  • вертикально погруженные в землю стальные трубы, уголковую сталь, металлические стержни и т. п.
  • горизонтально проложенные в земле стальные полосы, круглую сталь и т. д.

Для защиты заземлителя от коррозии используются оцинкованные или омедненные (лучше) электроды. Примером искусственного заземлителя на основе омедненных электродов является модульное заземление ZANDZ.

Сечение заземляющих электродов

Для обеспечения надежной и долгой работы заземлителей с точки зрения коррозионной и механической стойкости приняты минимальные размеры заземляющих электродов.

Что может быть использовано в качестве естественных заземлителей?

Живу в своем доме, люблю заниматься садом и животными. Увлекаюсь лингвистикой.

В качестве естественных заземлителей можно использовать железобетонные и металлические части сооруженй, которые соприкасаются с землей. Фундаменты, которые имеют гидроизоляционную защиту и находятся максимум в среднеагрессивных средах. Так же можно использовать исключительно металлические трубы водопровода, которые проложены земле, трубы на. Читать далее

Читайте также: