Большой ток холостого хода трансформатора причины

Обновлено: 28.04.2024

УМЕНЬШЕНИЕ ТОКА ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА

Нет любителя электроники, которого хотя бы раз не упрекнули в том, что он не изучает теорию, а его творческий метод на практике есть ни что иное как «метод тыка». Между тем в познании теории есть свои нюансы. Перемотка трансформаторов дело хорошее, в смысле если владеешь этим умением (хотя бы работой со вторичной обмоткой), то сбережешь не только деньги, но и время. Бонусом будет хорошее настроение от осознания своей творческой мощи. Однако суть процесса заключается не только в сматывании и наматывании витков провода на трансформаторную катушку и разборке – сборке магнитопровода. Есть моменты, основанные на знаниях. Пополняя их прочитал как-то про ток холостого хода трансформаторов и не вникая в подробности уяснил, что это плохо. Да ещё вдобавок ко всему научился его измерять.

Холостым ходом трансформатора называется такой режим его работы, при котором к первичной обмотке подведено напряжение, а вторичная обмотка разомкнута и ток в ней равен нулю.

В работе в это время как раз находился трансформатор питания ТП-60-15.

трансформатор питания ТП-60-15

Домотал его вторичную обмотку до выходного напряжения 12 вольт с током гораздо более 1 ампера. И тут не упустив случая, использовал вновь приобретённые знания - замерил ток холостого хода. А в наличии аж 125 мА - норма для силового трансформатора ТС-270. Тогда не долго думая смотал всю вторичную обмотку и добавил первичной ( для устранения обнаруженного недостатка), ток холостого хода стал 40 мА. Правда места под первичную обмотку стало меньше и хватило намотать провода только до напряжения 10,5 вольт, но и это вполне устраивало.

трансформатор питания - проверка

Не устроило только то, что уже первые сто миллиампер поглощенные нагрузкой вызвали падение напряжения на один вольт - максимальную норму допуска падения в таких случаях. А увеличение нагрузки до токопотребления в 0,5 ампера заставили стрелку вольтметра упасть уже до 9 вольт. Чтобы понять причину много времени не потребовалось, естественно всё дело было в действиях по снижению тока холостого хода. Улучшая, хотел лучшего, а получилось всё именно так как обычно и бывает в таких случаях. Недаром же существует не писаный постулат, гласящий о неприкосновенности первичной обмотки трансформатора заводского изготовления.

УМЕНЬШЕНИЕ ТОКА ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА

Пришлось смотать сделанную прибавку к первичной обмотке. Как видно на фото её было не мало (провод, намотанный на катушку от видеокассеты). На трансформаторной катушке осталась заводская намотка сопротивлением в 50 Ом. На место вторичной обмотки вернул тот же провод диаметром 1 мм и в том же количестве, что смотал ранее.

УМЕНЬШЕНИЕ ТОКА ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА 220В

Трансформатор, восстановленный до заводского исполнения, опять стал выдавать хороший выходной ток. При первоначальном напряжении в 10,5 В, оно снизилось только на 0,5 вольта и значит ещё можно добавлять нагрузку, а на амперметре уже более 1 ампера. Да и лампочки кончились.

От чего зависит ток холостого хода

Что касается тока холостого хода, то его последствием являются электрические потери в первичной обмотке трансформатора. Они в трансформаторах радиолюбительской практики весьма малы, можно даже сказать, ничтожны и ими обычно пренебрегают. Помимо числа витков первичной обмотки ток холостого хода так же зависит от целого ряда причин и условий:

  • величины поданного напряжения
  • наличия короткозамкнутых витков
  • качества изоляции обмоток
  • толщины пластин и их изоляции
  • наличия воздушного зазора в магнитопроводе
  • силы сжатия пластин
  • и так далее.

Производя сборку трансформаторных магнитопроводов, соединяющихся встык, уже не в первый раз применяю способ, при котором соединяемые торцы магнитопровода смазываю клеем, который используют для установки потолочных пенопластовых плиток (подробнее читайте здесь). При высыхании он практически не даёт усадки и прекрасно справляется с ролью специализированного компаунда, который применяют для этих целей в более ответственных случаях, а держит соединённые половинки так, что при разборке необходим резкий удар небольшого молотка. Но самое главное звук сопровождающий работу трансформатора, пресловутое «гудение» отсутствует полностью, трансформатор «нем как рыба». В планах подобрать наполнитель, пылеобразный порошок - магнитный диэлектрик.

Видео

Всем до встречи на страницах сайта "Электрические схемы". Автор Babay iz Barnaula.

Большой ток холостого хода трансформатора причины

400-500Вт) и решив его приспособить для лабораторного БП я обнаружил что при штатной первичке ток ХХ для меня неприемлемый

0.5А. В данном вопросе я бы хотел пока не заострять внимание на оптимизации магнитных потерь в процессе сборки. Рекомендации я читал и собираюсь подойти к этому серьезно. Также я читал о больших токах хх у мощных трансов, но все же хочу проверить оптимальность именно размера первичной обмотки.

Вычитал в инете что определить напряжение витка для первички можно с помощью ЛАТР-а, поднимая напряжение найти перелом в характеристике. К сожалению попытки найти нормальный ЛАТР в моей деревне не увенчались успехом. Хочу задать вопрос к людям хорошо понимающим физику работы трансов. Если я например подам на первичку транса ток в 200мА через активный баласт (например лампочку накаливания), то на трансе будет часть напряжения (меньше 220В ), я его фиксирую. Если я потом подам это (меньше 220В ) напряжение на первичную обмотку транса, получу ли я исходный ток хх в 200мА ? Я мечтаю разделить эту пониженную напругу (меньше 220В ) на текущее кол-во витков и вычислить оптимальное напряжение на виток для первички. Исходя из него я смогу более-менее определить нужное мне кол-во витков первички для обеспечения целевого тока хх.

Заранее прошу прощения за сумбурность выражения мыслей и аматорские выкладки сути вопроса.

почему ток холостого хода асинхронного двигателя больше тока холостого хода трехфазного трансформатора такой же мощ-ти?

Потому что мощность АД расходуется на вращение ротора двигателя.

Потери на перемешивание воздуха и ток больше по причине воздушной прослойки статор ротор.

Чтобы сдвинуть ротор с мертвой точки, нужно приложить энергию, Именно поэтому пусковой ток значительно выше рабочего. чтобы он вращался преодолевая силы трения в подшипниках, и силы трения воздуха так же необходима энергия. Трансформатор хоть и на холостом ходу, так же потрбляет энергию на намагничивание/размагничивание сердечника (именно по этому КПД обычных низкочастотных трансов не столь велеки, и за частую не привышают 60%) Но эта потребляемая энергия значительно ниже нежели энергия затрачиваемая на преодоления сил трения, так как транс на жолостом ходу лишь слегка греестя и вибрирует, и человеческому глазу/ужу почти незаметны. (зависит опять же от качества и точности сборки трансформатора)

Каким должен быть ток холостого хода трансформатора?

Перемотал трансформатор тороидальный 200 Вт. Померял ток холостого хода первичной обмотки оказалось 18 мА. Подскажите это нормально или много (мало)? И почему?

Лучший ответ

Должен быть оптимальным, не более 10% от номинального тока, у тебя в данном случае 1.1 ампера, и не менее 5%, то есть разброс получается 55-110 миллиампер, если превысить это значение то сердечник быстро будет входить в насыщение, если уменьшить ток то трансформатор резко теряет нагрузочную способность, у тебя ток занижен, слишком много витков на сетевой или сечение провода мало, для транса 200 ватт сечение провода должно быть 0.7-1.0 мм кв.

Что такое холостой ход трансформаторов, формулы и схемы

трансформатор электрического тока

Вопрос-ответ

Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:

  1. Конструктивного исполнения.
  2. Материала сердечника.
  3. Качества намотки.

При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.

Содержание

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

Данное отношение справедливо для всех обмоток трансформатора.

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.

Измерение тока

При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.

Применение ваттметра

Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.

Измерение потерь

При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:

  1. Нагрев проводов обмоток.
  2. Нагрев сердечника.
  3. Снижение КПД.
  4. Появление магнитного поля рассеивания.

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Примеры расчетов и измерений в режиме ХХ

Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:

  • активное сопротивление первичной цепи r1=Pхх/U 2 ;
  • полное сопротивление первичной цепи z1=U/Iхх;
  • индуктивное сопротивлении е x1=√(z 2 -r 2 ).

Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:

Понятие потерь холостого хода трансформатора и как их определить, формулы и таблицы

Изоляция трансформатор

Вопрос-ответ Содержание

Понятие холостого хода трансформатора

Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.

Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.

Какие факторы влияют на потери

Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.

Изоляция

Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.

Вихревые токи

Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.

Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.

Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.

Гистерезис

Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.

При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.

Характеристики электротехнической стали

Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.

Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.

Перегрев

В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.

В первичной обмотке

Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.

Как определить потери

Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.

Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала

Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.

Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.

Таблица потерь ХХ

Мощность кВа Напряжение ВН/НН, кВ Потери холостого хода Вт
250 10/0,4 730
315 10/0,4 360
400 10/0,4 1000
500 10/0,4 1150
630 10/0,4 1400
800 10/0,4 1800
1000 10/0,4 1950

Проверка устройства в режиме ХХ

Для этого выполняют такие действия:

  1. С использованием вольтметра проверяют напряжение, подающееся на катушку.
  2. Другим вольтметром исследуют напряжение на остальных выводах. Важно использовать устройство с достаточным сопротивлением, чтобы показатели были требуемого значения.
  3. Выполняют присоединение амперметра к цепи первичной обмотки. С его помощью можно добиться определения силы тока холостого хода. Также прибегают к применению ваттметра, с помощью которого стараются выполнить измерение уровня мощности.

После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.

Особенности режима ХХ в трехфазном трансформаторе

На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.

Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.

Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.

Примеры определения потерь ХХ на реальных моделях

Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:

  • n – сколько электротехнических устройств используется;
  • β – коэффициент загрузки трансформатора, представляющий собой отношение расчетной мощности к номинальной (β = Sp/Sн).

Вывод

Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.

Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.

Нормальный Ток Холостого Хода Сетевого Трансформатора

При -50 все будет происходить медленно, какой конкретно транзистор моп произведенный в СССР.

Михайлик

Если из моей жизни убрать алкоголь и работу, то останутся только поездки на маршрутке.

Владислав2

Гость zloy. Таки ваши ответы. А вот вопросы автора темы ? Таки всё таки просто ?

Serega_23

Цена 1800р.

Serega_23

Цена за 2 платы УНЧ - 3400р. Цена за 2 платы УНЧ без транзисторов - 2800р.

Режим холостого хода для трансформаторов

Холостой ход трансформаторов может понадобиться тогда, когда требуется определить реальные параметры тока и напряжения, выводимыми во время трансформации. Ее обеспечивают специальные устройства, обеспечивающие понижение или повышение напряжения переменного электрического тока. С помощью холостого хода выясняются фактические потери процесса работы устройства.

При режиме работы с разомкнутой вторичной обмоткой частота тока не изменяется. Остаются прежними и показатели мощности. Таким образом можно выяснить фактическую силу тока, электрическое сопротивление. Какого бы не был типа трансформатор, они имеют аналогичные характеристики. Наблюдение за работой холостого хода трансформатора необходимо при их эксплуатации и при проверки их работоспособности.

Режим холостого хода для трансформаторов

Трансформатор.

Передача и использование электрической энергии

Электрическая энергия, которая вырабатывается генераторами на электростанциях, передается к потребителям на большие расстояния. Трансформаторы в случае широко используются Линии, по которым электрическая энергия передается от электростанций к потребителям, называют линии электропередачи (ЛЭП).

При передаче электроэнергии на большие расстояния неизбежны ее потери, связанные с нагреванием проводов. Потери при нагревании электрических проводов прямо пропорционально I 2 через проводник (согласно закону Джоуля — Ленца). Работа любого трансформатора состоит из трех основных режимов:

  • Режим холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой;
  • рабочим режимом (ходом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена нагрузка с сопротивлением R = 0;
  • режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, т.к. в этом случае ток во вторичной обмотке максимален и происходит электрическая и тепловая перегрузка системы.

Режим холостого хода для трансформаторов

Один из самых основных режимов – это холостой ход. На основании характеристик холостого хода происходит анализ всех режимов работы трансформатора.

трансформатор

Чтобы уменьшить потери энергии, необходимо уменьшить силу тока в линии передачи. При данной мощности уменьшение силы тока возможно лишь при увеличении напряжения (P=UI).

Для этого между генератором и линией электропередачи включают повышающий трансформатор, а понижающий трансформатор — между ЛЭП и потребителем электроэнергии. В бытовых электроприборах (по технике безопасности) используются небольшие напряжения 220 и 380 В. У современных трансформаторов высокий КПД — свыше 99%.

Режим холостого хода трансформатора

Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. Такой режим работы может быть у реального трансформатоpa, когда он подключен к сети, а нагрузка, питаемая от его вторичной обмотки, еще не включена.

По первичной обмотке трансформатора проходит ток I , в то же время во вторичной обмотке тока нет, так как цепь ее разомкнута. Ток I , проходя по первичной обмотке, создает в магнитопроводе синусоидально изменяющийся лоток Ф , который из-за магнитных потерь отстает по фазе от тока на угол потерь δ.

Будет интересно➡ Чем отличаются трансформаторы напряжения от трансформаторов тока

Очевидно, что переменный магнитный поток Ф пересекает обе обмотки трансформатора. В каждой из них возникают эдс: в первичной обмотке — эдс самоиндукции Е1, во вторичной обмотке — эдс взаимоиндукции Е2. Действующие значения этих эдс зависят от числа витков в обмотках, магнитного потока Ф и частоты его изменения f. Величины эдс определяют по формулам:

где ω1 и ω2 — числа витков в обмотках;

Ф0 макс — максимальное значение магнитного потока, Вб.

Это соотношение характеризует одно из основных свойств трансформатора: эдс в обмотках трансформатора пропорциональны количеству витков. Отношение числа витков ω1 / ω2 = k называют коэффициентом трансформации.

Таким образом, если мы хотим повысить полученное от генератора напряжение в 10, 100 или 1000 раз, то необходимо так подобрать обмотки трансформатора, чтобы число витков ω2 вторичной обмотки было больше числа витков ω1 первичной обмотки соответственно в 10, 100 или 1000 раз.

Тогда вторичная обмотка оказывается обмоткой высшего напряжения (ВН), а первичная — обмоткой низшего напряжения (НН). Наоборот, если необходимо снизить напряжение в линии, первичное напряжение подводят к обмотке ВН, а к обмотке НН подключают приемники электрической энергии.

Итак, любой трансформатор может работать как повышающий и как понижающий. Все зависит от того, к какой из его обмоток будет подведено напряжение для преобразования. Обмотка трансформатора, к которой подводится энергия преобразуемого переменного тока, называется первичной (независимо от того, будет ли эта обмотка высшего или низшего напряжения). Обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.

Мы рассмотрели действие только рабочего, или основного, магнитного потока Ф . Однако в трансформаторе кроме рабочего существует еще магнитный поток рассеяния Фр1. Этот магнитный поток образуется силовыми линиями, которые ответвляются от основного потока в сердечнике и замыкаются по воздуху вокруг витков обмотки ω1.

Поскольку поток рассеяния замыкается по воздуху, его величина пропорциональна току, в нашем случае — току холостого хода I . Следовательно, поток рассеяния Фр1 является, как и ток I , переменным и, пересекая витки первичной обмотки, создает в ней эдс самоиндукции Ер1. В первичной обмотке трансформатора создаются две эдс самоиндукции: одна E1 — рабочим магнитным потоком Ф , другая Ер1 — магнитным потоком рассеяния.

Мы знаем, что эдс самоиндукции всегда направлена против приложенного напряжения и ее действие на ток в цепи равносильно добавочному сопротивлению, которое называют индуктивным и обозначают х. Для поддержания неизменным тока холостого хода подводимое напряжение U1 должно расходоваться не только на преодоление активного сопротивления r1 обмотки, но и на создание эдс самоиндукции.

Другими словами, приложенное напряжение U1 складывается из нескольких частей: первая часть равна эдс самоиндукции E1 от потока Ф , вторая — эдс самоиндукции Ер1 от потока рассеяния Фр1, третья — активному падению напряжения I r1.

трансформатор

Режимы работы трансформатора.

Холостой ход тpexфaзного устройства

Характер работы З-фaзного устройства в режиме XX зависит от магнитной системы и схемы подключения обмоток:

  • первичная катушка — «треугольником»;
  • вторичная — «звездой» (D/Y): имеет место свободное замыкание TГC тока I1 по обмоткам устройства. Поэтому магнитный поток и ЭДC являются синусоидальными и нежелательные процессы, описанные выше, не происходят; схема Y/D: TГC магнитного потока появляется, но ток от наведённой им дополнительной ЭДC свободно течет по замкнутым в «треугольник» вторичным катушкам.
Будет интересно➡ Что такое трансформатор?

Этот ток создаёт свой поток вектора магнитной индукции, который гасит вызывающую его третью ГC основного MП. B результате магнитный поток и ЭДC, имеют почти синусоидальную форму, соединение первичной и вторичной катушек «звездой» (Y/Y).

B последней схеме TГC тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от неё. Из-за этого искажается магнитный поток.

Дальнейшее определяется магнитной системой: З-фазный трансформатор в виде группы 1-фaзныx: TГC магнитного потока замыкается в каждой фазе по собственному сердечнику и из-за малого магнитного сопротивления последнего, достигает амплитуды в 15% – 20% рабочего магнитного потока.

Она созидает дополнительную ЭДC, амплитуда которой может достигать уже 45% – 60% от основной ЭДC. Такой рост напряжения может привести к пробою изоляции c последующей поломкой электроустановок. Трансформаторы c бронестержневой магнитной системой имеют место такие же явления (третьи гармонические магнитного потока замыкаются по боковым ярмам мaгнитопpоводa).

Тpexcтepжнeвaя магнитная система: TГC пути по мaгнитопpоводa не имеет и замыкается по среде c малой магнитной проницаемостью — воздух, масло, стенки бака. Поэтому она имеет малую величину и значительной дополнительной ЭДC не наводит.

Как определить коэффициент трансформации

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Режим холостого хода для трансформаторов

схема потерь электроэнергии

Схема потерь электроэнергии.

Причины и следствия потерь холостого хода трансформатора

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.

Будет интересно➡ Устройство и схема трехфазного трансформатора

Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа. Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете. Таблица допустимых потерь при холостом ходу трансформатора приведена ниже.

Таблица допустимых потерь при холостом ходу трансформатора

Таблица допустимых потерь при холостом ходу трансформатора.

Как измерить потери холостого хода трансформатора

Основные принципы измерений потерь холостого хода всех видов трансформаторных приборов прописаны в ГОСТах. Главной причиной ошибочных результатов, полученных во время проведения измерений, можно назвать низкую точность измерительных устройств и неверные действия замерщиков, а также несоответствие необходимым условий проведения измерений. Чтобы избежать отклонений, влияющих на прогнозы и корректировку условий и интенсивности эксплуатации приборов, стоит предварительно разработать, согласовать с изготовителем и утвердить методику измерения потерь в данном режиме.

схема потерь на холостом ходу

Эффективность действия устройства напрямую зависит от такого явления, как электромагнитная индукция. Что такое режим холостого хода сварочного трансформатора? Напомним, что такой режим устанавливается при разомкнутой вторичной обмотке в тот момент, когда подключается первичная обмотка с током I1. Напряжение сети переменного тока в данном случае равно U1.

Ток, идущий по первичной обмотке, моделирует магнитный поток с переменными характеристиками, индуцирующий переменное напряжение U2, возникающее во вторичной обмотке. А так как ее цепь находится в разомкнутом состоянии, соответственно ток I2 имеет нулевое значение.

То есть во вторичной цепи нет никаких затрат электроэнергии. В этих условиях вторичное напряжение, которое возникает в комментируемом режиме, достигает пиковых значений. Такая величина является напряжением холостого хода.

Принцип действия таких устройств базируется на преобразовании стандартного сетевого напряжения. Этот стандарт преобразуется в напряжение холостого хода, имеющее приблизительный диапазон от 60 до 80 В.

Режим холостого хода для трансформаторов

Все параметры и их соотношение влияют на уровень и плавность регулировки. Делать это можно двумя путями: меняя значение либо индуктивного сопротивления, либо напряжения холостого хода.

В первом случае, который является более частотным и популярным, регулировка сварочного тока происходит более плавно. Вторым предпочитают пользоваться, как альтернативным.

Плавность двухдиапазонного регулирования мощности тока в процессе работы трансформатора сварочного типа играет важную роль, так как дает возможность значительно снизить показатели массы, а также ощутимо уменьшить размеры устройства. Получить широкий диапазон больших токов можно, включая попарно параллельно катушки как первичной, так и вторичной обмоток, а чтобы получить диапазон токов малой мощности, их необходимо включать в последовательном режиме.

Заключение

Читайте также: